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Abstract

High-level reasoning can be defined as the capability to gen-
eralize over knowledge acquired via experience, and to ex-
hibit robust behavior in novel situations. Such form of rea-
soning is a basic skill in humans, who seamlessly use it in
a broad spectrum of tasks, from language communication to
decision making in complex situations. When it manifests it-
self in understanding and manipulating the everyday world of
objects and their interactions, we talk about common sense
or commonsense reasoning. State-of-the-art AI systems don’t
possess such capability: for instance, Large Language Mod-
els have recently become popular by demonstrating remark-
able fluency in conversing with humans, but they still make
trivial mistakes when probed for commonsense competence;
on a different level, performance degradation outside train-
ing data prevents self-driving vehicles to safely adapt to un-
seen scenarios, a serious and unsolved problem that limits the
adoption of such technology. In this paper we propose to en-
able high-level reasoning in AI systems by integrating cogni-
tive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R, and
we discuss the role of generative models in recent and future
applications.

Introduction
A large part of neuro-symbolic systems is based on
transforming symbolic knowledge into sub-symbolic rep-
resentations that are suitable for infusion in data-driven
learning algorithms: Knowledge Graph Embedding (KGE),
among the others, is a prominent approach to reduce knowl-
edge graph (KG) triples to latent vectors (Wang et al. 2017).
Such transformation is instrumental to efficient computabil-
ity of KG properties, as well as to application in a variety
of downstream tasks: for instance, in (Wickramarachchi,
Henson, and Sheth 2023) the authors leverage KGE methods
to label unseen entities in autonomous driving datasets.
Whether the KGE process is realized by geometric, tensor
or deep learning models, the purpose is to compress KG
structures into a low-dimensional space, where symbolic
statements are replaced with dense, sub-symbolic expres-
sions. Concatenation, non-linear mapping, attention-like
mechanisms, gating mechanisms, are further methods to
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adapt knowledge structures to neural computations – e.g.,
(Peters et al. 2017; Strub et al. 2018; Margatina, Baziotis,
and Potamianos 2019).
While knowledge-infusion can improve neural models, it
is not sufficient to enable high-level reasoning, which is
typically required by complex tasks such as natural lan-
guage understanding, activity recognition, decision making
in complex scenarios: latent, sub-symbolic expressions
can only augment training signals with features derived
from explicit semantic content, but this infusion process
does neither carry any information about the reasoning
mechanisms needed to process the learned knowledge, nor
instruct the neural models on how those should unfold.
But, what do we mean with high-level reasoning and why is
it important to endow artificial intelligent systems with such
feature?

Problem Statement
We can define high-level reasoning as the capability to gen-
eralize over knowledge acquired via direct or mediated ex-
perience, and to exhibit robust behavior in novel situations.
This definition is inspired by Kahneman’s SYSTEM 2 mode
of thought (Kahneman 2011). When high-level reasoning
manifests itself in understanding and manipulating the ev-
eryday world of objects and their interactions, we talk about
common sense or commonsense reasoning. State-of-the-art
AI systems don’t possess such capability: for instance, Large
Language Models (LLMs) have recently become popular by
demonstrating remarkable fluency in conversing with hu-
mans, but they still make trivial mistakes when probed for
commonsense competence (see next section); on a different
level, one of the motivations why the promise of autonomous
cars hasn’t panned out yet concerns performance degrada-
tion outside training data, which prevents self-driving ve-
hicles to safely adapt to unseen scenarios.1 Humans, on the
opposite, are very good at generalizing from a few examples,
and at filling the gaps in experience with reasoning: for in-

1A main weakness of deep learning approaches, as stated in a
recent article (Bengio et al. 2019), is that ‘current methods seem
weak when they are required to generalize beyond the training dis-
tribution, which is what is often needed in practice’, such as in
safely maneuvering a vehicle.
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stance, when asked about what happens after a bottle of red
wine is thrown against a concrete wall, even children can an-
swer with the utmost certainty that the bottle will shatter and
the wall will be wet and red-stained – they can also easily
infer that the impact between any fragile material and any
hard surface typically ends with the former being substan-
tially altered, if not destroyed; analogously, student drivers
only need limited training to learn how to safely maneuver
a car, adapting their knowledge and skills to novel situa-
tions. Compared to current AI systems based on GPU accel-
erated computing, human reasoning capabilities are impres-
sive, even more so when we factor in what Herbert Simon
used to call ‘bounded rationality’ (Simon 1955), i.e., the no-
tion that human cognition operates with limited knowledge
and is subject to time constraints – a heritage of evolution
(Santos and Rosati 2015).
As these arguments suggest, a cognitive stance toward de-
signing AI systems (Lieto 2021) seems to be key to en-
able high-level reasoning capabilities at the computational
level: accordingly, we propose to complement cognitive ar-
chitectures (Kotseruba and Tsotsos 2020; Langley, Laird,
and Rogers 2009) with neuro-symbolic methods. In this pa-
per we illustrate the blueprints of a cognitive neuro-symbolic
reasoning system centered on the ACT-R2 cognitive archi-
tecture (Anderson 1996), whose hybrid (symbolic and sub-
symbolic) mechanisms are well-suited for integration with
neuro-symbolic algorithms and resources. Note that the pro-
posed approach is applicable to any cognitive architecture
whose properties are compatible with ACT-R, such as SOAR
(Laird 2019) and SIGMA (Rosenbloom, Demski, and Ustun
2016): in fact, these three architectures have been grouped
into the so-called ‘Standard Model of the Mind’ (Laird,
Lebiere, and Rosenbloom 2017), an idea that has its roots in
physics.3 Note that the Standard Model of the Mind doesn’t
prescribe how to implement cognitively-inspired AI sys-
tems; rather, it aims to play the role of a conceptual frame-
work of reference for developing them.

Motivations
Over the last decade, deep learning has yielded tremendous
advancements in many AI fields, such as computer vision.
For instance, neural models can achieve high accuracy in
object detection when training and testing domains origi-
nate from the same data distribution. However, recent work
shows that minimal/regional modifications implanted in the
data at test time cause significant drop in accuracy (Eykholt
et al. 2018; Rosenfeld, Zemel, and Tsotsos 2018). The exam-
ples documented in (Rosenfeld, Zemel, and Tsotsos 2018)
are of particular interest, as they indicate how commonsense
contextualization, by means of incorporating a priori struc-
tured knowledge into deep networks, can mitigate the ef-
fect of those perturbations, resulting in more robust perfor-
mance (Marino, Salakhutdinov, and Gupta 2016). In general,

2Abbreviation of ‘Adaptive Control of Thought, Rational’.
3For a brief introduction to the Standard Model of Particle

Physics, see this resource from the U.S. Department of Energy:
https://www.energy.gov/science/doe-explainsthe-standard-model-
particle-physics

a visual model suitably infused with knowledge extracted
from semantic resources like CONCEPTNET (Speer, Chin,
and Havasi 2017) can strengthen the connections holding
within instances of the same conceptual domain (e.g., couch,
television, table, lamp are located in living rooms) and dis-
card out-of-context interpretations (e.g., no real elephants
are located in living rooms, but photographs of elephant may
be – figure 1 depicts such case).

When shifting to natural language, and to tasks like
automated question answering, the key role played by
knowledge-based contextualization for neural language
models stands evident.4 For instance, it has been demon-
strated that using KG triples to disambiguate textual ele-
ments in a sentence, and embed the corresponding concepts
and relations in neural language models (Devlin et al. 2018),
significantly improves performance (Ma et al. 2021). In fact,
despite of the impressive results that LLMs are producing in
Natural Language Processing (Ma et al. 2019; Bauer and
Bansal 2021; Shwartz et al. 2020), basic reasoning capabili-
ties are still largely missing. This is also the reason why it’s
not appropriate to use ‘Natural Language Understanding’ to
denote these tasks, because it would entail that robust and
comprehensive reasoning capabilities are present (McShane
2017). Let’s expand on this argument and consider a few
representative examples.
In ProtoQA (Boratko et al. 2020), GPT-2 (Dale 2021) fails
to select options like ‘pumpkin’, ‘cauliflower’, ‘cabbage’ as
top candidates, for the question ‘one vegetable that is about
as big as your head is?’: instead, ‘broccoli’, ‘cucumber’,
‘beet’, ‘carrot’ are predicted. In this case, the different mod-
els learn some essential properties of vegetables from the
training data, but do not seem to acquire the capability of
comparing their size to that of other types of objects, reveal-
ing a substantial lack of analogical reasoning (Ushio et al.
2021). The same issues are observed when CHATGPT, a re-
cent popular version of GPT-3 optimized for conversations,
is considered: the main difference is that CHATGPT is ca-
pable of generating plausible answers when the question is
submitted literally, but often fails to do so when the verbal
expression ‘about as big as’ is paraphrased with alternative
forms like ‘about the same size’, ‘about the same shape’,
‘comparable to’, etc. This ‘hypersensitivity’ to surface-level
linguistic features – an epiphenomenon of the model’s in-
capability to generalize over textual variations of the same
content – seem to indicate that the model cannot perform
the necessary (analogical) reasoning steps needed to cor-
rectly answer to the question. Along these lines, recent work
(Ettinger 2020) has shown that lack of complex inferences,
role-based event prediction, and understanding the concep-
tual impact of negation, are some of the weaknesses di-
agnosed when BERT (Devlin et al. 2018), one of promi-

4We use ‘language model’, ‘neural language model’ and ‘large
language model’ as interchangeable terms, as they commonly re-
fer to the same neural architecture based on multi-headed self-
attention mechanisms (Vaswani et al. 2017); however, computa-
tional power significantly differs as function of the specific imple-
mentations (e.g., BERT has 6 blocks with 12 heads, GPT-3 has 24
blocks and 48 heads), and of the size of training datasets (CHAT-
GPT has been trained on a massive corpus – 570 GB – of text data).
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Figure 1: The Elephant in the Room: the probability that a label assigned by an object detection system is correct increases
when the context is factored in: in this example, the label ‘elephant’ could plausibly denote a picture of the pachyderm, but not

the pachyderm itself.

nent open source language models, is applied to benchmark
datasets. ProtoQA again provides good examples of these
deficiencies: in general, neural models struggle to correctly
interpret the scope of modifiers like ‘not’ (reasoning under
negation), ‘often’ and ‘seldom’ (temporal reasoning). Re-
garding the latter, in task 14 of bAbI (Weston et al. 2015), a
comprehensive benchmark challenge designed by Facebook
Research, neural language systems exhibit variable accuracy
in grasping temporal ordering entailed by prepositions like
‘before’ and ‘after’. Similarly, in bAbI task 17, which con-
cerns spatial reasoning, LLM-based systems fail to infer ba-
sic positional information that require interpreting the se-
mantics of ‘to the left/right of’, ‘above/below’, etc. If such
systems are inaccurate when dealing with common charac-
teristics of the physical world, their performance doesn’t
improve when sentiments are considered: for instance, in
SocialIQA (Sap et al. 2019), given a context like ‘in the
school play, Robin played a hero in the struggle to death with
the angry villain’, models are unable to consistently select
‘hopeful that Robin will succeed’ over ‘sorry for the villain’
when required to pick the correct answer to ‘how would oth-
ers feel afterwards?’. It’s not surprising that reasoning about
emotional reactions represents a difficult task for pure learn-
ing systems, when we consider that such form of inference is
deeply rooted in the sphere of human experiences and social
life, which involves a ‘layered’ understanding of mental at-
titudes, intentions, motivations, emotions, and of the events
that trigger them.
The qualitative analysis presented above suggests that neural
models struggle to perform well in tasks that require high-
level reasoning. But, are neuro-symbolic approaches suffi-
cient to overcome these limitation? Latent expressions can
augment training signals with sub-symbolic features derived
from explicit semantic content, but knowledge infusion per
se doesn’t determine how inference processes are conducted.
Relevant work in this space shows how deep neural models
can replicate logical reasoning (Ebrahimi, Eberhart, and Hit-
zler 2021; Garcez et al. 2022), but it doesn’t follow that any
form of logical reasoning that is provably reducible to learn-
ing algorithms, should also be systematically reduced to it –

this would be a requirement only for tightly-coupled neuro-
symbolic systems (Kautz 2022; Garcez and Lamb 2023).
Accordingly, in the next section we make the case for de-
veloping an AI framework where the ACT-R architecture is
loosely-coupled with neuro-symbolic components, to enable
high-level reasoning.

Method
Cognitive architectures attempt to capture at the computa-
tional level the invariant mechanisms of human cognition,
including those underlying the functions of control, learn-
ing, memory, adaptivity, perception and action. ACT-R (An-
derson 1996), in particular, is designed as a hybrid modular
framework including perceptual, motor and memory compo-
nents, synchronized by a procedural module through limited
capacity buffers. Over the years, ACT-R has accounted for
a broad range of tasks at a high level of fidelity, reproduc-
ing aspects of complex human behavior, from everyday ac-
tivities like event planning (Somers, Oltramari, and Lebiere
2020) and car driving (Cina and Rad 2023), to highly tech-
nical tasks such as piloting an airplane (Chen et al. 2021),
and monitoring a network to prevent cyber-attacks (Ben-
Asher et al. 2015). ACT-R has been used as a component in
pipelines that include learning algorithms (e.g., biologically-
inspired neural networks (Jilk et al. 2008)) and external se-
mantic resources (e.g., (Oltramari and Lebiere 2012; Emond
2006)): along this line of research, we claim that integrat-
ing ACT-R – or any compatible cognitive architecture – with
neuro-symbolic components is instrumental to enable high-
level machine reasoning.
Figure 2 provides a compact visualization of our proposed
framework: the boxes in blue, enclosed in the grey rectan-
gle, represent the default components of ACT-R, those in
green the neuro-symbolic extensions.
The integration would occur along three main directions:

• knowledge ↭ memory: the external symbolic mod-
ule, which can include background/domain knowledge
graphs (KG), lexical resources (LR), rule bases (RB), and
a suitable inference engine, is linked to the declarative
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Figure 2: ACT-R integrated with neuro-symbolic modules.

memory. This is a two-way integration: the symbolic
module can be read or written by ACT-R, where the
latter operation is triggered when populating or pruning
world knowledge is needed as part of task execution.

• neural⇝ perception: the neural module, which can in-
clude convolutional, recurrent, long-short-term memory
networks, generative models, etc., is trained, fine-tuned,
or prompted with data processed from the environment,
providing relevant patterns of information to the percep-
tual or imaginal module. This integration bypasses the di-
rect connection holding – in standard ACT-R – between
the perceptual module and the environment.5

• knowledge ⇝ neural: adequately-selected embedding
mechanisms govern knowledge-infusion in the neural
module, enabling knowledge-based contextualization of
patterns of information distilled from the environment,
which are subsequently channeled into ACT-R buffers.

If the mutual connections between the two intertwined
neuro-symbolic modules and ACT-R can be used to combine
rich semantic contents with scalable learning functionalities,
they don’t per se bring about high-level reasoning: this capa-
bility also requires two features of the integrated framework,
namely the cognitive architecture’s own procedural module
and a proper inference engine in the external symbolic mod-
ule.
The procedural module matches the content of the other
module buffers and coordinates their activity using produc-

5Such connection assumes symbolic representations of visual
and auditory signals being available to the architecture through pre-
processing.

tion rules, which are ‘condition-action’ pairs tied to the task
at hand. Productions use an utility-based computation to se-
lect, from a set of task-specific plausible rules, the single
rule that is executed at any point in time. For instance, when
building a recommendation system to support a mechanic in
troubleshooting a car engine, a relevant situation that needs
to be covered is a vehicle that doesn’t start but has power;
in this example, a high-utility production rule should cap-
ture the following heuristic: if the engine holds compression
well, and the fuel system is working correctly, then the spark
plugs should be checked. The variables in these rule condi-
tions would need to be filled with actual empirical observa-
tions and measurements, as it is often the case when cogni-
tive architectures are applied in real-world scenarios: in our
example, such evidence could be actually gathered by a real
technician using the recommendation system in a human-
machine-teaming fashion, a type of approach that falls un-
der the ‘cognitive model as oracle’ paradigm (Lebiere et al.
2022).
The inference engine in the symbolic module is used to de-
rive knowledge from assertions in the semantic resource of
reference, a well-known feature of symbolic AI systems.
What is important to stress here, is that – in our proposal –
this form of logic-based reasoning would realize two func-
tions: 1) provide a combination of asserted and inferred
knowledge that ACT-R declarative memory can process
and pass to the production system; 2) support knowledge-
infusion into neural modules. The first functionality would
help to decouple basic forms of reasoning, e.g. temporal and
spatial6 , from cognitive assessments performed by the pro-

6E.g., Region-Connection-Calculus (Cohn et al. 1997) for spa-
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duction system on conditional actions. Such feature makes
our proposed system efficient, as ACT-R productions are not
well-suited for logical reasoning. The second functionality
would allow pre-training, fine-tuning, or prompting a neural-
model on both asserted and inferred knowledge: this can
provide ACT-R perceptual model with more informative pat-
terns than just those obtained by processing raw data.
It’s worth making a final consideration here: the frame-
work introduced in this section is complemental to the
body of work that investigates how neuro-symbolic systems
can be leveraged to realize human-like cognitive reasoning
(Garcez, Lamb, and Gabbay 2008): in our proposal, ACT-R
is interfaced with neuro-symbolic components, whereas – in
the approaches reviewed by Garcez et al. – neuro-symbolic
frameworks are used to solve cognitive tasks. The difference
lies on whether cognitive processes are considered first class
citizens or not.

Discussion:
The Role of Generative AI in Cognitive

Neuro-Symbolic Reasoning
As seen in the previous section, our proposed framework
doesn’t require or commit on a specific neural architecture.
However, generative AI, and specifically large language
models, will play an increasingly relevant role in enabling
high-level reasoning based on cognitive neuro-symbolic sys-
tems. In the next two sections we will briefly outline present
research in this field, and sketch what we think are promis-
ing developments.

Related Work
The importance of integrating cognitive mechanisms into
data-driven AI systems has been recently acknowledged by
one of the key figures in deep learning, Yann LeCun: in
a position paper published in 2022 (LeCun 2022), he de-
scribed a biologically-inspired cognitive architecture, where
a so-called configurator orchestrates information provided
by different modules, such as the perception module and the
world model module, which replicate the functions emerging
from prefrontal-cortical processes. Furthermore, a motiva-
tion model – designed to mimic the role of the amygdala in
producing basic emotional states like pain and pleasure – is
used to compute intrinsic costs associated with current and
future actions, a mechanism that is instrumental to inform
predictive capabilities. It’s relevant to point out that there
has been extensive research on mapping cognitive architec-
tures to brain areas/processes – e.g., (Borst et al. 2015) –
and that an established scientific community has been work-
ing on biologically-inspired approaches to cognitive archi-
tectures since the early 2000’s (the BICA international con-
ference has reached its 14th edition7).
In line with the current trend of investigating computational
models of cognition in the context of large-scale neural net-
works, a recent blog (Weng 2023) provides an overview of

tial reasoning, Allen’s axioms for temporal reasoning (Allen and
Ferguson 1994).

7See: https://bica2023.org/cfp/

how LLMs could be used to control autonomous agents. It
goes beyond the scope of our contribution to review in de-
tail the papers mentioned in the blog, but it’s beneficial to
highlight some of the most interesting topics.
In (Wei et al. 2022) the authors leverage chain-of-thought
prompting with PALM 540B (Chowdhery et al. 2022) for
task-decomposition: despite of their reported success, us-
ing prompting to generate fine-grained reasoning steps does
not always yield consistent results, as shown by (Chen, Za-
haria, and Zou 2023) for different versions of GPT-4 (Ope-
nAI 2023). The same work also indicates that, even when
reasoning steps are correctly reproduced, they don’t always
match with the model selecting the correct solution/answer
to a problem/question. Another paper surveyed in the blog
(Park et al. 2023) focuses on using GPT-4 to build believ-
able agents for a sandbox environment 8. According to the
authors, cognitive architectures would not have the same de-
gree of flexibility (and scalability) that modern generative
models provide when building AI agents, as the former de-
pend on hand-crafting rules, thus applicable only to narrow,
closed-world contexts. However, this is a partial account of
the state of the art: for instance, production compilation,
ACT-R’s rule learning mechanism, allows to learn new, task-
specific production rules that directly implement the relevant
action(s) for a particular state (Taatgen, Huss, and Anderson
2006); moreover, to assess which stimuli from an environ-
ment are relevant for an agent to act upon, researchers have
developed mechanisms like instance-based learning, a type
of reinforcement learning (Sutton and Barto 2018), which
can be plugged into ACT-R (Gonzalez, Lerch, and Lebiere
2003). One may also question the claim on generative mod-
els’ flexibility: in fact, the scope of such capability is not the
real world, with its ever-changing situations, but rather some
emerging patterns in the text-based training data, which are
biased interpretations of the real world. Incidentally, this
lack of ‘grounding’ is also at the origin of LLMs’ widely-
documented hallucination problem – for an introduction to
this phenomenon, see (Ji et al. 2023).9

Future Work
As the overview in the previous section suggests, there are
intrinsic limitations in utilizing a LLM as orchestrator for in-
telligent agents. In this regard, we can distill two main rea-
sons for selecting a cognitive architecture over a LLM: a)
the inner functioning of the former is transparent, whereas
the latter is a ‘black-box’ (Castelvecchi 2016); b) the former
is designed to replicate the invariant mechanisms of human
cognition, the latter is engineered to produce human-grade
linguistic behavior, which cognitive properties can only be
ascribed to. By and large, what the state-of-the-art suggests
is that a synergistic integration of these cognitive architec-
tures and LLMs can help to maximize their relative strengths

8Inspired by the video-game ‘The Sims’: https://www.ea.com/
games/the-sims

9There is an interesting analogy between Plato’s Cave myth
(Jowett et al. 1873), where shadows projected on a blank wall were
all that prisoners could use to understand reality, thus misinter-
preting it, and LLMs’s generating inaccurate statements about the
world, based on biased data patterns.
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Figure 3: Without adequate instructions, CHAT-GPT opts for a compact model of counting from 1 to 10, which is not
substantially distinct from a simple for loop (left-side). Interestingly, the chatbot suggests to include additional cognitive
processes and mechanisms to make the model’s behavior more realistic and accurate (bottom-left): this is what actually

happens when the LLM is instructed to use all ACT-R modules (right-side). Far from being exhaustive, this example provides
some evidence of the feasibility of scaling cognitive models via LLMs.
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and mitigate their weaknesses, fostering the creation of more
advanced AI systems, capable of high-level reasoning. In
particular, (1) scaling cognitive models via LLMs and (2)
prompt-engineering LLMs with cognitive models can be seen
as novel approaches in this direction; they would actually be
complemental, as (1) is a method to automatize the creation
of cognitive models using generative AI, whereas (2) is a
method to ground generative AI on computational artifacts
that reflect principled cognitive theories.

1. Scaling cognitive models via LLMs. A cognitive archi-
tecture is a generic framework to develop cognitive mod-
els, which are, conversely, tied to specific tasks and do-
mains: the process of developing cognitive models is
still largely manual, and thus affected by lack of scal-
ability. Because LLMs have proven to be effective in
generating code across a variety of programming lan-
guages (Gozalo-Brizuela and Garrido-Merchan 2023),
they could also be leveraged to produce software im-
plementations of cognitive models. Initial experiments
performed by asking CHAT-GPT to generate basic cogni-
tive models using a novel library, i.e., PyACT-R10, show
that the OpenAI’s signature LLM learns to correctly gen-
erate compact Python snippets, although it only makes
marginal use of ACT-R modules and buffers. In order to
achieve such level of sophistication in cognitive model
design, CHAT-GPT needs to be prompted with relevant
instructions about which mechanisms of a cognitive ar-
chitecture it should use (see figure 3).

2. Prompt-engineering LLMs with cognitive models. Us-
ing LLMs in domain-specific applications requires either
fine-tuning on a target dataset, or prompt-engineering
with adequate contextual knowledge. In many use cases,
well-curated data are either unavailable or too time-
consuming to collect at scale, making the latter more con-
venient and efficient. When the goal is to turn a LLM into
a reliable decision support system, the ‘grounding’ prob-
lem mentioned earlier also extends to the cognitive di-
mension: that is, such system would need to be based on
shared interpretations of reality as well as on sound rea-
soning steps, from a cognitive-decisional standpoint. In
fact, it’d be difficult to conceive such a system as trust-
worthy if hallucinations on both factual knowledge and
on inferential mechanisms were widespread. To this end,
prompting a LLM with key steps of a cognitive model’s
reasoning process, the so-called trace, would be instru-
mental to mitigate the second type of hallucinations.
Such steps de facto represent the introspective stages of a
cognitive model, and of a cognitive neuro-symbolic rea-
soning system based on it.

Conclusion
In the current debate on the limits of deep neural networks,
the split is oftentimes between those who think that more
data is the panacea, and those who support designing sys-
tems that integrate learning approaches with other process-
ing elements, such as knowledge representation and reason-

10https://github.com/jakdot/pyactr

ing, statistical algorithms, human-in-the-loop methods. In
this paper, which echoes the second category, we made the
case for adopting a cognitive approach to perform that inte-
gration, inspired by the results that architectures like ACT-R
have produced, over the last decades, in replicating complex
human tasks at the machine level. We described the main
components of a cognitive neuro-symbolic reasoning sys-
tem, outlined their respective functionalities, and discussed
related and future work in the area of generative AI.
At the end, we don’t assume or prove that using cognitive
architectures is the only possibility to equip machines with
high-level, human-like reasoning: however, to paraphrase
(Mittal, Bengio, and Lajoie 2022),through a diversity of sci-
entific explorations, we’ll increase our chances to find the
ingredients we are missing.
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