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Abstract

We present an updated position integrating cognitive archi-
tectures into workflow by utilizing the architecture for what
it does most effectively: human-like few-shot learning inte-
grating the vast amount of data stored by foundation models.
By supplementing the language-generation capabilities with
the constraints of cognitive-architectures guiding prompts, it
should be possible to generate more relevant output and pos-
sibly even predict when the foundation model is hallucinat-
ing. Recent advances in few-shot learning capabilities of cog-
nitive architectures in applied domains will be discussed with
some parallel capabilities described by foundation models.
Just as we use research from social psychology to ’nudge’
people into making informed decisions, we should be able to
use cognitive architectures to ’nudge’ foundation models into
developing more human-relevant content.

Background
With the advent of foundation models (Bommasani et al.
2022) having caused the degree of ‘strategic surprise’ not
seen since Russia first launched Sputnik in 1957, the re-
search community has rushed to understand how to best
apply their prima facie meaningful responses while under-
standing their limitations (e.g., hallucinating responses that
are factually incorrect yet sound plausible). It is contested
the degree to which foundation models actually comprehend
the underlying relational structure of their inputs as opposed
to just replicating the most statistically-likely response (Ma,
Zhang, and Zhu 2023). What is clear, however, is that this
technology is here, widely available, and has changed the
trajectory of scientific inquiry into re-usable models support-
ing the development of generalizable artificial intelligence .

Throughout the past decade, we have argued that cogni-
tive architectures should serve as a bridge providing com-
mon ground between human users and artificial intelli-
gence (AI) algorithms to maximize what each does best:
humans operating over well-structured knowledge and im-
parting wisdom, while AI finds patterns sifting through the
large amounts of unstructured data (see Figure 1; Thomson,
Lebiere, and Bennati 2014; Mitsopoulos et al. 2022; Somers
et al. 2019; Mitsopoulos et al. 2020).
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Figure 1: The original link between cognitive architectures
and the DIKW pyramid described in (Thomson, Lebiere,
and Bennati 2014).

With foundation models capable of generalized problem-
solving, question-answering, and apparent creativity, our
previous conception of the role of a cognitive architecture
in this pyramid is now being challenged. Foundation mod-
els are built with sufficiently-broad information to converse
in human-like language and seemingly bridge the gap di-
rectly between humans and ‘big’ data. They are able to com-
plete many cognitive assessments better than undergradu-
ate students, and they provide reasonable answers to many
compare-and-contrast and synthesis-style questions in brief
essay form (Ma, Zhang, and Zhu 2023).

This said, one of the challenges facing foundation models
is their tendency to hallucinate responses (Bang et al. 2023),
which at best make it difficult to adequately trust their re-
sponses, and at worst can lead to grave consequences for
those who do over-trust their responses (Weiser and Schwe-
ber 2023). They also require substantial fine-tuning to ensure
that they do not fall prey to the biases of their underlying
data distributions (e.g., racism, sexism, hate-speech). There
is evidence that they exhibit some cognitive biases in their
patterns of responses (Abramski et al. 2023) although the
newest version of foundation models, ChatGPT-4, may not
to the same extent (Hagendorff and Fabi 2023).

It is unclear whether purely transformer-based foundation
models sufficiently reason over their knowledge, or serve as
the real-world embodiment of Searle’s Chinese Room (Pre-
ston and Bishop 2002), or less charitably as the overseer of
an infinite army of monkeys. Perhaps one role for cognitive
architectures remains as the homuncular arbiter over foun-
dation models’ output, best understanding human operators’
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intent and providing cognitively-grounded symbolic-hybrid
and goal-directed oversight to provide only the right kind of
information to human operators of varying skills and back-
grounds?

For the remainder of this paper, we identify a concern with
how fundamental research into trust in AI is being overshad-
owed by technical research into trustworthy AI, which limits
the practical implications of integrating foundation models
into user workflow (the Clippy issue). We then will identify
several few-shot learning capabilities of both extant cogni-
tive architectures and foundation models, arguing how each
should use the other’s capabilities to develop trusted AI.

Trust in AI vs Trustworthy AI
While similar-sounding, trust and trustworthiness are not
identical concepts. Trustworthy AI is a feature of the AI al-
gorithm itself, for instance being reliable, robust, accurate,
fair, and explainable (Bellamy et al. 2018). Being trustwor-
thy is not sufficient to be actually trusted, although it should
ideally be a necessary component. Trust, on the other hand,
is a value judgment that a person is willing to accept risk
by giving up some agency (i.e., decision-making) to the AI.
In prior literature, much of human-AI trust has focused on
AI competency (a feature of trustworthiness) while much of
inter-human trust has focused on the broader set of ability,
benevolence, and integrity (Mayer, Davis, and Schoorman
1995). The differences are clear in practice: human-human
trust requires an estimation of trustee’s capabilities along
with a moral judgment that the trustee is ‘trustworthy’. In
the case of the AI, however, the focus has been more on un-
derstanding the underlying competencies of a given context,
while the moral and psychological predispositions get put in
the broad ‘human factors’ box.

We argue that more in-depth analysis of the human com-
ponent of human-centered AI teaming is required. Prior re-
search has shown that humans are biased to initially under-
trust AI and over-trust with more experience with the AI
and need to be explicitly calibrated to the competencies
of the AI (Zhang, Liao, and Bellamy 2020). We have fur-
ther shown that human attentional requirements change be-
tween human-in-the-loop and human-on-the-loop scenarios
(Cassenti et al. 2022) and require their own kinds of explana-
tion (calibrated systems require only functional explanations
while errors require mechanistic; (Schoenherr and Thomson
2023)). We need to not forget to apply resources devoted to
the human-aspect of human-AI teaming to understand their
condition for trust under various task, risk, and automation
conditions.

A rule of thumb in human-factors literature is that it costs
20x more to shoehorn in human-factors after product devel-
opment, but this is exactly what is happening in the AI do-
main right now. Proportionately, too much effort is going
into developing explanation’ without understanding what
the human users actually require. The explanation needs to
be interpretable (i.e., consumable and understandable) to the
correct end-user. This goes beyond interface design prin-
ciples and requires better understanding of the nature of
human-AI trust and how to ensure that a system maintains

appropriate trust. Extant research in explainable AI and un-
certainty quantification should provide the basis for trust-
worthiness, but we further need to understand how the pre-
sentation of this information impacts - and possibly biases -
humans to respond (inappropriately).

A first effort would be apply Gricean maxims to AI com-
munication with the human. Grice proposed four maxims
to understand the implication of what was said. These max-
ims are: quality of information, quantity of information, the
manner that it is communicated, and the relevance to the
question (Liang et al. 2019). In practice, this means getting
the right information and right amount of information to the
operator, and only when they require it. This is simpler said
than done. Microsoft’s great failure was the integration of
‘Clippy’ into Office, and an inappropriately-targeted AI will
just be seen as an ineffective Clippy 2.0 (Gruber 2018).

Few-Shot Learning
Few-shot learning (FSL) defines the concept of training a
machine learning model where there is limited labeled data
available for training. The goal of FSL for classification is
to train a model that can accurately classify observations for
both classes present in the labeled training data and unseen
classes present in an unlabeled support set. To achieve this,
FSL typically utilizes a meta-learning framework where the
model learns to adapt quickly to new classes based on a
limited number of labeled support instances. The model’s
adaptation is guided by the knowledge gained from the seen
classes in the labeled training dataset.

Few-Shot Learning in Cognitive Architectures
One of the primary capabilities that sets humans apart is our
ability to learn new domains and pick up new skills with
few-shot or even zero-shot examples. Based on a combi-
nation of innate capabilities and broad knowledge, we are
able to reason inductively and deductively. Cognitive ar-
chitectures are also able to reason successfully with lim-
ited training exemplar via a combination of experience
(e.g., instance-based learning; Gonzalez, Lerch, and Lebiere
2003) and architectural structure (e.g., base-level learning
and similarity; Anderson et al. 2004). Cognitive architec-
tures have been successful at achieving human-level perfor-
mance via experience at complex games such as backgam-
mon (Sanner et al. 2000) playing only hundreds of games
(compared with deep learning techniques which generally
require thousands to millions of games).

For modeling human decision-making, (Lebiere et al.
2013) were able to predict the performance and expres-
sion of trial-by-trial expression of eight cognitive biases
from intelligence analysts sense-making over geospatial in-
telligence data across a range of tasks. By learning from
feedback on previous trials, the model were able to predict
whether the analyst would be risky or risk averse and the
consequent biases which arose.

Adapting the few-shot learning technique from (Lebiere
et al. 2013), (Nunes et al. 2015) was able to rapidly develop a
model of malware identification achieving high performance
(unbiased F1 score ≥.9) even when trained on only 1/10th of
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the data. More recently, (Thomson, Cranford, and Lebiere
2021) adapted this framework to network security, specif-
ically intrusion detection. Using the UNSW-NB15 dataset
training data, their instance-based model was able to achieve
comparable multi-class performance to standard ML tech-
niques (e.g., decision tree, random forest) learning as few as
one instance of each of nine attack categories and nine ex-
amples of normal computer network traffic. For reference,
the training dataset contains 175k instances.

The strength of cognitive architectures is that they use
approximations of human memory and reasoning capabil-
ities to enable few-shot learning across a range of possi-
bly tasks/applications, and they can be designed such that
their output is cognitively-plausible and can be tuned to in-
dividual capabilities and/or preferences. A limitation to ar-
chitectures using instance-based learning as a framework is
that they are not scalable without some extension to keep
the number of instances manageable, requiring some mecha-
nism for discarding, joining, and/or ignoring instances when
searching memory.

Few-Shot Capabilities of Foundation Models
One of the benefits of foundation models is that they come
pre-trained on vast amount of text (GPT-3) and multi-modal
(GPT-4) data. This large knowledge background and statisti-
cal prediction capability give them the ability to create plau-
sible sounding documents, computer code, and images from
only a few prompts (Kojima et al. 2022; Baldazzi et al. 2023;
Ahmed and Devanbu 2022; Li et al. 2023), or even play
a Minecraft agent learning new rules via prompting (Wang
et al. 2023). In terms of several recent successes, (Buchholz
2023) was able to use prompting to conduct near state-of-
the-art few-shot detection of false political statements on the
LIAR dataset. (Roy et al. under review) has used foundation
models to do few-shot detection of out-of-context images.

This said, there are limits as these models are non-
deterministic and may not be sufficiently reliable for human-
on-the-loop or automated tasks (Reiss 2023) where consis-
tent responses are required. As previously mentioned, foun-
dation models also have a tendency to hallucinate and while
there are some efforts to remediate this (Jha et al. 2023), this
remains a concern.

Current Limits of Foundation Models
There is a practical limit to how much more foundation mod-
els can grow. At present levels of growth, it is forecasted that
the cost to train foundation models will exceed 2.2% of the
United States’ GDP between 2025-2032 and exceed GDP
between 2027-2036 (Li 2023). There is thus a renewed fo-
cus on training relatively smaller models supplemented by
external knowledge bases, which are capable of comparable
performance to larger models in particular domains. For in-
stance, the retrieval-enhanced transformer (RETRO) lever-
ages an external corpus of documents to train a model with
performance comparable to much larger models (Jurassic-1
178B, Gopher, 280B) using 25x fewer parameters (RETRO
has 7B; Borgeaud et al. 2022; Bommasani et al. 2022). This
does come at relatively higher training requirements, requir-
ing upwards of 10x the training data similarly-sized smaller

models, however it can be leveraged to limit hallucination
and tying to preexisting corpi or ontologies can make the
models more explainable as it is possible for them to point
to their source material (e.g., what document(s) fed into their
response).

Extending Cognitive Architectures
There have been numerous techniques to improve the scal-
ability of cognitive architectures to support more complex
decision-making and run stably over longer time-courses.
(Oltramari and Lebiere 2012a,b) have utilized ontologies to
structure larger off-line memory stores as a readily-searched
database, while the ACT-R/E architecture (Trafton et al.
2013) has a built-in mechanism to move memory between an
activated declarative memory and ‘cold storage’ memories
which could never be retrieved without seeing them again,
to keep memory search scalable with millions of instances
in memory. (Rutledge-Taylor et al. 2014) developed a holo-
graphic memory system that replaces the symbolic declara-
tive memory in ACT-R into a vector-based approach more
compatible with deep learning models. Along a similar tra-
jectory, (Vinokurov et al. 2011, 2012, 2013) integrated ACT-
R as a hybrid-symbolic component with the Leabra connec-
tionist cognitive-architecture to support metacognitive rea-
soning and higher-level visual processing (called SAL; the
Synthesis of ACT-R and Leabra), and was further able to play
games in the Unreal engine (Jilk et al. 2008).

Integrating Foundation Models and Cognitive
Architectures
As we have seen, both foundation models and cognitive ar-
chitectures have exhibited success at few-shot learning, but
they do so with different strengths. Foundation models have
processed large amounts of unstructured data and are amaz-
ing statistical generators/predictors using this data. Mod-
els built from cognitive architectures utilize cognitively-
inspired mechanisms (e.g., base-level learning, similarity) to
drive decision-making without the need for large amounts of
training data.

One way where foundation models may support cognitive
architectures is in their ability to synthesize large amount of
information and act as a knowledge store, solving many of
the scalability issues in declarative memory. For instance,
(Trajanoska, Stojanov, and Trajanov 2023) were able to en-
hance traditional knowledge graphs via foundation models,
and were able to use foundation models to conduct auto-
mated ontology creation. These ontologies would distill data
into information under DIKW pyramid and make it more ac-
cessible for the kinds of higher-order reasoning that cogni-
tive architectures excel at performing.

Cognitive architectures may support foundation models
by providing a cognitive grounding which we argue may
catch hallucinating foundation models, although this is still
primarily speculation. Cognitive models, by virtue of their
ability to predict human performance (and preferences) with
few-shot learning may be an ideal source to assist founda-
tion models in further personalizing their responses to the
human user. This personalization would go a long way to

411



support trust in AI-based models.

Concluding Thoughts
Both cognitive architectures and foundation models are ca-
pable of few-shot learning, but they do so by distinct mech-
anisms. With further investigation into how these mecha-
nisms could be integrated together, we argue that it is pos-
sible to get the best of both worlds: models that come pre-
trained with large amounts of background information that
allow for scalable and adaptive cognitive models capable of
personalizing content and prediction a broader range of hu-
man behaviors.

Future work needs to further explore this integration in
the form of neuro-symbolic AI, where learning and infer-
ence exploit symbolic knowledge and reasoning. For exam-
ple, (Abdelzaher et al. 2022) propose a multi-layered neuro-
symbolic architecture inspired by Predictive Processing (PP)
- a theory of mind, will enable context-aware, few-shot AI
models with tight integration between symbolic reasoning
(via cognitive architectures) and deep learning (via founda-
tion models). The PP-inspired architecture relies on building
a “world model” that captures context and uses this context
to hypothesize and confirm predictions over the data. To-
gether, they form the preconditions to achieve trusted AI.
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