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Abstract
This paper presents experiments on using ChatGPT4 and
Google Bard to create ACT-R and Soar models. The study
involves two simulated cognitive tasks, where ChatGPT4 and
Google Bard (Large Language Models, LLMs) serve as con-
versational interfaces within the ACT-R and Soar framework
development environments. The first task involves creating an
intelligent driving model using ACT-R with motor and per-
ceptual behavior and can further interact with an unmodified
interface. The second task evaluates the development of edu-
cational skills using Soar. Prompts were designed to represent
cognitive operations and actions, including providing context,
asking perception-related questions, decision-making scenar-
ios, and evaluating the system’s responses, and they were it-
eratively refined based on model behavior evaluation. Results
demonstrate the potential of using LLMs to serve as inter-
active interfaces to develop ACT-R and Soar models within
a human-in-the-loop model development process. We docu-
mented the mistakes LLMs made during this integration and
provided corresponding resolutions when adopting this mod-
eling approach. Furthermore, we presented a framework of
prompt patterns that maximizes LLMs interaction for artifi-
cial cognitive architectures.

Introduction
The study of human cognition and decision-making pro-
cesses has been a longstanding pursuit in cognitive science
and artificial intelligence research. Two prominent frame-
works for cognitive modeling are the ACT-R (Anderson
2009) and Soar (Laird 2019).

These frameworks are powerful tools for simulating hu-
man behavior in various cognitive tasks. However, tradi-
tional model development for ACT-R and Soar involves
complex coding and challenges in acquiring sufficient data
for model refinement, hindering widespread adoption and
accessibility. It has been noted as difficult by several authors
(Pew and Mavor 1998; Ritter, Kukreja, and Amant 2007;
Shakir 2002). Additionally, integrating perceptual and mo-
tor behaviors into either architecture’s models presents chal-
lenges, limiting their applicability in real-world scenarios.

Recent advancements in language models like ChatGPT4
and Google Bard have opened new possibilities for en-
hancing ACT-R and Soar model development. We refer to
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them here together as Large Language Models (LLMs) (Cerf
2023). ChatGPT4 (OpenAI 2023), a next-generation conver-
sational AI, demonstrates remarkable proficiency in gener-
ating human-like responses across various tasks, and Bard
(Google 2023) excels in providing diverse options. LLMs
have significant potential in fields where humans and AI
tools collaborate as dependable and reliable partners, result-
ing in improved developments of software-dependent sys-
tems (White et al. 2023), including artificial cognitive ar-
chitectures. Nonetheless, the lack of existing research using
LLMs in ACT-R and Soar model development amplifies the
limitations of this approach.

This article focuses on building ACT-R and Soar models
for two scenarios. In the first scenario, the ACT-R frame-
work is used to develop a model that has the potential
to interact with an unmodified interface, incorporating vi-
sual and manual modules. Specifically, the simulation in-
volves starting a bus and maneuvering it on the road (Wu
et al. 2023). However, the ACT-R model part does not
delve into the integration of visual and motor management
systems, like Segman (Ritter, Kukreja, and Amant 2007),
Jsegman (Schwartz, Tehranchi, and Ritter 2020), or VisiTor
(Tehranchi, Bagherzadeh, and Ritter 2023) to access the un-
modified interface, as it falls beyond the scope of this article.

In the second scenario, Soar is used in an educational
simulation to identify the dominant intelligence type of stu-
dent. The simulation analyzes data from educational activi-
ties, such as solving mathematical problems and performing
demanding tasks (Huizinga, Baeyens, and Burack 2018), to
determine the student’s dominant intelligence type accord-
ing to Gardner’s (Gardner 1993) theory of multiple intelli-
gences.

By leveraging the language generation capabilities of
LLMs, this article provides a broader understanding of the
applicability and potential of these approaches in different
contexts. The results of this experiment contribute to the ad-
vancement of research in artificial cognitive systems and of-
fer valuable perspectives for improving intelligent systems
in future practical applications.

Theoretical Foundations
Before describing the models, we briefly introduce the two
architectures.
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ACT-R
ACT-R is a cognitive architecture and a theory of simulating
and understanding human cognition (Anderson 2009) (Rit-
ter, Tehranchi, and Oury 2019). Its theory is embodied in
the ACT-R software, through which we can construct mod-
els that can store, retrieve, and process knowledge, as well
as explain and predict performance (Bothell 2017).

There are currently two kinds of knowledge representa-
tions in ACT-R, and they are declarative knowledge and
procedural knowledge. Declarative knowledge consists of
chunks of memory (e.g., apple is a kind of fruit), while pro-
cedural knowledge performs basic operations, moves data
among buffers, and identifies the next instructions to be ex-
ecuted (e.g., to submit your answer, you have to click sub-
mit bottom). When the model is driving a bus in first-person
perspective, these pieces of information will contain infor-
mation such as what visual items presented to look at and
what tasks to do next.

Soar
Soar has its origins in the groundbreaking work done by
Newell and Simon around the 1950s through the mid-1970s,
also inspired by the ”General Problem Solver” created by
George Ernst and Newell. While ACT-R was designed to
model human behavior, Soar was inspired by it. Current un-
derstanding and hypotheses regarding cognitive architecture
are incorporated into Soar 9, which has been in development
for over 30 years and continues to evolve gradually. Soar’s
general computing concept is based on: objectives, problem
spaces, states and operators (Laird 2019) (Newell 1990).

Model Development
We adopt an iterative design and development process that
incorporates the concept of prompt engineering (White
et al. 2023). This involves crafting prompts tailored from
a Prompt Engineering GitHub repository (GitHub 2023) to
emulate cognitive operations and actions, including provid-
ing context, posing perception-related queries, simulating
decision-making scenarios, and evaluating the system’s re-
sponses. Moreover, our prompts are designed with the inte-
gration of output customization (White et al. 2023) in mind,
which emphasizes restricting or adapting the types, formats,
structure of the output produced by the LLMs. We used per-
sonas to enhance the LLMs’ situational awareness and pro-
vided recipes for LLMs, which include a sequence of steps
or actions to achieve a specific end result, while also adopt-
ing a human-in-the-loop approach when faced with partial
information or constraints.

Throughout the development, we fine-tuned the prompts
based on the evaluation of the model’s behavior. The careful
engineering of prompts plays a pivotal role in improving the
quality and accuracy of the model’s responses. By refining
the prompts, we aim to use LLMs to create ACT-R and Soar
models.

ACT-R Model
The simulation task involves the model looking around
a virtual environment and checking for the presence of

Figure 1: Flow of control in the ACT-R model to drive the
bus.

a visual cue to start the bus. The environment, a video
game called “Drive the Bus”, is downloadable from Steam
(http://bit.ly/desert-bus-vr) for Windows, was unaltered for
the model. We create a simple flow chart to indicate the ba-
sic process the model will follow (see Figure 1).

Provide Context and Prompt for Declarative Chunk(s)
To initiate the model development, the first prompt outlined
the simulation context and requirements, asking for recom-
mended chunk types for the model. The prompt is designed
as follows: ”act as an ACT-R modeler to build a model,
which name is DriveBus. the simulation environment is the
video game ”Desert Bus VR”. The model is designed to look
around the simulation environment, and if the model finds
the center lane, it will press the ’W’ key to start the bus.
What are the possible chunk types that you would recom-
mend for this model?”

The generated response from ChatGPT4 suggested sev-
eral chunk types, including ”visual-cue”, ”state”, ”action”,
”bus-location”, and ”deviation,” which would facilitate the
model’s perception, decision-making, and actions. How-
ever, Bard suggested chunk types such as ”look around”,
”Start Bus”, ”Drive”, and ”Crash”, which indicates that Bard
misidentified the chunk types for the sequence of production
rules.

Human In the Loop and Query Initial Rule Based on
the LLMs’ responses for chunk types, we identified “state”
and “visual-cue” as the two slots for the “drive” chunk, con-
sidering the task’s requirements and to reduce computing
load. Subsequently, we provided a second prompt contain-
ing an explanation of the chunk and slots that this model will
use, and we queried LLMs for the first perception-related
production, which involves using the visual module to look
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around the environment.
The ChatGPT4 model first specifies the information that

will be encoded for the model by defining chunk-types for
the task. Then, it attempts to start the model by putting the
chunk into the goal buffer, and its initial production rule gen-
erally follows the LHS-RHS format, which its RHS buffers
and modules satisfying the conditions on the LHS of the pro-
duction.

However, the code generated by Bard is completely
wrong, as it doesn’t show any trace of ACT-R model syntax.
Consequently, we decided to continue with only ChatGPT4.

Test and Debug the Code The resulting ACT-R code
from ChatGPT4 was then tested and debugged in the Emacs
environment using the eLisp slime mode package. Follow-
ing are corrections we made, showing the problem and the
resolution.
1. Problem: Fail to define the model.

Resolution: Include the necessary ACT-R model decla-
ration in the beginning by adding: ”define-model Drive-
Bus”.

2. Problem: Absence of visual buffer check for initial state.
Resolution: Add the following to the RHS to empty the
visual buffer for model initialization: ”+visual-location
:attended nil”.

3. Problem: Misidentification of chunk type.
Resolution: Change ”isa move-attention” to ”cmd move-
attention”.

4. Problem: Missing visual buffer LHS check.
Resolution: Add the following to the LHS to meet the
requirement of the visual buffer check: ”?Visual >State
free”.

5. Problem: Miss slot argument.
Resolution: Add ”Center-line” as the slot visual-cue ar-
gument when defining the ”drive” chunk.

Human In the Loop and Query Following Rule We then
prompted ChatGPT4 with the corrected code and queried it
to generate the next production rule of “if it sees the center-
line, press the “W” key to start the bus”. Specifically, our
human-in-the-loop intervention comprised of two cases. In
the first case, we provided only the corrected code, while
in the second case, we provided the corrected code along
with a description of debugging. We then tested, compared,
and analyzed the two generated code pieces from these two
cases.

The two generated codes show differentiation in the qual-
ity. Specifically, in the prompts that contain corrected code
and debugging reasons. These prompts generate syntax-
correct production rule that meet the requirements of se-
quential firing and LHS-RHS matching. However, the
prompts that contain only corrected code still produce one
syntax error, where in the LHS side ”=visual>” was mis-
takenly written as ”?visual>”, making the model unable to
meet the requirements of production rule sequential firing.
In addition, we have identified some general mistakes for
ChatGPT4-generated ACT-R models that involve perceptual
and motor behaviors, and we list the corresponding solutions
below.

Figure 2: Output from the ACT-R model created with Chat-
GPT.

First, we noticed that the manual buffer lacked functional-
ity. To rectify this issue, we manually added the appropriate
manual command by checking the motor buffer in the
LHS and implementing the correct functional keyboard
command in the RHS. We did change ”!eval! (output – key
“w”)”, which has no functionality, to:

+manual>
ISA punch
hand right
finger index

Second, we observed that ChatGPT4 did not include Visi-
con features or install motor and keyboard devices, which
are essential for the model’s interaction and decision-making
processes. To overcome this limitation, we added the neces-
sary Visicon features and installed the required motor and
keyboard devices to ensure a comprehensive cognitive sim-
ulation.

We recommend that the ACT-R models, which are built
with the help of ChatGPT4 and using visual and manual
modules, add the following lines of code to enable the
modules to function properly.

(install-device ’(”motor” ”keyboard”))
(add-visicon-features ’(screen-x XX screen-y XX value

center-line))

So, despite deep learning, the level of knowledge needed
to create an interactive ACT-R model, ChatGPT4 needed
some further, advanced knowledge.

Model Evaluation In Figure 2, we list the ACT-R model
output that has been built using the help from ChatGPT4.

As Figure 2 shows, the prompts that we fed into Chat-
GPT 4 have generated a model that performs the correspond-
ing behavior as requested. For the declarative memories, the
model has the necessary chunk-types and slots to decide the
driving state based on the visual cues it perceives. For the
production rules, it sequentially fires get ready, then looks
around, sees the visual pattern using the visicon, and then
uses the manual buffer to press the key. This model has the
potential to interact with the unmodified and novel simula-
tion environment, and might be helpful to some modelers.
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Soar Model
The simulation task involves the model being able to analyze
student responses in a database and identify the dominant
intelligence type. We succinctly present the procedure of
prompting for Soar code using LLMs, emphasizing the dif-
ferences from the procedure of the ACT-R model. We then
use a table to list the main findings, including the prompt
context, differentiation output provided by ChatGPT4, and
Bard.

Provide Context and Prompt for Declarative Chunk(s)
The first prompt outlined the context and requirements
of the simulation, asking for recommended chunk types
for the model. The generated answer suggested several
types of chunks, including “smart-cue”, “state”, “action”,
“intelligence-location” and “student”, which would facil-
itate the perception, decision-making and actions of the
model.

Human In the Loop, Query for Codes, Test and Debug
Based on the initial prompt response, we identify ”state” and
”time cue” as the two slots for the ”student” chunk, simplify-
ing the model. Later, we provide a second prompt to explain
the types of chunks and slots this model will use, and ask
ChatGPT4 and Bard to generate the code for Soar, which
involves using the temporal buffer to examine the types of
intelligences.

The resulting code was then tested and debugged in the
Windows-10 environment using SoarDebugger 9.6.1, below
we list common mistakes that ChatGPT4 and Bard made
when creating the models:

Prompt Context 1: Introduction about Soar (intention to
perform a pre-load in the tool) :

Chat-GPT: Wrote persuasive text, is this not “useful
code”? appropriate to the request, and demonstrated great
accuracy with regard to context in the response, however
some details are not 100% correct.

Bard: Wrote persuasive text, suited to the request, and
demonstrated great accuracy in relation to the context in the
response, in this case the highlight is the ability to try to
sound like a human being expressing concepts in a personal
way.

Prompt Context 2: 1st Question on how to install and
configure Soar on a PC with Windows10 :

Chat-GPT: Answer based on Soar’s official website.
Bard: Incorrect answer, persuasively quoted a non-

existent tool: “Soar Toolkit” —possible delusion?

Prompt Context 3: 1st Intervention requesting further
clarification on the procedure :

Chat-GPT: Almost everything right, but lacked steps to
make it work.

Bard: Continued with a completely wrong answer.

Prompt Context 4: 2nd Question, considering the sce-
nario of the educational study, to identify the type of
dominant intelligence in a student :

Chat-GPT: It demonstrated an interesting capacity to ap-
proach the problem, but it had some confusion mainly in
relation to syntax.

Figure 3: Output from the Soar model created with Chat-
GPT

Bard: Didn’t use the basic standard Soar syntax structure
(”If” ”then”...) very wrong!

Prompt Context 5: 2st Intervention requesting further
clarification on the procedure :

Chat-GPT: Made a good suggestion on how to run the
model.

Bard: Although wrong, it appeared to deduce information
in the context of computational systems and gave interesting
but wrong data.

Prompt Context 6:1st Order, requesting to Write a Hello
World code :

Chat-GPT: Wrote almost correct code, missing only two
details to work.

Bard: Wrote a code that was completely wrong in terms
of syntax, but coherent in terms of intent.

Model Evaluation Figure 3 shows that the code generated
by ChatGPT4 and added to Soar Debugger has been contin-
uously rejected and ended up triggering the Debugger’s safe
mode so as not to enter an infinite loop in the wrong way,
it is easy to notice that few adjustments would be necessary
for the code to run perfectly well.

Prompt Patterns that Maximize LLMs
Interaction for Artificial Cognitive

Architectures: A Framework for Evolving
Conversational Excellence

This section presents the takeaway from our previous ex-
periments in generating cognition models using LLMs. It
addresses the demand for a framework that allows effec-
tive interactions, contextual understanding, and synchronous
adaptation with evolving LLMs. Each prompt pattern is ac-
companied by implementation samples or examples of the
prompt.
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Initiation and Setting the Context using Persona
To initiate interaction, users must begin their input with a
specific keyword or phrase denoting the domain or topic
of interest. For example, if the user wants to discuss ”Soar
Architecture,” they can start with an open question to ini-
tiate LLMs’ train of thoughts and create an opportunity of
synchronous training ”Let’s discuss Soar architecture, and
what do you know about Soar architecture?” This also al-
lows LLMs to establish context and adapt responses accord-
ingly.

In addition, as new versions of ACT-R and Soar are re-
leased, users must explicitly tell the model which version
is being used at the start of the conversation. This allows
LLMS to adapt its responses in sync with model-specific
improvements and capabilities. Moreover, users should us-
ing the persona ”Next, I want you to act as Soar modeler” to
increase LLMs’ situational awareness for the tasks.

Multi-Turn Talk Within the Human-in-the-Loop
Approach
Rather than relying on single-turn interactions (multiple re-
quests within a single prompt), it is beneficial for the user to
create a relationship based on multi-turn conversations (se-
quence of prompts). By maintaining context within the same
channel, LLMs can ”recall” previous exchanges, leading to
coherent and contextualized responses. This approach is ad-
vantageous for developing an evolving and ongoing train of
thought (Lieto 2021).

This sequential prompting approach integrates well with
the human-in-the-loop approach, especially when the LLMs
face constrained and limited situations. For example, when
building the ACT-R model using ChatGPT4, we first create a
multi-turn conversation by dividing the prompt to create the
model into four sequential interactions. These talks include
prompts for chunk types, the first production rule, debug-
ging and testing, and sequential production rules. We also
assist ChatGPT4 in evolving its thought process in building
the model by synchronously training it with the reasons for
picking up the chunk types it recommended and debugging
the first round of code generation.

Synchronous Domain-Specific Training
Supplement LLMs training with domain-specific data and
this enhances the model’s understanding of the complex-
ities and nuances of these architectures, leading to more
informed and contextually appropriate responses (Baraka,
Alves-Oliveira, and Ribeiro 2020).

We emphasize that the training should at least occur in
two timestamps. First, it should happen during the initiation
of the context when users ask LLMs what they know about
the domain context. Users should provide feedback, addi-
tional information, or corrections during this first round of
talk to help LLMs set up the context. Second, the training
should happen in the iterative code-building process by pro-
viding the LLMs with the debugging reasons. We found out
that within the synchronous training during the initial de-
bugging of the code, ChatGPT4 generates higher quality of

sequential code compared to data without debugging train-
ing.

Provide Diversified Meta-Communications
Periodic meta-communications can further improve LLMs
model performance over time (Silva, Sá, and Lima Ju-
nior 2019). We recommend at least two types of meta-
communications and encourage diversified adoption. First,
users can ask LLMs clarifying questions to seek better un-
derstanding of user intent and provide more accurate an-
swers. Second, users can provide LLMs with feedback on
the output generated. For example, they can say, ”This an-
swer was helpful” or ”Could you elaborate on this more?”

A GitHub repository (Souza et al. 2023) has been es-
tablished to host the prompt patterns framework and en-
courage contributions. This collaborative platform invites
researchers, developers, and enthusiasts to actively partici-
pate, share insights, and collectively improve the interactiv-
ity between LLMs and artificial cognitive systems.

Conclusion and Discussion
Our study contributes to the emerging area of combining
language models and cognitive modeling principles. We
present a systematic and detailed design and development
process of two independent models based on ACT-R and
Soar using LLMs as interactive interfaces. In addition, we
identify and address common challenges and errors that
arise when using LLMs in modeling with ACT-R and Soar,
and provide a set of solutions. It is worthy to note that the
initial code was not correct enough to run on its own. This
can be contrasted with success stories told about working
Java and Visual Basic code, where existing programs may
be used. However, in this case, the semantics of these lan-
guages are more complicated, and there may not be enough
worked examples that were used to create these LLMs.

To facilitate future research in this domain, we propose a
rapid framework that other researchers can adopt when em-
ploying LLMs for the development of cognitive agents for
the Soar Architecture or ACT-R model. This framework will
serve as a valuable resource for those interested in harness-
ing the potential of immediate engineering to enhance their
cognitive simulations.

The proposed framework lays the groundwork for im-
proved interaction between users and LLMs, particularly in
the context of artificial cognitive architectures like ACT-R
and Soar. By prioritizing context setting, multi-turn conver-
sations, and user feedback, the framework fosters an en-
vironment where LLMs features can be optimally lever-
aged. Additionally, incorporating domain-specific training
and fine-tuning ensures that LLMs remains current and
aligned with the evolving demands of users and the field of
Artificial Cognitive Architectures. With these steps, the in-
teraction becomes a mutually beneficial process, driving the
advancement of LLMs and cognitive architecture modeling.
Researchers can readily adopt this framework to explore the
potential of LLMs in enhancing cognitive simulations.

In conclusion, this case study serves as a pioneering effort
in exploring the synergies between ChatGPT4, Google Bard,
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Soar, and ACT-R. It shows the promise of immediate engi-
neering using LLMs for more accessible and accurate cogni-
tive model development. By presenting an attractive applica-
tion in the simulated driving task domain, we anticipate that
this work will inspire further research and development in
the integration of language models with cognitive modeling
frameworks.
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