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Abstract

Autonomous agents require the ability to identify and adapt
to unexpected conditions. Real-world environments are rarely
stationary, making it problematic for agents operating in such
environments to learn efficient policies. There is therefore a
need for a general framework capable of detecting when an
agent has encountered novel conditions, and determining how
it should adjust its actions. In this position paper we propose
a framework that couples cognitive reasoning and generative
algorithms by leveraging conflict detection to adjust to unex-
pected dynamics. Specifically, we propose that a metacogni-
tive conflict resolution mechanism is necessary; such a mech-
anism would balance the use of commonsense and delibera-
tive reasoning to allow the agent to navigate novel conditions.

Introduction

Consider the following motivating scenarios: Scenario 1:
The vision system of a self driving autonomous agent that
learns to operate in average weather conditions will find that
several of its model assumptions are violated while oper-
ating when there is a flash flood caused by an unexpected
thunderstorm. However, equipping the agent with the abil-
ity to determine that the differences observed (hazy view,
washed out roads, high water levels, downed trees, stopped
vehicles) are due to change in environmental expectations,
would enable it to quickly reframe its assumptions and its
policy appropriately. Scenario 2: A caption generation sys-
tem for an image of West African dining can be affected by
the training data that is biased towards images from Western
and Eastern cultures, and may have to adapt its expectation
of African dining so that the environment and the dishes are
properly described.

Learning efficient policies in real-world, resource-
bounded environments can be challenging. One reason, as
observed in the above example scenarios, is non-stationarity,
which occurs when the expectations of goals, location, ac-
tion outcomes at execution time are no longer the same as
those at training time. This non-stationarity can be caused
by an agent’s own actions, uncertainty in action outcomes,
bounded resources, lack of sufficient information during the
training phase, the actions of other agents and so on. It of-
ten violates the identically distributed assumption of learn-
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ing algorithms where the training and test data are assumed
to be from the same distribution. Out of distribution (OOD)
detection and generalization has recently generated signifi-
cant interest in the machine learning field (Liu et al. 2023).
In this position paper, we propose a framework described
in Figure 1 that builds on the Common Model of Cogni-
tion (CMC) (Laird, Lebiere, and Rosenbloom 2017). It ex-
plores a new vein of enquiry to integrate cognitive reason-
ing with generative model technologies by introducing met-
alevel knowledge and control to address some of the chal-
lenges caused by non-stationarity. The basic premise of this
work is that agents operating in non-stationary environments
will face conflicts exhibited in the form of incorrect pre-
dictions. These conflicts can trigger the need for generat-
ing new metalevel knowledge and metalevel control that can
non-myopically refocus resources to redo the appropriate
context-dependent computations.

While the CMC framework itself is not considered a cog-
nitive architecture, it serves as a repository of collective con-
sensus within the community regarding a unified perspec-
tive on numerous cognitive architectures (Laird, Newell, and
Rosenbloom 1987; Anderson et al. 2004; Kieras and Meyer
1997). Essentially, it offers an abstract specification of cog-
nitive capabilities, comprised of a series of interconnected
modules, with the purpose of abstracting the intricate pro-
cesses associated with neural processing and complex cog-
nition. CMC supports an expansion of the problem solv-
ing process, viz. deliberative reasoning, by adding new re-
lations in the declarative memory or changing the prefer-
ences among alternative actions. We propose to augment the
model to support out of distribution generalization more ex-
plicitly. Specifically, we discuss the use of metalevel control
for conflict resolution that bridges cognitive reasoning and
generative algorithms

Metalevel Control

Our prior work in single agent (Cox and Raja 2011; Kim
et al. 2011) and multiagent (Raja and Lesser 2007; Alexan-
der et al. 2007) metalevel control defines it as the capability
of an agent to improve its decision utility by spending some
effort to decide what and how much reasoning to do as op-
posed to what actions to do. It can be viewed as a conduc-
tor equipped with a non-myopic view of the agent’s prob-
lem solving process to ensure greater confidence in its ac-
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Figure 1: Bridging Deliberative Reasoning and Generative Algo-
rithms via Metalevel Control

tions. Metalevel control, thus, orchestrates when and what
knowledge to use, when to trigger cognitive thinking and
knowledge and data generative processes and how many re-
sources (time, computation) to invest in each. We define
metalevel knowledge as a subset of the agent’s declarative
and procedural knowledge. This metalevel knowledge gets
concretized/distilled in metalevel memory over time such
that the certainty and confidence level in the knowledge is
above a certain threshold. Metalevel knowledge generally
captures social norms; generalized knowledge about world
subject to culture, personal experience (family, country); ex-
pectation of behavior; knowledge about ones skills, abili-
ties, capacities. It will become a basis for updating the ex-
isting knowledge or expanding it. This is related to ‘self-
regulation’ in human learning where we can recognize de-
ficiency of our knowledge based on external feedback and
correct or expand them as needed (Bereiter and Scardamalia
2018). The system can measure semantic inconsistencies be-
tween the existing knowledge and situation (such as visual
information) that it faces based on an assimilation of the
knowledge (Chae and Kim 2022). For example, in visual
question answering, semantic similarity or dissimilarity can
be estimated based on the caption generated from the image
and the information retrieved from the knowledge base for
the given question. The knowledge can include both the ex-
plicit knowledge in the system and the generated knowledge
from transformer-based language models. Importantly, met-
alevel knowledge also contains statistics on what strategies
have worked well in a given abstract context in the past —
a higher order analogue to remembering what actions have
worked well in a given state of the environment. Metalevel
control is then able to use this knowledge to adaptively guide
the agent towards efficient and robust performance even in
the context of non-stationary environments.

Role of Conflict: In our framework, conflict is defined
as disagreement between an agent’s expectations and its
observations. Expectations are generated using a combina-
tion of implicit (generative models) and explicit (knowledge
database) processes. Rather than being an impediment to the
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agent, conflict is a useful cue that an agent must refine its use
of different cognitive strategies and update its policy.

In our proposed framework, metalevel control is triggered
when there is a conflict between working knowledge and ex-
pectation in agent/environmental state. This conflict can be
characterized by the contradiction in expectation of the en-
vironmental characteristics in Scenario 1 and social norms
in Scenario 2 discussed above, resulting in a need to up-
date of the knowledge or policy about self driving and the
distribution of cultural information in generating descriptive
sentences associated with the African dining image respec-
tively. In prior work (Cheng, Raja, and Lesser 2013), we de-
signed agents capable of learning when to learn new policies
in a cooperative multiagent weather tracking environment.
We argued that agents with a myopic view of themselves and
other agents would at times make inconsistent choices. The
decentralized decision makers in the weather tracking ap-
plication were equipped with a two-phased learning process
to determine and obtain the minimal overlapping context re-
quired to make their decisions more consistent. This allowed
agents to augment their local policy states with metaknowl-
edge of other agents and recompute their policies resulting in
more appropriate actions. We posit that this notion of learn-
ing when to learn, including when and what context to obtain
problem solving context information would be applicable to
handling the dynamics caused by non-stationarity.

Out of distribution (OOD) data is data that comes from a
distribution other than the one an agent was trained on. OOD
conditions are a natural consequence of dynamic environ-
ments, and are commonplace in real-world settings. When
an agent’s observations are determined to be OOD, it can
conclude that the environment has changed in a novel way.
This can be viewed as a type of conflict. Consider the ex-
ample of the self-driving car trained in average weather con-
ditions: it is important that the self-driving agent is able to
detect that it should not employ the fair weather policy in a
flash flood. But what should the agent do? A sensible course
of action would be to attempt to resolve its beliefs and to
communicate the anomaly to the driver. In our framework,
this is handled by metalevel control.

Role of Uncertainty: Furthermore, we believe the chal-
lenge for metalevel control is to handle uncertainty at differ-
ent levels (Alexander et al. 2007). It has to first be able to
handle the uncertainty that domain level performance may
not always improve by devoting more resources to a delib-
erative option. Furthermore, it has to handle the uncertainty
whether the deliberative decision will be required at all since
the execution trajectory may deviate in an unexpected direc-
tion. Thus the metalevel policy should be able to consider
counterfactual scenarios and determine the utility of alter-
nate deliberative options given possible future state trajec-
tories. Metalevel control should be non-myopic from both a
temporal sense (look at future possibilities) but also from a
physical sense (have models of itself and also of other agents
in its environment).

Role of Resource Bounds According to Kahneman’s the-
ory of thinking fast and slow (Kahneman 2011), slow think-
ing (system 2, deliberative) requires most effort when it has
to be done fast, i.e under strict time constraints. He also



states that switching between system 1 (intuitive, uncon-
scious decisions) and system 2 and vice versa under time
pressure is effortful. Recent work (Booch et al. 2021) has
argued for the need for the governance of the two types of
thinking and determining when to do the switch and inter-
jecting the notion of time, resources and divergence resolu-
tion has been made. In our view, these issues naturally fall
under the purview of metalevel control. The use of abstract
representation of the agent state and metalevel control with
bounded computational overhead has been shown (Raja and
Lesser 2007) to result in efficient performance of complex
agents in dynamic open multi-agent environments.

Low Level Processing

The above sections have dealt primarily with higher order
cognition, such as deliberative reasoning, planning/schedul-
ing, metacognition, and multi-agent coordination. An agent
capable of navigating real-world environments will by defi-
nition be embodied, and therefore low level perceptual pro-
cesses are also important to address. In particular, we posit
that incoming sense data must be processed before it can be
used, as a real-world environment provides raw data rather
than pre-computed, meaningful perceptions. Our framework
includes a low-level perception cycle (Figure 2) that triggers
higher level reasoning processes via attention, only when
necessary, thereby saving the agent computational cycles.
Note: Here by attention we mean a low-level mechanism ca-
pable of interrupting the agent, orienting it to specific infor-
mation, and placing it into a different mode of functioning.

Perception Cycle

As the agent interacts with the environment, it is necessary
for it to continually gather new sense data to test its percep-
tual beliefs and monitor the results of its actions. In our agent
framework, the perceptual cycle will center around predic-
tion and expectation; for the purposes of this discussion, we
formulate it in the context of a vision problem. Sense data
will be gathered in a foveated fashion — meaning high detail
resolution in a small region (the ‘fovea’) and low detail res-
olution across the rest of the visual field. When sense data is
ingested, long-term memory will be queried for information
on the current context. This will be done using associative
memory, such that partial contextual information gathered
from the environment can act as a cue to retrieve relevant
long-term memories.

Sense data and contextual information will then be passed
to a generative model, which will assist in making a predic-
tion about what the agent should expect to see. In particular,
the model will fill in detail in the periphery based on context
and will predict the next visual frame. If the agent holds rel-
evant higher-order beliefs, these will also used to inform the
prediction. The output of the generative model will be the
agent’s perception.

The agent then compares its perception at time ¢ with its
prediction from time ¢-/. If the error is too great — that is,
if the agent’s expectations are violated — the agent attempts
to resample the environment. This is analogous to ’taking
a closer look’. Assuming sufficient degrees of freedom in
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Figure 2: Perception cycle

the agent’s control over its body, taking another look will re-
sult in visual sense data sampled at a slightly different angle.
This small perturbation in the angle of sight should result in
a small change in the perceived scene. If the surprising ob-
servation passes this stability check, attention is triggered
and passes information on to higher cognitive functions. At
this higher cognitive level, the agent may employ strategies
such as abductive reasoning to find the most likely explana-
tion for its surprising observation. If the stability check is not
passed and the surprising element is not encountered upon a
second look, then it is safe to assume the perception was
likely a mistake. In this case, the agent resumes its normal
functioning and goes on to select an action.

Illustrative example: In a dining setting, if the agent mis-
takenly perceives a meat dish on the table during dessert, its
expectations will be violated. It will then take a second look
at the surprising region of visual space. From a slightly dif-
ferent angle (and due to the stochastic nature of foveated
vision), it is unlikely to make the same mistake again. If,
however, it still perceives a meat dish, higher cognition will
be triggered to attempt to deal with the situation. First, the
agent will search its memory for a likely explanation (ab-
ductive reasoning). For instance, it may recall that in some
cuisines, sweetened meat is eaten for dessert. If no simple
explanation is found, more expensive deliberative reasoning
will be triggered. The agent will think deeply about what
may have caused the meat dish to be served, and will proba-
bly alert others to the situation.

Importantly, the central role of prediction in our frame-
work will bypass several issues. An autonomous agent must



have the ability to learn unsupervised (i.e. without access to
ground truth). Using predictive error circumvents this issue.
In addition, as long as predictions are reliable, they allow
for faster reaction time than using solely present observa-
tions. Note: Low level aspects of our framework are similar
to but distinct from predictive coding(A. 2013).

Bridge to Higher Cognition

In future work, we will further develop the interface between
lower-level perceptual processes and higher cognition. This
is a complex subject that touches on issues like the rela-
tionship between symbols and meaning. Here we will in-
clude a brief sketch of the way this will be handled in our
framework. Firstly, just as raw sense data must be processed
into perceptions, perceptions themselves must be processed
prior to being usable by higher cognition. Namely, percep-
tions must be factorized such that they become manipulable.
This may include the abstraction of key state features, vari-
ables, and structures, and in general represents the process
of turning a perception into a belief about the agent’s current
state. This abstraction process will be informed by long-term
memory as well as the agent’s current list of goals, tasks, and
priorities.

Once perception is factorized, any traditional approach
may be used to handle higher order cognitive processes, as
translation into symbols is one possible form of factoriza-
tion. It is also possible to use large language models (LLMs)
for some aspects of planning and task scheduling. However,
in this case the functions currently handled by a human user
in the LLM loop — such as goal setting — would be han-
dled by the metacognitive module in our framework. It is
worth noting that deliberative reasoning in humans relies on
language. Language acts as a means of abstracting and to-
kenizing complex ideas, allowing them to be more easily
manipulated by the mind. Therefore, it may be reasonable
to use transformer-based models as an interface to translate
between perceptions and symbols.

As outlined in previous sections, higher order cogni-
tive functions use a prediction-error feedback loop in our
framework. The perception cycle is informed by predictions
made at this higher level; likewise, low-level predictions
are passed to the higher order functions. The metacognitive
module, along with attention mechanisms, mediate the de-
gree to which one or the other type of cognition dominates
in a given situation — however, both are always active and
act in concert. Future work will further explore the interre-
lationships between different orders of cognition.

The Role of Generative Models

Key to our work is the idea that error (or surprise more gen-
erally) is the main trigger to call upon more expensive cog-
nitive resources like deliberation. In our framework, gener-
ative models perform a role similar to that of implicit mem-
ory: they provide a compressed world model that can be
used to generate lossy, reconstructed memories when prop-
erly cued. This is in contrast to what we term metalevel
memories, which are stable and can be recalled without a
contextual prompt. One great advantage of generative mod-
els to our use case is their ability to generate predictions —

the same mutable quality that makes them poor when preci-
sion is needed allows them to be used not only to recollect
the past, but to simulate the future without expensive delib-
eration. This is an essential skill for an intelligent agent, not
only in cases where predictions are accurate but also in cases
where they fail. When predictions are inconsistent with an
agent’s observations and the discrepancy cannot be resolved,
this is a useful signal that the environment has shifted or the
agent’s world model was incomplete or inaccurate. In such
cases, metalevel control is called upon to determine the best
course of action and to engage in additional learning if nec-
essary, and if permitted by the agent’s resource bounds.

Discussion

In this section, we summarize some of the research ques-
tions that need to be addressed to implement our proposed
framework.

1. What are the criteria for subsets of procedural and declar-
ative knowledge to become metalevel knowledge?

2. Does metalevel knowledge capture both abstract and de-
tailed knowledge?

3. How is the metalevel knowledge represented?

4. What is the process for metalevel control to determine if
there is a contradiction/conflict between working mem-
ory and metalevel memory? How frequently do these
checks occur? Why?

5. What are the resource constraints on metaknowledge ac-
quisition and metalevel control? How does this affect per-
formance?

6. When a contradiction or conflict occurs, how does met-
alevel control determine the the best course of action?

7. Must the metalevel control policy be interpretable by hu-
mans?

8. How is the generated data incorporated into the working
memory?

9. How is the appropriateness of the metalevel identification
of conflict and its response measured in terms of perfor-
mance improvement and handling non-stationarity?

10. In a multiagent environment, how coordinated do the
agents need to be and how does this affect metalevel co-
ordination and knowledge gathering?

11. Our framework requires generative models that learn
continuously — how can this be achieved?

12. What is the best way to model the relationship between
attention, deliberation, and metacognition (i.e. different
levels of executive function)?

13. What is the best way to model the interface between
higher order and lower order cognitive functions?

14. Which aspects of higher order cognition should be han-
dled using generative models?
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