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Abstract

A prominent method to model human learning is through
experiential learning, where decisions are influenced by the
outcomes observed in previous actions. The decisions-from-
experience approach often excludes other forms of learning
in humans, such as learning from descriptive information. In
humans, descriptive information can enhance learning by pro-
viding a denser signal, achieved through understanding the
relationship between intermediate decisions and their future
outcomes, instead of relying solely on observed outcomes.
To account for experiential and descriptive information, we
propose the use of large language models (LLMs) to convert
descriptive information into dense signals that can be used by
computational models that learn from experience. Building
on past work in cognitive modeling, we utilize task instruc-
tions and prompt an LLM to define and quantify the critical
actions an agent must take to succeed in the task. In an initial
experiment, we test this approach using an Instance-Based
Learning cognitive model of experiential decisions in a grid-
world task. We demonstrate how the LLM can be prompted to
provide a series of actions and relative values given the task
instructions, then show how these values can be used in place
of sparse outcome signals to improve the model’s learning of
the task significantly.

Introduction
Human learning is commonly modeled through decisions
from experience or trial-and-error interactions with an en-
vironment. In this paradigm, agents often learn tabula rasa
with the need to discover all the effects that their actions
can have in the environment. There are a number of reasons
why such an approach may be undesirable. For instance, the
learning agent will need to explore unsafe actions, and learn-
ing is significantly slower and inefficient in such models
when prior knowledge about the world is not incorporated
into the decision making process.

When humans learn a new task, they are capable of learn-
ing from non-experiential sources of information, such as
instructions (Walsh and Anderson 2011b). In this work, we
propose the use of LLMs to parse instructions to extract re-
ward signals that guide experiential learning. Specifically,
we show how an LLM can be prompted with task instruc-
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tions to provide both a set of steps that an agent should com-
plete to maximize their task success and the values associ-
ated with each step. We then demonstrate how these rewards
can be used in place of a sparse outcome signal in a task to
significantly improve learning.

We briefly review related concepts and literature, then
describe and discuss our methods, experiment, results, and
paths for future investigation.

Temporal Credit Assignment Temporal credit assign-
ment is the process of attributing credit to past actions re-
sponsible for the experienced rewards or future outcomes.
This process is crucial for learning and making decisions in
dynamic environments over time with feedback delays (Sut-
ton and Barto 2018; Fu and Anderson 2008). Many stud-
ies in reinforcement learning and cognitive science have ex-
plored different aspects of temporal credit assignment, in-
cluding integrating hierarchical structures and intrinsic mo-
tivation to enhance the learning process (Kulkarni et al.
2016), as well as whether existing credit assignment mecha-
nisms are well aligned with human behavior (Gershman and
Daw 2017; Walsh and Anderson 2011a; Nguyen, McDon-
ald, and Gonzalez 2023).

Temporal credit assignment can be bolstered by providing
appropriate signals to the agents—in the form of intrinsic
rewards—that provide supplementary information about the
effect that actions in a sequence have on observed outcomes.
This has received significant attention in the reinforcement
learning literature, from explorations of intrinsic rewards for
cooperative social learning (Hughes et al. 2018) to long-term
credit assignment (Zheng et al. 2020).

Intrinsic Motivation Studies in psychology have shown
that individuals do not always solely aim to maximize their
utility (Dovidio 1984). In such cases, it is often assumed that
participants or agents are intrinsically motivated. Hence, in-
trinsic rewards could be an alternative to external rewards,
particularly in environments with sparse signals for rewards
or success (Chentanez, Barto, and Singh 2004). In studying
both human intrinsic motivations and modeling these moti-
vations computationally, a key challenge is in knowing how
to construct these internal rewards. Among numerous alter-
native sources (e.g., from social preferences in behavioral
economics (List 2006) to preferences for self-efficacy (Blain
and Sharot 2021)), past work has shown that in goal-oriented
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settings, such supplementary motivations may come from
sub-goals based on an individual’s understanding and break-
down of their overall goal (Huang, Jin, and Zhang 2017).

With the understanding that humans have intrinsic mo-
tivations guided by their preferences and knowledge that
drive their behavior, we can follow extensive existing work
in computational modeling and use intrinsic signals to im-
prove learning over temporally extended tasks. In order to
do so, we must formalize a process that takes information
about the task and any relevant world knowledge and dis-
tills it into concrete intrinsic reward structures. To that end,
we utilize task instructions and LLMs: the former provides
the context of the task and the latter utilizes natural language
understanding and reasoning to decompose the task into sub-
goals for the agent.

LLMS, Learning, & Decision Making LLMs gained
prominence through their performance in natural language
settings; however, there is a growing body of literature that
demonstrates their efficacy in control and decision making
tasks, and in providing useful quantifications that may be
difficult for humans to produce.

To the latter point, Park et al. (2023) develop a social sim-
ulation that relies on LLM prompting for agents to select
actions and communicate with one another. As part of their
agent architecture, they utilize LLM queries to ask how rel-
evant and important particular pieces of information are to
the decision at hand—they automate these processes that are
often difficult to formalize in computational experiments by
simply querying the LLM. They demonstrate that these val-
ues result in meaningful actions from the agents and emer-
gent social behavior in a population.

Wu et al. (2023a) develop an approach to provide in-
trinsic reward signals to reinforcement learning agents in
Atari games by via the instruction manuals. They utilize a
question-answering extraction module to summarize game
instructions and a reasoning module to determine if particu-
lar agent interactions are valuable in the current state of the
game. Based on the reasoning modules assessment (a “Yes”
or “No” response if reward should be provided), fixed in-
trinsic rewards or penalties are provided to a reinforcement
learning agent during training. They demonstrate that such
an approach can provide significant gains in terms of learn-
ing speed and overall performance when compared to base-
lines without their instruction-based reward.

In our work, we combine the aforementioned ideas
to build a mechanism for developing goal-based intrin-
sic rewards that allow an agent to utilize non-experiential
information. This allows for improved temporal credit
assignment—and in turn, learning—in sequential tasks with
sparse rewards.

Methods
Experimental Task We use a modified version of the
Door Key task from the MiniGrid environment (Chevalier-
Boisvert et al. 2023). The environment is formalized as a
partially observable Markov Decision Process (POMDP),
which is represented by the tuple (S,A,O, T ,R,Ω, γ).
Here, S represents the state space of the environment,A the

action space, O the observation space, T : S × A → S
the transition function, R : S × A → R the reward func-
tion, Ω : S → O the observation function, and γ ∈ [0, 1)
the discount factor. In a POMDP, the goal is for a policy, at
every step t ∈ {0, ..., T} to select an action at ∈ A after
observing observation ot ∈ O to maximize the discounted
return

∑T
i=t γ

i−tri, where rt ∈ R is the reward observed
after taking an action and the environment transitioning to a
new state.

In our modified Door Key task, there is an agent, a key,
a door, and two targets: one green and one purple. In each
episode, the agent must navigate through the environment
to collect either the green or the purple target. The episodes
terminate either when a target has been collected or the time
horizon T has been reached. The action space A is com-
prised of six actions: Move North, Move South, Move East,
Move West, Pick Up/Drop, and Toggle. The agent faces one
of four cardinal directions and navigates the environment
through one of the four Move actions. If the agent attempts
to move in a direction that it isn’t currently facing, its orien-
tation will change to the desired direction. If the orientation
is aligned with the desired movement, the agent will move
one unit in the desired direction—given that they are unob-
structed. When an agent is facing and one unit away from
the key, it can use the Pick Up/Drop action to pick it up.
The same action will drop the key if the space in front of the
agent is empty. When holding the key, the agent can unlock
and open the door by using the Toggle action when facing
the door. The same action will close the door, but it cannot
be locked again. Finally, to collect a target, the agent must
use the Toggle action when facing a target.

Observations of the environment take a simple form: in
each observation ot, the agent observes its coordinates in the
grid, its current direction, an indicator if the agent is holding
a key, and an identifier for the object in the cell directly in
front of the agent.

For our preliminary investigation, we only use a single
layout depicted in Figure 1. It is important to note that the
observation representation is not generalizable across grids
(e.g., the coordinates are only useful insofar as their sur-
roundings are fixed), and is constructed as a simple repre-
sentation for our demonstration.

Instance-Based Learning Theory Actions of the agent in
the Door Key task are determined using a cognitive model
of learning and dynamic decision making based on Instance
Based Learning Theory (IBLT). This theory is related to the
ACT-R cognitive architecture through the activation func-
tion, which is ultimately used to predict the estimated utility
of performing an action in a state based on the utility out-
comes of similar past experiences held in declarative mem-
ory (Thomson et al. 2015). We refer to a computational
model implementing IBLT as an IBL model.

In IBLT, declarative memory consists of instances k =
(o, a, x) represented by the observation that describes the
state of the environment o, the action performed by the agent
a, and the utility outcome of that action x.

Agent actions are determined by maximizing the value
Vk,t of an available action a in an instance k performed at
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Figure 1: A rendering of the full game state of the modi-
fied Door Key task. The blue triangle is the agent pointing
west, three units to its east is a key, and a locked door is
represented by the dark gray block. The light gray cells are
impassable walls. The purple and green circles represent tar-
gets, which upon collection earn the agent a reward of 0.4
and 0.1, respectively.

time-step t, calculated using the “blending” function (Gon-
zalez, Lerch, and Lebiere 2003):

Vk,t =

nk,t∑
i=1

pi,k,txi,k,t (1)

where nk,t are the previously generated instances held in
procedural memory, xi,k,t are the outcomes of those in-
stances, and pi,k,t is the probability of retrieving an instance
in memory, calculated by Equation 2.

pi,k,t =
exp (Λi,k,t/τ)∑nk,t

j=1 exp (Λj,k,t/τ)
(2)

Further, Λi,k,t is given by Equation 3.

Λi,k,t = ln

( ∑
t′∈Ti,k,t

(t− t′)−d

)
+ σ ln

1− ξi,k,t
ξi,k,t

(3)

Here, d and σ are decay and noise parameters, and Ti,k,t ⊂
{0, ..., t− 1} is the set of previous timesteps where instance
k was stored in memory. The ξi,k,t term is used to capture
noise in the individual differences in memory recall. Be-
cause of the relationship between noise σ and temperature
τ in IBLT, the temperature parameter τ is typically set to
σ
√
2. In our experiments, we use all default parameters of

d = 0.25 and σ = 0.5. We also set the default utility to 1.0
to encourage exploration through an optimistic prior Sutton
and Barto (2018). The default utility is used to predict the
utility of an instance when there are no similar instances in
memory to estimate the expected utility.

A key aspect of applying IBLT to modeling decision mak-
ing is determining the utility outcome of actions, which can
either be directly provided by the learning environment or
determined by the cognitive modeler. Nguyen, McDonald,
and Gonzalez (2023) investigate several methods for tem-
poral credit assignment in IBL models, demonstrating the

relative efficacy of each. We adopt the simple method of as-
signing outcomes at the end of each episode with their expo-
nentially discounted future return. Formally, the ith choice is
assigned outcome xi =

∑T
t=i γ

t−irt.

LLM Reward Model We construct a reward model by
prompting a pre-trained LLM. For our experiments, we use
OpenAI’s gpt-3.5-turbo. Drawing on previous suc-
cesses in utilizing LLMs in control settings (e.g., Wu et al.
(2023a,b); Park et al. (2023); Ahn et al. (2022)), we query
the LLM to produce a plan or sub-goals that are critical for
success in the task. In contrast to Wu et al. (2023a), where
the LLM decides whether or not a fixed reward should be
provided to an agent, we also query the LLM to provide
the value of the reward. Specifically, we frame our query in
terms of steps that the agent must achieve in order to reach
its goal of reward maximization. The full query is as fol-
lows, with {instructions} being replaced by the text
provided in Appendix :

Your job is to evaluate a game and
generate a step-by-step plan for the
player to achieve the maximum score
possible.
The instructions are:

⟨begin instructions⟩
{instructions}
⟨end instructions⟩

Based on the instructions, identify the
most important steps that the player
must meet in order to maximize their
reward, and provide a value from 0 to 1
that represents the value of that step
to reward maximization.
The list of steps should be in the
following format:

1. Player State: ⟨step in terms of
the state of the game or player
observation⟩. Value: ⟨value between 0
and 1⟩

Due to the brevity of our task instructions, context length
is not prohibitive and we are able to input the instructions
in their entirety along with our reward prompt. In alternative
contexts, such summarization techniques may be required,
as in, e.g., Wu et al. (2023a,b).

In order to provide a reward to the agent, we construct an
environment parser that identifies when each step in the plan
has been accomplished and provides the associated reward
to the agent. In an idealized setting, this process would be
conducted via an additional LLM query, where the environ-
ment state or agent trajectory would be input into the model
along with a prompt that elicits an evaluation of each step in
the plan. The latency and cost associated with many queries
make such an automated process prohibitive.

Within each episode, we consider the full set of steps pro-
vided by the initial LLM query. Once a step has been evalu-
ated to have been completed, the associated value is returned
to the agent as a reward and that step is no longer considered
until the subsequent episode. An example set of steps and
values, utilized in our experiments, is provided below:
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1. Player State: Identify the location
of the Green target. Value: 0.2
2. Player State: Identify the location
of the Purple target. Value: 0.2
3. Player State: Identify the location
of the key. Value: 0.1
4. Player State: Identify the location
of the door. Value: 0.1
5. Player State: Collect the Green
target. Value: 0.3
6. Player State: Collect the Purple
target. Value: 0.5
7. Player State: Collect the key.
Value: 0.2
8. Player State: Open the door using
the Toggle action. Value: 0.3
9. Player State: Navigate to the Green
target. Value: 0.4
10. Player State: Navigate to the
Purple target. Value: 0.6

The setting is sufficiently simple that these intrinsic re-
wards may have been hand-crafted. Our demonstration fo-
cuses on the efficacy of the elicitation of these steps and
values from an LLM. We also note, in this LLM response,
there is redundancy in the steps: steps (1) and (2) are oper-
ationalized in the same way as (9) and (10): identifying the
location of the targets requires the agent to navigate to them.
In our implementation, the first occurrence of navigation to
the target is validated as identification in (1) and (2), and any
subsequent arrivals are validated with steps (9) and (10).

The LLM reward model RLLM : S × A → R can be
formalized as the following. Let the context C by defined as
the combination of the task instructions and previously de-
scribed query. The LLM modelM takes as input the context
and produces a set of k rewarded steps P = {p1, ..., pk} and
the values associated with each step V = {v1, ..., vk}. Fi-
nally, let E : S ×P → {True,False} be environment parser
that takes an input the state s ∈ S of the POMDP and a
step p ∈ P and returns a boolean indicating whether or not
that step has been satisfied. In each environment episode, we
initialize the set of remaining steps Premaining := P to be
the full set of steps provided by the LLM. At every timestep
t, we check whether any remaining step has been satisfied
E(st, pk}∀pk ∈ Premaining . For any pk that is satisfied, the
reward vk is returned to the agent and pk is removed from
the remaining set. That is,Premaining ← Premaining\{pk}.
In our experiments, the reward model entirely replaces the
environmental reward functionR when used.

Results
For our experiment, we ran 50 independent trials of an IBL
model learning in two conditions in a single configuration
of the task, as shown in Figure 1. Our two conditions are
defined by the source of reward: either the environmen-
tal reward dictated by POMDP or the LLM reward. Each
trial consists of 200 episodes, each having a maximum of
T = 250 timesteps. Each episode ends when the maximum
number of timesteps elapses or a target is collected. Our out-
come of interest is the environmental reward in both condi-

Figure 2: The top panel shows the average environment re-
ward earned in each episode by the IBL model that utilizes
only environment rewards and the IBL model that utilizes
only the LLM reward. The bottom panel shows the LLM
reward earned by the IBL agent that received that reward
signal. The shaded region shows the standard error over 50
independent trials.

tions.
The results of the experiment in terms of average reward

over time are shown in Figure 2. The baseline IBL model
with the environmental reward fails to learn to reach a target
in the vast majority of trials. The baseline model reaches a
maximum average reward of 0.008 ± 0.003. On the other
hand, the IBL model with the LLM reward is able to make
significant improvements over the baseline by increasing the
average reward tenfold to 0.084± 0.011.

In the bottom panel of Figure 2, we can observe how the
LLM reward signal continuously increases before the en-
vironment signal makes significant gains: the LLM reward
provides a guiding signal to the agent that helps it explore
the task space effectively: reaching and picking up the key,
finding and opening the door, and locating the target all pro-
vide a reward that enables the agent to reach higher environ-
mental rewards than it would otherwise.

Discussion
Our preliminary experiment demonstrates the promise of
utilizing LLMs for intrinsic reward signals in instance-based
learning models solely from task instructions and the envi-
ronment state. Indeed, our results demonstrate a significant
improvement in the success of an IBL model when utiliz-
ing the reward scheme defined by our LLM-based reward
model and the value of incorporating non-experiential in-
formation into the reward scheme. It is important to note
that the specifics of our experiment and results are depen-
dent on the model, model parameters, and the environment;
however, it has nonetheless demonstrated the feasibility of
our approach.

337



Future Directions Our work leaves many potential future
avenues for inquiry. In particular, we have shown a proof-
of-concept for using LLMs as a source for a dense, intrinsic
reward via non-experiential information in cognitive mod-
eling. This initial step was done in a simplistic environ-
ment with a reward scheme that could be easily designed
by a modeler. The natural next step is to advance to more
complex environments and representations that would prove
more burdensome for a modeler to explicitly construct. In
the same vein, ablation experiments should be conducted to
determine how valuable the steps are in conjunction with the
LLM reward values versus predefined rewards (e.g., select-
ing a constant value for all steps identified by the model).
Furthermore, we use a simple prompting scheme for the
LLM and we receive relatively simple steps. A more ad-
vanced prompting chain may be necessary in more complex
environments and may yield more nuanced responses (e.g.,
in our setting we would likely have seen increased perfor-
mance if the steps had additional conditions, such as reach-
ing the door only when a key had been picked up).

As previously discussed, we manually design an envi-
ronment parser to check if the steps have been met by the
agent to earn the LLM rewards. As the cost and latency of
LLM queries decrease, it will likely become more feasible
to query the model at every step to allow it to determine
which goals have been met, entirely automating the pro-
cess we’ve described here. Furthermore, as the feasibility of
per-environment step LLM queries improves, this approach
can be further refined to develop new steps as the episodes
progress, conditioning them on the agent’s previous behav-
iors to refine the reward structure as the agent learns.

LLMs have provided a new toolset for computational cog-
nitive modeling: they will allow us to incorporate new kinds
of reasoning, understanding, and non-experiential informa-
tion in settings where it was previously difficult or infeasi-
ble. Our experiment provides evidence of the efficacy of this
tool in one of many possible use cases.

Task Instructions
The full task instructions provided to the model are:

You are playing a game in a
grid-based environment. Your
goal is to navigate through the
environment and to maximize your
reward by collecting one of two
targets: Purple or Green. There is
one Green and collecting it will
give you a reward of 0.1. There
is one Purple and collecting it
will give you a reward of 0.4. To
collect either a Green or Purple
target, you must rotate toward that
target and identify a path to it.
If you collect one target, you will
be unable to collect the other.

In the game, there are also walls,
doors, and keys. In order to open a
door, you must first find a key and

pick it up, then navigate to the
door and use the Toggle action to
open it.
You may navigate by moving North,
South, East, or West. When there is
a target directly in front of you
(one unit away in the direction you
are facing) you must use the Toggle
action to collect the target. If
a target is not directly in front
of you, the collect action does
nothing. Once a single target is
collected, the game is complete and
you will restart.
There are six possible actions:
Move North, Move East, Move South,
Move West, Pick Up/Drop, and
Toggle. You will also be facing one
of the four cardinal directions.
If you are facing a direction,
selecting the Move action in that
direction will advance you a single
unit in that direction. Otherwise,
it will change your rotation to
face that direction and you will
not move.
In the game, you must identify
target locations through
exploration. You will only have
access to your current position,
rotation, what item you are holding
(if any), and an indicator of what
object is directly in front of you.
Identifying a target (or any other
object) requires that you navigate
to an adjacent cell and face the
target, such that it is directly in
front of you.
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