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Abstract

Survival analysis is widely employed across medicine, busi-
ness, and the social sciences. However, the absence of a uni-
fied and standardized software for evaluating survival anal-
ysis models impedes its broader application by researchers.
In this research, we fill this gap by providing a comprehen-
sive Python package, SurvivalEVAL, which implements
seven evaluation metrics specific to survival analysis. The
SurvivalEVAL package is designed to serve as a conve-
nient and straightforward toolkit for individual survival distri-
bution models. The package is publicly available on GitHub
at https://github.com/shi-ang/SurvivalEVAL.

Introduction and Background
Survival analysis models have been extensively used across
diverse fields such as medicine, business, and social sci-
ences. Of these models, those producing individual survival
distributions (ISDs) (Haider et al. 2020) have demonstrated
superior versatility. An ISD represents a survival probability
curve given an instance’s description, S(t | xi), over all fu-
ture times t > 0. The utility of ISDs extends beyond mere
risk score prediction; they also excel in predicting single-
time survival probabilities and time-to-event estimations.

The standardization of evaluation metrics is essential in
model development and benchmarking. Over the past few
decades, a myriad of ISD models have been introduced. Re-
searchers use many evaluation metrics to quantify and com-
pare the new ISD modeling approaches against each others,
and also prior works. Although researchers understandably
opt for metrics that align with their specific objectives, there
is a marked inconsistency in metric selection across studies
due to the different approaches to handling censored sub-
jects in the evaluation. Even in the context of the widely
adopted concordance index (C-index), multiple variations
exist, ranging from the standard C-index (Harrell Jr, Lee,
and Mark 1996) to the time-dependent C-index (Antolini,
Boracchi, and Biganzoli 2005), IPCW C-index (Uno et al.
2011), margin C-index (Kumar et al. 2022), and many other
variants designed for addressing ties. Such disparities com-
plicate the reproduction of empirical findings in survival
analysis and impede model comparisons.
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One of the main reasons for this is the lack of a com-
plete, standardized survival evaluation toolkit to evaluate
ISD models. In contrast to classification or regression tasks,
where evaluation tools are standardized and abundant, only
a few Python packages focus on evaluating the predictive
power of survival models. To make things worse, most of
the available packages have implemented only a few evalua-
tion metrics (see the comparison in Table ??). As authors
could not find a suitable package for the desired evalua-
tion metrics, they needed to write the evaluation metrics by
themselves to satisfy their interests. Furthermore, calibra-
tion metrics have been playing an important role in evalu-
ating survival models in recent years. Manuscripts lacking
calibration metrics in their evaluations are prone to criticism
during peer review processes. However, none of the existing
survival packages have included any calibration metrics.

In response, this paper introduces a Python package,
SurvivalEVAL. This package includes a comprehensive
scope of metrics for the evaluation of the ISD model. The
package operates independently of the specific model types.
Additionally, SurvivalEVAL features APIs tailored to
seamlessly interface with outputs from widely used Python
packages. We illustrate the convenience and effectiveness of
our package by applying it to a popular survival model us-
ing a real-world dataset. With our SurvivalEVAL pack-
age, one can compare and evaluate different survival models
in a convenient and comprehensive way.

Package Overview
This section will present seven evaluation metrics and nec-
essary implementation details in SurvivalEVAL package.

Notation and Definition
We consider a survival dataset with N time-to-event tuples,
D = {(xi, ti, δi)}Ni=1, where xi represents the observed
features for the i-th subject, ti denotes the event or censor-
ing time, and δi ∈ {0, 1} is a censor/event indicator where
δi = 0 means the subject is right-censored (the subject has
not experienced an event at time ti) and δi = 1 means sub-
ject experienced the event at time ti.

ISD models are designed to model the individual sur-
vival distribution S(t|xi) = P (T > t|X = xi). Further,
f(t|xi) = −∂S(t|xi)/∂t denotes the (conditional) proba-
bility density function (PDF) of the event time T .
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Packages C-index MAE/MSE IBS D-Cal AUC BS 1-Cal

lifelines (Davidson-Pilon 2019) ✓ - - - - - -
pycox (Kvamme, Borgan, and Scheel 2019) ✓† - ✓ - - ✓ -
PySurvival (Fotso et al. 2019) ✓ - ✓ - - ✓ -
scikit-survival (Pölsterl 2020) ✓ - ✓ - ✓ ✓ -
auton-survival (Nagpal, Potosnak, and Dubrawski 2022) ✓† - ✓ - ✓ ✓ -
SurvivalEVAL ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparisons of Python packages that are commonly used to evaluate survival predictions. †C-index implemented in
pycox and auton-survival is the time-dependent C-index (Antolini, Boracchi, and Biganzoli 2005), which is different
from the standard C-index proposed by Harrell Jr, Lee, and Mark (1996).

A predicted event time t̂i can then be represented by either
mean or median survival time, respectively:

t̂i,mean = Et[S(t|xi)] =

∫ ∞

0

S(t|xi) dt,

t̂i,median = median(S(t|xi)) = S−1(0.5|xi).

Users have the flexibility to select their preferred method for
calculating predicted times from these two options.

Calculating the mean and median survival time requires
interpolation and extrapolation of the ISD curve. For this, we
adopt specific interpolation methods to maintain the mono-
tonic decreasing nature of the survival curves. Specifically,
users have the option of selecting from (1) the linear method,
(2) Forsythe, Malcolm and Moler method (Forsythe et al.
1977) combined with Hyman filtering (Hyman) (Hyman
1983), or (3) the piecewise cubic Hermite interpolating poly-
nomial (PCHIP) method (Fritsch and Butland 1984). Among
the three methods, the linear method is the fastest, but suf-
fers from non-smooth interpolation. Hyman method is inte-
grated within R packages, and our choice of Hyman ensures
that interpolation results align with R’s survival packages.
Meanwhile, the PCHIP method is implemented in Python,
offering faster execution times (2x faster than Hyman) albeit
with a minor deviation in interpolation results compared to
Hyman. For practical purposes, users may select any inter-
polation method, provided they apply it consistently (across
different models) throughout the entire experiment.

For extrapolation, we need the ISD curves to be mono-
tonic decreasing functions after the last time point, so
we take a linear fit1 of (0, 1) and the last ISD point
(tlast, S(tlast|x)), and then apply this linear function from
the last time point to the time for which survival probabil-
ity equals 0.

Concordance Index
The concordance index (C-index) is the most commonly
used metric in survival analysis, measuring the model’s abil-
ity to correctly rank the risks of the subjects. It is described
as the proportion of all comparable pairs of subjects where

1If the last two time points on the ISD curves have the same
probability, the cubic fitting (Hyman and PCHIP methods) will re-
main constant beyond the last time range, never reaching 0. This
can result in an inaccurate calculation of mean and median survival
times, which tends toward infinity.

the predicted and observed risk are concordant. A pair is
comparable if we can determine who has the event first. The
C-index is defined by Harrell Jr, Lee, and Mark (1996):

C-index =

∑
i,j∈D 1ti<tj · 1ηi>ηj

· δi∑
i,j∈D 1ti<tj · δi

,

where ηi represents the risk score of subject i. In this
SurvivalEVAL package, we use the negative of predicted
times (mean or median) as risk scores for C-index. In addi-
tion to this standard C-index, we also implemented the mar-
gin C-index proposed in Kumar et al. (2022).

Mean Absolute/Squared Error
Survival prediction is like regression as it predicts a real
number from a description of that subject. Therefore,
it is natural to use the mean absolute or squared error
(MAE/MSE) or mean squared error to evaluate the distance
between the true event times and the predicted times. Sev-
eral MAE/MSE variant has been proposed to handle right-
censoring in survival analysis:
1. Hinge is a one-sided metric that considers only if the

predicted time is earlier than the censored time, i.e.,
(ti − t̂i) · 1ti>t̂i

and (ti − t̂i)
2 · 1ti>t̂i

.
2. Margin (Haider et al. 2020) calculates a surrogate value

for each censored subject, using the Kaplan Meier (KM)
estimator (Kaplan and Meier 1958):

emargin(ti) = ti +

∫∞
ti

SKM(D)(t)dt

SKM(D)(t)
.

3. PO (Qi et al. 2023) also calculates the surrogate values
for each censored subject, but using pseudo-observation
(PO) techniques. The PO value for the censored sub-
ject calculates how much this subject counts toward the
group-level KM estimator, using jackknife resampling:
ePO(ti) = N · Et[SKM(t)]− (N − 1) · Et[SKM−i(t)].

For Margin and PO, once we calculate the surrogate value
emargin or ePO for all the censored subjects, we can then re-
place the censor times label with the surrogate times and cal-
culate MAE/MSE as a standard regression task. We also pro-
vide the option of using the weighting scheme to represent
the confidence in the surrogate value for censored subjects as
introduced in Qi et al. (2023). For completeness, we also im-
plemented the uncensored, IPCW-D, and IPCW-T versions
of MAE/MSE in Qi et al. (2023).
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Brier Score
Brier score (BS) is another commonly used metric in sur-
vival analysis, which measures the mean squared error be-
tween the observed binary status and the predicted survival
probability at a target time t∗. In the SurvivalEVAL pack-
age, we will take the most classical method to calculate the
BS by weighting the prediction residuals by inverse proba-
bility censoring weights (IPCW) (Graf et al. 1999):

BS(t∗) =
1

N

∑
i∈D

[
S(t∗|xi)

2 · 1ti≤t∗,δi=1

G(ti)

+
(1− S(t∗|xi))

2 · 1ti>t∗

G(t∗)

]
,

where G(t) is the non-censoring probability at time t, which
is estimated with KM on the censoring distribution (flip the
censoring indicator of data), and its reciprocal is referred to
as the IPCW. For BS calculation, researchers will need to
manually choose t∗ based on the research objectives. Other-
wise, median time of the dataset will be used as default.

Integrated Brier Score
The integrated Brier score (IBS) is the expectation of single-
time BS over time. IBS for survival prediction is typically
defined as:

IBS =
1

N

∑
i∈D

1

tmax
·
∫ tmax

0

BS(t) dt,

where tmax is defined as the maximum event time of the com-
bined training and validation datasets.

Distribution Calibration
Distribution calibration (D-Cal) (Haider et al. 2020) is a
popular calibration metric for evaluating ISD models. It is
a statistical test to evaluate the reliability of the predicted
ISD curves. As to the notation, for any probability interval
[a, b] ⊂ [0, 1], let

D(a, b) = {[xi, ti, δi = 1] ∈ D | S(ti|xi) ∈ [a, b]}
be the subset of the subjects in the dataset D whose pre-
dicted probability at its event time, S(ti|xi), is in the interval
[a, b]. The model is D-calibrated if the proportion of patients
|D(a, b)|/|D| is statistically similar to the proportion b− a,
for any choice of a and b. It is common to use equal-sized,
mutually exclusive intervals with Pearson’s χ2 test to exam-
ine if the proportion of patients in each bin is uniformly dis-
tributed. To handle censored subjects, we uniformly “split”
each censored subject into subsequent probability intervals
after S(ti|xi) (Haider et al. 2020).

Area under the ROC Curve
The area under the receiver operating characteristic curve
(AUC) can be extended to the survival dataset. To be spe-
cific, given the individual risk scores {ηi}i∈D at a target time
t∗, the AUC can be calculated by:

AUC(t∗) =

∑
i,j∈D 1ti<t∗ · 1tj>t∗ · 1ηi>ηj · δi∑

i,j 1ti<t∗ · 1tj>t∗ · δi
.

For AUC calculation, we use the predicted survival proba-
bilities at time t∗ (i.e., S(t∗|xi)) as the risk scores.

Hosmer-Lemeshow Calibration
Hosmer-Lemeshow calibration (1-Cal) (Hosmer and Lemes-
bow 1980) is a statistical test to evaluate the calibration abil-
ity of the risk predictions at time t∗. We define the risk score
at time t∗ as the survival probability, S(t∗|xi), just like the
AUC score.

To calculate 1-Cal statistics, we first sort the risk scores
and group them into K bins. Within each bin, we calculate
the expected number of events and compare it to the ob-
served event number. We use the Hosmer-Lemeshow test to
assess if the expected and observed event rates are statis-
tically similar. To handle censored subjects, we can use the
KM estimator to approximate the observed number of events
for each bin at time t∗ (D’Agostino and Nam 2003).

Other Metrics
The current SurvivalEVAL only includes the above men-
tioned evaluation metrics. However, there are many other
existing evaluation variants that have been used by other
research. For example, time-dependent C-index (Antolini,
Boracchi, and Biganzoli 2005), IPCW C-index (Uno et al.
2011), IPCW AUC (Hung and Chiang 2010), administrative
BS (Kvamme and Borgan 2023), etc. We will deliver the im-
plementation for these variants in the future. Furthermore,
the current packages only deal with the right-censoring for-
mat. We will improve the package by incorporating other
forms of censoring, such as interval censoring.

Usage Example
In this section, we use an example with the corresponding
Python code to illustrate the effectiveness of the metrics pro-
vided in SurvivalEVAL package.

The dataset we use in this example is the German Breast
Cancer Study Group 2 dataset (GBSG2) (Schumacher et al.
1994). The dataset contains 686 samples and 8 features.
It has a censoring rate of 43.6% with the target event of
recurrence-free survival. We first perform a preprocessing
on the GBSG2 dataset and split the training and testing
datasets using the following code:
1 from lifelines.datasets import

load_gbsg2
2 # Load the data and split train/test set
3 gbsg2 = load_gbsg2()
4 gbsg2 = gbsg2.replace({"horTh": {"no":

0, "yes": 1}, "menostat": {"Pre": 0,
"Post": 1}, "tgrade": {"I": 1, "II":
2, "III": 3}})

5 train, test = gbsg2.iloc[:400, :], gbsg2
.iloc[400:, :]

Then we choose a model from the lifelines package,
and then train the model using the training set and perform
inference on the testing set. To be specific, we choose the
most popular Cox proportional hazard (CoxPH) (Cox 1972)
model to check and test the provided functionalities.
1 from lifelines import CoxPHFitter
2 isd_curves = CoxPHFitter().fit(train,

duration_col="time", event_col="cens"
).predict_survival_function(test)
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Figure 1: Visualization of the results of evaluation metrics. Left: Brier scores over all time points. Middle: the quantile-quantile
plot of the observed histogram for D-Cal. Right: observed and expected event histograms of 1-Cal.

Once we get the predicted ISD curves for the test
data from the model, we can then use the APIs in
SurvivalEVAL to seamlessly plug in these ISD outputs.
For example:
1 from Evaluator import LifelinesEvaluator
2 evl = LifelinesEvaluator(isd_curves,

test.time, test.cens, train.time,
train.cens)

SurvivalEVAL has tailored APIs for many popu-
lar survival Python packages, including lifelines,
pycox, PySurvival, scikit-survival, and
auton-survival. For other customized ISD models,
users can use the SurvivalEvaluator API that simply
takes the 2-D survival curve matrix, the 1-D time points
vector, and the true labels as inputs, and follows the below
guidelines to calculate the evaluation scores.

Once the user gets everything ready, s/he can perform the
evaluation, starting from the C-index:
1 cindex, correct_pairs, total_pairs = evl

.concordance()

This method returns three float values, representing the
C-index (0.688), the number of correctly ordered pairs
(13630), and the number of total comparable pairs (19821).

To calculate MAE, the user can simply type:
1 mae = evl.mae(method="Pseudo_obs",

weighted=True, log_scale=False)

which calculates the MAE-PO value for the testing set. The
user can also choose other methods like hinge, margin, etc,
and choose to whether use a weighted scheme and logarith-
mic scale or not.

Then, to calculate the IBS score, one can use:
1 ibs = evl.integrated_brier_score(

num_points=None, draw_figure=True)

num points refers to the number of uniformly dis-
tributed points at which the BS is to be calculated. If None,
the points are set to be the unique censored times from the
test set. Users can also set the argument draw figure to
True to show Figure 1 (left), which represents the BS val-
ues at all the unique time points in the training data.

To calculate D-Cal, the user needs to decide how many

bins they will use to split the quantile and performs the sta-
tistical test. A common choice could be 10 bins:
1 p_value, bin_hist = evl.d_calibration(

num_bins=10)

This method returns a p-value for the χ2 test and also the
bin histogram for the predefined 10 bins. We can visualize
the D-calibration results using the bin histogram to generate
a quantile-quantile (q-q) plot (Figure 1 middle). The closer
the model’s q-q plot to the ideal one, the better the model is
D-Calibrated.

If the user wants to evaluate the model’s performance at a
single time point, s/he can calculate the AUC, BS, and 1-Cal
with a predefined target time (for example, 1000 days).
1 target_t = 1000
2 auc = evl.auc(target_t)
3 bs = evl.brier_score(target_t)
4 p,ob,exp = evl.one_calibration(target_t)

We can obtain an AUC score of 0.720 and a BS of 0.175 for
the model. As to the 1-Cal, the p-value (p) = 0.479 > 0.05
indicates that the predicted probabilities are 1-Calibrated at
1000 days. We can visualize the numbers of observed events
and expected events using a histogram in Figure 1 (right).

Concluding Remarks
Evaluating the predictive capabilities of survival models
presents challenges due to the absence of a universally ac-
cepted criterion for evaluation metrics. Current metrics are
distributed among various Python or R packages with incon-
sistent interfaces, complicating the task for non-specialists.

In this study, we address this issue by introducing
SurvivalEVAL, a comprehensive Python package that of-
fers a uniform interface to a broad range of performance as-
sessment and statistical comparison techniques. The pack-
age facilitates a straightforward interface for evaluating and
comparing models. The current version of SurvivalEVAL
incorporates seven evaluation metrics. More metrics and
variants are under development and will be integrated in fu-
ture iterations. Additionally, we are enhancing the package’s
documentation and interface to better assist non-computer
science researchers in survival model evaluation.
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