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Abstract

Incorporating dynamic realistic human behaviors in
population-scale computational models has been challeng-
ing. While some efforts have leveraged behavioral theories
from social science, validated theories specifically appli-
cable to Agent-Based Modeling remain limited. Existing
approaches lack a comprehensive framework to model the
situated, adaptive nature of human cognition and choice.
To address these challenges, this paper proposes a novel
framework, Psychologically-Valid Generative Agents. These
agents consist of a Cognitive Architecture that provides
data-driven and cognitively-constrained decision-making
functionality, and a Large Language Model that generates
human-like linguistic data. In addition, our framework ben-
efits from Stance Detection, a Natural Language Processing
technique, that allows highly personalized initialization of
the agents, based on real-world data, within agent-based
modeling simulations. This combination provides a flexible
yet structured approach to endogenously represent how
people perceive, deliberate, and respond to social or other
types of complex decision-making dynamics. Previous work
has demonstrated promising results by using a subset of the
components of our proposed architecture. Our approach has
the potential to exhibit highly-realistic human behavior and
can be used across a variety of domains (e.g., public health,
group dynamics, social and psychological sciences, and
financial markets).

Introduction
The recent COVID-19 pandemic prompted a massive global
response, with substantial variation in behavior change
across subsets of the population. The pandemic also high-
lighted the importance of modeling human behavior (e.g.,
social distancing; vaccination) at population scales be-
cause decisions regarding behavior are central to modulat-
ing pathogen transmission (West et al. 2020) and crucial to
forecasting the dynamics of viral transmission and result-
ing infection cases and deaths. More generally, large scale
models that accurately capture the heterogeneity and com-
plexity of human psychology could be important in a wide
variety of societally important areas, such as natural disas-
ter response (e.g., wildfires, hurricanes, tornadoes), climate
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change, public health, civic discourse, diplomacy, economic
policy, cybersecurity, and military planning.

Grossmann et al. (2023) argue that the social sciences can
harness the knowledge (hence power) of LLMs in a vari-
ety of ways, including as surrogates for human participants
and/or confederates in empirical data collection, the genera-
tion of new hypotheses, counterfactual simulations for high-
risk projects (e.g., nuclear deterrence; large scale public
health interventions), and predicting online flows of infor-
mation. Grossmann et al. especially advocate for the poten-
tial of combining LLMs with Agent-Based Models (ABMs)
to “provide new insights on how human agents choose to
share information, cooperate and compete in social dilem-
mas, and conform with social norms” revealing “the under-
lying mechanisms governing human behavior and social dy-
namics”. Longitudinal small-N agent simulations (Park et al.
2023) have illustrated that LLM-based agents can interact in
a way that is compellingly human (albeit in a toy domain).
However, recent studies (Binz and Schulz 2023; Shiffrin and
Mitchell 2023) of current LLMs indicate they lack cogni-
tive competence in ways that sometimes produce fragile and
even bizarre behavior.

We adopt the position that LLMs combined with ABMs
have great potential for population-scale psychological and
social science. We further argue for a new paradigm to
achieve this combination, in which the ABMs are based
on invariant characteristics of Cognitive Architecture the-
ory and personalized through natural language processing
(NLP) for Stance Detection.

In our own recent work (Mather et al. 2021; Pirolli et al.
2020, 2021), we have developed data pipelines combining
demographic and psychographic data about U.S. regions and
NLP of online social media that are used to initialize agents
implemented in a subset of the ACT-R cognitive architec-
ture. This yields what we call Psychologically Valid Agents
(PVAs). In the context of the COVID-19 pandemic, these
agents can be used to predict available regional time se-
ries data about human behavior, such as the U.S. county-
or state-level daily mobility patterns or daily mask-wearing.
Our prior work in this domain provides a use case and foun-
dational proof of concept for the approach we are advocating
as described below.

This paper illustrates components of an approach to
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Psychologically-Valid Generative Agents (PVGAs) for
large-scale psychological and social science. We introduce
our current approach to PVAs developed in the ACT-R ar-
chitecture to model human psychology and behavior during
the COVID-19 pandemic. We introduce the concept of gen-
erative agents that reason and simulate human-like conver-
sational behavior. This type of reasoning occurs in the lin-
guistic space the agents use to interpret their observations.
Next, we illustrate how NLP techniques have been used to
provide cognitive content to drive decision-making in PVAs.
Finally we discuss how all the components together can cre-
ate highly-detailed and data-driven agents for psychological
and social science simulations.

PVAs for Agent-Based Modeling
PVAs are computational agents implemented within the
ACT-R architecture (Anderson et al. 2004) to simulate and
analyze human behaviors. They offer an approach to model-
ing, particularly in understanding and predicting behaviors
in specific contexts, such as responses to pandemic guide-
lines, with input drivers induced from heterogeneous sources
including online media such as Twitter that provide indica-
tors of pandemic awareness, beliefs, and attitudes (Pirolli
et al. 2020). The subset of ACT-R methods employed in
designing PVAs is grounded in the Instance-Based Learn-
ing Theory (Gonzalez, Lerch, and Lebiere 2003). We re-
fer to this specific approach as CogIBL to differentiate it
from other Instance-Based Learning methods prevalent in
Machine Learning.

The Cognitive Instance-Based Learning (CogIBL) model
is a cognitive framework that operates within the theoreti-
cal foundations of the ACT-R architecture (Anderson et al.,
2004). At its core, CogIBL models human learning from ex-
perience. As individuals encounter novel situations, they re-
fer to similar past instances, stored in a memory module,
to inform decision-making. With accumulated experiences
over time, CogIBL refines its knowledge, drawing from an
increasingly rich history of prior encounters. This iterative
cycle of learning and refinement grounded in experiential
knowledge makes CogIBL an adaptable and dynamic model.
Complementing this adaptive learning approach is the archi-
tectural support from ACT-R, providing a robust cognitive
theory for mechanistic learning processes. Overall, CogIBL
aims to leverage both experience-based and theoretically-
grounded techniques to achieve human-like learning.

The model is based on the idea that decisions and behav-
iors have subjective utility or value, such as satisfaction or
preference. When a behavior occurs in a situation and pro-
duces an outcome, it is associated with a subjective assess-
ment of its value. Following ACT-R theory, these experien-
tial associations are stored in declarative memory as expe-
riential records (chunks) of decision-making situations, be-
haviors, outcomes, and their values.

Over time, this repository of experiences forms the basis
for implicit and explicit knowledge about decision-making
(Lebiere, Wallach, and Taatgen 1998; Lebiere and Wallach
1999; Wallach and Lebiere 2003). It is assumed that when
individuals are faced with decisions, they draw from these

stored experiences, retrieving memories that align with cur-
rent cues to evaluate alternatives and decide on actions. This
relies on ACT-R’s memory retrieval and blending mecha-
nisms. Retrieval uses situation cues to recall past instances
based on their recency, frequency and similarity to the cur-
rent situation. Blending aggregates and generalizes across
activated memories. By leveraging instance-based knowl-
edge, the model is able to estimate expectations of potential
outcomes based on past similar situations.

Agent-based modeling (ABM) (Reynolds 1987) has
emerged as a technique for understanding complex systems
across diverse disciplines (Epstein and Axtell 1996; Axelrod
1997). Unlike equation-based approaches, ABM employs
bottom-up modeling where individual entities or “agents”
interact based on simple behavioral rules, giving rise to
emergent collective dynamics. When configured into net-
worked topologies, ABM enables the examination of how
local interactions propagate through the system. For exam-
ple, in social science, ABM enables exploring how individ-
ual behaviors scale into societal outcomes. In epidemiology,
ABM uniquely captures disease transmission via agent in-
teractions, supporting containment policy decisions (Eubank
et al. 2004). The ABM’s flexibility stems from complex-
ity theory, where simple nonlinear rules generate complex
dynamics. By encoding domains as adaptive agent systems,
ABM provides a framework for gaining insights into com-
plex phenomena.
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Figure 1: Example of PVA functionality in ABM simulation.

The integration of CogIBL with ABM frameworks
presents a promising avenue for enhancing cognitive plau-
sibility in social simulations. As a non-parametric, instance-
based decision-making model, CogIBL eliminates the need
for prescriptive rules or long periods of training. Instead, it
can leverage data-driven approaches for adapting and learn-
ing in real-time as new data emerges. This capability en-
sures that agents can dynamically adjust their behaviors in
response to evolving scenarios.

For instance, in Figure 1 we showcase how PVAs can
simulate human behavior in an ABM epidemiological sce-
nario. Each node i represents an individual who constantly
receives information from their surroundings, both from a
global perspective, e.g., the total number of disease cases
(Rt), and locally, e.g., the number of sick people around
them (N i

t ). Based on this information, each agent needs to
make informed decisions (e.g. masking, distancing, getting
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vaccinated). The CogIBL agent uses the current state of the
network, i.e., the global and local information, as input. It
then compares this with a set of past experiences stored in
its memory and makes decisions by aggregating these ex-
periences. Similar to humans, these agents learn from their
past to make informed decisions about the future.

Furthermore, CogIBL’s implementation allows it to scale
to represent thousands of agents within a network graph,
thereby serving as a robust and adaptive decision-making
system. The synergistic combination of data-driven cogni-
tive modeling with network-scale ABM simulations can po-
tentially advance research on emergent collective social phe-
nomena arising from individual behaviors.

Generative Agents for ABM Simulations
Generative Agents (GAs) (Park et al. 2023) are computa-
tional software agents designed to simulate believable hu-
man behavior. These agents can “perform” activities like
cooking breakfast, going to work, painting, writing, form-
ing opinions, initiating conversations, and more. They can
remember past events and plan for the future. The architec-
ture for these agents extends an LLM to store a complete
record of the agent’s experiences using natural language.
This allows the agents to synthesize memories over time
into higher-level reflections and retrieve them dynamically
to plan behavior. Their main components are:

• Memory: The capability to store and retrieve past inter-
actions, allowing for context-aware responses. Retrieval
is based on a relevance score function dependent on
the similarity between the current input and the past in-
stances.

• Planning: The foresight to strategize and generate a
series of actions, emulating the human ability to plan
ahead.

• Reflection: An introspective feature enabling agents to
contemplate and learn from their past actions.

• Reactivity: Rapid and appropriate responses to environ-
mental stimuli, ensuring dynamic interactions.

Together, these architectural features aim to produce vir-
tual agents that can overcome limitations of scripted conver-
sations and more closely emulate fluid, context-appropriate
human interactions. The architecture’s method of storing ex-
periences as instances in a memory repository, and subse-
quently recalling and weighing them based on relevance,
exhibits a clear functional similarity to CogIBL inference
mechanisms (GAs described in detail in Park et al. (2023)
and CogIBL in Mitsopoulos et al. (2020, 2022)). Conse-
quently, CogIBL seamlessly integrates with the GA archi-
tecture, layering utility-based reasoning atop the inherent ca-
pabilities of the GA framework.

GAs can be used in various domains, from role-play and
social prototyping to virtual worlds and games. Williams
et al. (2023) use memoryless GAs to simulate realistic hu-
man behavior in epidemiological ABM simulations. They
argue that many epidemic models have not fully incorpo-
rated the dynamic nature of human behavior and how it

changes in response to the state of the epidemic. These meth-
ods often rely on exogenous data inputs rather than endoge-
nously modeling behavioral mechanisms. They propose us-
ing generative AI to empower individual agents with flexible
reasoning and decision-making abilities. Rather than manu-
ally specifying behavioral rules, each agent can leverage an
LLM, like GPT-3, to dynamically determine actions based
on the current context. The LLM’s knowledge about natu-
ral language and common sense acts as a proxy for human
reasoning. Agents can self-isolate, quarantine, and react to
epidemic dynamics without prescriptive theories or overfit-
ting to limited data. They also observe that collectively, the
agents’ adaptive actions flatten the epidemic curve.

This approach allows creating realistic, diverse represen-
tations of human processes and responses. Overall their
method addresses key gaps by enabling a flexible behavioral
representation without relying on explicit theories or exten-
sive data fitting. Their results validate the potential of the
generative agent method for more realistic behavioral mod-
eling in complex social systems. Although their approach
shows promise for flexible behavioral modeling, the agent’s
reasoning is entirely based on the LLM without incorporat-
ing explicit computational mechanisms representing human
cognitive processes (such as memory retrieval prioritizing
experiences based on relevance, recency and frequency). In
contrast, our PVA framework incorporates a cognitive ar-
chitecture with mechanisms that more closely reflect human
cognition.

Exploiting Natural Language to Generate
PVAs

One key factor in producing more realistic behavioral mod-
eling is the inclusion of beliefs within a generative agent.
Much of the variability in human behavior is due to variabil-
ity in knowledge, beliefs, and attitudes etc. In our current
PVA work, we explore NLP techniques such as stance detec-
tion for identifying beliefs and attitudes expressed through
language. We extract such content from natural language
(e.g., language used in social media), and map those into
cognitive representations in PVAs.

Figure 2: Example of a stance representation from the abor-
tion domain (based on discussions about abortion on social
media)

Our stance framework (Mather et al. 2021) extracts belief,
defined as a predicate-argument representation that captures
a domain-specific (e.g. Covid, abortion, etc.) belief type,
along with a belief strength and a sentiment towards that be-
lief, yielding an overall attitude. Figure 2 shows two exam-
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ples in the abortion domain (to highlight stance detection’s
domain adaptation capabilities), one with a belief type cor-
responding to support woman, and the other with a belief
type corresponding to kill children. These are, correspond-
ingly, associated with the predicate-argument representa-
tions SUPPORT(woman) and KILL CHILD(. . .children),
both exhibiting strong belief strengths (3.0) but each with
a different sentiment strength: positive (1.0) for the former
and negative (-1.0) for the latter. From these stance represen-
tations a templatic approach is used to transform them into
textual descriptions that feeds the PVAs.

Stances (beliefs, sentiments, and attitudes) can be used to
generate and drive PVAs. Intentions and decisions are rep-
resented in our PVAs as competing chunks for actions, such
as wearing a mask or not. The underlying base-level activa-
tion of the competing alternative action chunks drives the
selection of actions and determines the probability of the
chosen action. We develop a framework to translate atti-
tudes and beliefs derived from Twitter Stance Detection into
chunk representations. Positive or negative sentiments about
a belief correspond to competing attitude chunks, whereas
belief strength corresponds to activation values associated
with those chunks. To normalize for frequency effects, the
ratio of positive vs. negative attitudes maps to the relative
frequency of those chunks in the ACT-R models. CogIBL
retrievals of those chunks will reflect their underlying acti-
vation and determine behavioral choice probabilities that are
contextualized to the current situation.

PVAs Modeling Human Psychology and
Behavior during COVID-19

In this section, we present empirical validation of the PVA
modeling framework through forecasting and ABM simu-
lation experiments. We first demonstrate the capability of
PVAs to generate accurate forecasts on real-world behav-
ioral data. Subsequently, results from ABM simulations
highlight how integrating PVAs and ABM methods in an
epidemiological network reproduces complex social pat-
terns emerging from psychologically grounded mechanisms
implemented at the individual level.

PVAs for Forecasting Human Behavior
Our PVA pipeline includes demographic and psychographic
data about U.S. regions and online social media. These data
can be used to initialize agents, or provide time-series inputs,
and the PVAs can iteratively assess current context (e.g.,
case rates) and make decisions (e.g., wear a mask or not)
over discrete time steps (e.g., every day). These PVAs can
be used to predict available regional time series data, such
as the U.S. county- or state-level daily mobility patterns or
daily mask-wearing (Figure 3).

The PVAs can also predict novel patterns we have ob-
served in the reactions of humans to their awareness of exter-
nal events (Figure 4) (Pirolli, Lebiere, and Orr 2022). These
PVAs can also be probed to understand the relation of in-
put factors to output behavior using a variety of methods
(Figure 5) including a measure of cognitive salience that dy-
namically computes the extent to which a behavior reflects

various features of a situation (Somers et al. 2019).

Figure 3: Predicted versus observed proportion of state
population wearing masks each day from 3/15/2020 to
2/31/2021 (the first three waves of COVID-19) using a PVA
based model.

Figure 4: Observed (left) and PVA-predicted (right) relation-
ship between effective transmission number (Rt) at time t
and percent mask wearing at time t + 1 (a delay of 7 days)
over the first three waves of COVID-19.. The general phe-
nomena is an oscillation around Rt = 1 combined with a
learning effect towards higher masking over three waves of
COVID-19.

PVAs in ABM Epidemiological Simulations
We integrate PVAs into an ABM framework within an epi-
demiological network of approximately 10,000 nodes (av-
eraging 11 connections per node). This network serves as a
scaled-down representation of a larger synthetic population
network of Portland (∼1M nodes). Despite its size, it mir-
rors the statistical attributes of the expansive Portland net-
work, ensuring its capacity to simulate COVID-19 transmis-
sion dynamics.

Each node within this network is characterized by a PVA,
which exhibits a predisposition towards adopting masking
behavior if more than 3 of its neighboring nodes are in-
fected. This behavior is governed by an arbitrary rule, imple-
mented to demonstrate emergent dynamics within the net-
work. Throughout the simulation, which spans 105 days,
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Figure 5: PVAs trained to model state mask-wearing can
be probed with hypothetical values of psychographic or de-
mographic features (e.g., state-level lean towards voting for
Trump in the 2016 election) to make behavioral predictions.

agents are updated every 7 days with localized information
about their infected neighbors, influencing their decision to
wear a mask.

Our observations, as depicted in Figures 6, 7 and 8, in-
dicate the adoption of masking behavior effectively atten-
uates the peak of the epidemiological curve, subsequently
decelerating the spread of the disease. Figure 6 specifically
illustrates that agents with minimal connections rarely wear
masks, primarily due to their infrequent encounters with in-
fected neighbors. In contrast, highly connected individuals
exhibit a surge in masking behavior during periods of high
transmission rates, which gradually diminishes. In summa-
tion, our experiments underscore the capability of PVAs
to emulate realistic behaviors within networks, offering a
promising avenue for simulating real-world behavioral dy-
namics.

t=0
R=2.5 t=14 t=21 t=28

t=35 t=49
R=1.77

t=77 t=98
R=1.33

Figure 6: Masking behavior evolution in a synthetic popula-
tion network of Portland.

The findings presented in this section provide quantitative
evidence for the representational capacity of PVAs in fore-
casting human behavior as well as modeling mechanisms
underlying collective social dynamics. The experiments un-
derscore the potential of blending data-driven and ABM
methods with generative neural modeling to advance social
scientific insights.

Psychologically-Valid Generative Agents
We propose a novel framework we call Psychologically
Valid Generative Agents, that integrates data-driven and
generative modeling approaches to simulate human behav-
iors and interactions with high fidelity, in complex net-
work topologies. As GAs and CogIBL share common ar-
chitectural components, the proposed framework combines
CogIBLs and LLMs as main decision-making and reasoning
mechanisms for agents. This framework utilizes beliefs and
attitudes, extracted from social media by our Stance Detec-
tion module, to generate highly-detailed psychological and
behavioral profiles for these agents. These agents are char-
acterized by their integration of:
• Exogenous data-driven approaches: This encompasses

data derived from external sources, capturing various
facets of human behavior and societal responses. Exam-
ples include mobility patterns, intentions to vaccinate,
adherence to masking protocols, the influence of public
health policies, and the understanding of expressed be-
liefs through stance detection.

• Endogenous Data Generation: At the core of our ap-
proach is the utilization of an LLM inherent to each agent
(generative component). This endogenous data is dynam-
ically produced based on the agent’s reasoning capabili-
ties about its interactions and observations of its environ-
ment. Such interactions might involve conversing with
other agents, processing and interpreting news, or reflect-
ing upon stored memories.

• World Interaction Data: This represents the agent’s en-
gagement with its surrounding environment, typically
represented by an evolving social network graph. It
captures the agent’s actions, decisions, and interactions
within the simulated world.

Figure 9 illustrates an instantiation of the proposed ar-
chitecture. The PVGA is designed to simulate the behavior
of an agent interacting within a social network. For demon-
stration purposes, we assume the network models epidemi-
ological dynamics. The aim is to simulate detailed decision-
making processes for specific behaviors. Central to this ar-
chitecture are the CogIBL and an LLM. The CogIBL re-
ceives exogenous data from various sources (demograph-
ics, psychographics, etc.). Online social media data are pro-
cessed by the Stance Detection module to extract beliefs re-
lated to specific attitudes. These beliefs are used by the LLM
to generate a profile for each agent’s identity. Together, the
endogenous and exogenous data form the basis of the per-
sonality of each agent in the network. Agents are then de-
ployed in the network and interact with each other, gener-
ating observations that are used by PVGAs to update their
decisions, preferences and beliefs.

For further insight into the PVGA characteristics: initial-
izing generative agents with domain-specific stances allows
the simulation to establish a data-driven base “personality”
for each agent. That is, stances are designed to embody
an authentic initial standpoint, informing future interactions
and decision-making. Stance detection is further generalized
through its capability for rapid domain adaptation, which en-
ables the initialization of generative agents for applicabil-
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Figure 7: Epidemiological curves for masking behavior in a synthetic population network of Portland.

ity across a variety of domains (e.g., emergency response to
wildfires, hurricanes, and tornadoes, climate change, public
health, civic discourse).

LLMs pave the way for amplifying this approach by en-
abling agents to participate in stance-informed discussions.
The extensive knowledge contained within LLMs makes
them uniquely suited to this task as they can generate re-
alistic textual exchanges among agents based on their estab-
lished stances and underlying beliefs. This enables more re-
alistic population-scale psychological and social science ex-
periments with minimal data requirements as the LLMs gen-
erate the bulk of the conversational data. LLMs also help as
they contain knowledge about the interplay among beliefs,
attitudes, psychographic variables, group identity, etc. with
likely behavior. These can be exploited to populate the PV-
GAs with cognitive content and underlying activation pat-
terns (see Figure 10). The embedding spaces of LLMs can
also be probed to provide the similarity spaces for declara-
tive memories in PVGAs.

While specific stances often align with corresponding ac-
tions, they don’t always reflect the actual state of an agent.
To realize an action, an agent may combine multiple stances
with varying strengths, coupled with the application of in-
ternal social constraints (e.g., desire for conformity), sit-
uational factors (e.g., working out), or other states (e.g.,
hunger, pain, or habituation). A simple approach (e.g., Naive
Bayes) for identifying an agent’s realized action might rely
on application of a transition probability from each precon-
dition to post-condition, and selection of the highest likeli-
hood action based on existing preconditions. However, such
an approach not only ignores the potential interactions be-
tween predictions but also necessitates observable data for
model fitting.

An alternative approach constructs schema which provide
“chains of thought” from a precondition to an action real-
ization. Discerning an action given the precondition then in-
volves identifying a self-consistent set of schema proposing

a single action, where the self-consistency is determined via
an internal dialogue. These schema can be applied in the op-
posite direction as well, allowing observing agents to infer
stances and preconditions by combining observations about
an individual. Note that the observational inference may not
match the internal dialogue since actions may have multiple
self-consistent schema sets for a given set of observations.

This synthesis of data-driven, generative, and interaction
modeling aims to capture the complexity of human psy-
chology, cognition and social dynamics. By incorporating
data science and LLM reasoning in a cognitive architecture,
psychologically validated agents can enhance computational
modeling and theory development in the social sciences. The
architecture, equipped with these capabilities, is able to en-
code behavioral, cognitive and social psychology constructs
to generate high-fidelity behavior. The key innovation is en-
abling agents to exhibit realistic behaviors akin to humans
situated in complex social contexts. This allows non-trivial
emergent social phenomena to arise from first principles
modeled at the individual level.

Advantages of the PVGA Approach
The PVGA approach offers a plethora of advantages, mak-
ing it particularly well-suited for Agent-Based Modeling
(ABM) in social sciences. We highlight the most important
ones below:

• Inherent Properties of CogIBL: CogIBL, as an
instance-based learning methodology, eliminates the
need for traditional training phases to perform inference.
Its non-parametric nature means there is no cyclical pro-
cess of training, parameter freezing, inference, and data
acquisition. This allows for continuous online learning
as new data streams in. Furthermore, CogIBL has ex-
cellent scalability properties, especially when simulating
agents in parallel across large networks. This scalabil-
ity is achieved through parallelized operations and the
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Figure 8: Epidemiological curves for no-masking behavior in a synthetic population network of Portland.

Figure 9: PVGA architecture simulating human behavior in an epidemiological network.

efficient use of modern tools for memory storage, re-
trieval, and inference, such as vector databases, approxi-
mate kNN methods, and decision trees.

• Versatility in Learning Approaches: At a high level,
CogIBL supports both supervised and reinforcement
learning. This facilitates diverse modeling strategies.
Agents can be designed with pre-existing biases in their
memories, or they can be structured to evolve their
memories over time. The utility-based decision-making
framework of CogIBL allows agents to factor in indi-
vidual incentives and preferences. It is even possible to
model joint utility functions that encapsulate community
well-being or to represent attitudes as the expected values

of behaviors, influenced by underlying beliefs (Pirolli,
Lebiere, and Orr 2022).

• Prioritized Experience Activation: The activation com-
putation mechanism in CogIBL offers flexibility in how
agents prioritize their experiences. This can be tailored
further by integrating components that mirror other facets
of an agent’s personality. For instance, agents can dis-
count activation based on the experiences or actions of
neighboring agents.

• Stance-Informed Personalities: Domain-specific
stances extracted from real-world data help feed the
initial personality of the agents. Incorporating belief into
PVGA provides an additional layer of realism to the
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Figure 10: Stances, observations, and LLM in PVGA

interactions and actions that occur within the simulation.
Furthermore our rapid domain adaptation techniques
for stance detection allow for a generalizable PVGA
framework.

• LLM-Driven Agent Interactions: LLMs make realis-
tic discourse possible by incorporating various agent at-
tributes (i.e. stances, memory, environment events) when
conversing textually with other agents; the conversational
output can then be observed for psyschological and so-
cial science experiences. An added benefit is the gener-
ative nature of LLMs, which reduces the need for large
amounts of data to simulate discourse.

• Theory of Mind component: Beyond initializing agents
with real-world personal-level beliefs, stance detection
can also equip agents with Theory of Mind (ToM) ca-
pabilities. This enables agents to reason about the be-
liefs and stances of other agents and incorporate that un-
derstanding into their own decision-making processes.
That is, stance detection allows agents to form meta-
representations of other agents’ mental states, support-
ing the emergence of higher-order social cognition within
agent populations.

Discussion
Integration of LLMs with ABM, CogIBL, and Stance De-
tection is a paradigm shift in computational social sciences.
Unlike typical models in psychological and social sciences,
which rely heavily on verbal theories and conceptual mod-
els, PVGA is a computational framework that combines pre-
viously separate formal models and methods to enable more
holistic and realistic behavioral simulations. This enables
scientific explanation and prediction beyond what is possible
with conventional social science models.

One of the key challenges in population-scale modeling
has been capturing the dynamic, often unpredictable nature
of human behavior, for instance in the face of evolving epi-
demics. The integration of LLMs enriches the ABMs with
human-like linguistic outputs incorporating factors such as
underlying attitudes, beliefs, sentiments and stances, which
guide how different individuals interact with each other as
well as the individuals behavior in the real world.

Although LLMs have acquired “knowledge” about the
world through training on massive text corpora, and can em-
ulate human linguistic patterns, it is imperative to recognize
their limitations. It is likely that they do not cover the entire

spectrum of human cognition and decision-making intrica-
cies. When combined with cognitive architectures, they can
provide an easily accessible, more economical and yet safer
basis for social and psychological investigations.

Introducing PVGAs has the potential to advance com-
putational modeling in social science research. With their
ability to model complex individual and collective dynam-
ics, providing data-driven high-fidelity socio-psychological
profiles, they promise a more in-depth exploration of emer-
gent social phenomena. The adaptability and depth they of-
fer could potentially change how we approach and under-
stand intricate social systems.

However, challenges remain. While the integration of
LLMs with cognitive architectures promises richer, more re-
alistic simulations, researchers must exercise caution. Con-
sistent assessment and validation of the output of these
models against real-world data are crucial to ensure that
the simulations remain grounded in reality. Recent work
by (Romero et al. 2023) explores integration approaches
for LLMs and cognitive architectures, proposing modular,
agency, and neuro-symbolic models leading to more robust
AI systems.

In conclusion, this paper supports new paradigms for test-
ing longstanding hypotheses in social science research, in-
troducing tools and methodologies to support generation of
realistic, data-driven human-like behavior in ABM simula-
tions. Our position is that PVGAs open up new possibili-
ties for computational social science research through highly
customizable simulations that can model complex individual
and collective dynamics across a variety of domains. Going
forward, PVGAs have the potential to become an indispens-
able tool for social scientists seeking to study emergent so-
cial phenomena.
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