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Abstract

Instance-Based Learning Theory (IBLT) suggests that hu-
mans learn to engage in dynamic decision making tasks
through the accumulation of experiences, represented by the
decision task features, the actions performed, and the utility
of decision outcomes. This theory has been applied to the de-
sign of Instance-Based Learning (IBL) models of human be-
havior in a variety of contexts. One key feature of all IBL
model applications is the method of accumulating instance-
based memory and performing recognition-based retrieval.
In simple tasks with few features, this knowledge represen-
tation and retrieval could hypothetically be done using all rel-
evant information. However, these methods do not scale well
to complex tasks when exhaustive enumeration of features is
unfeasible. This requires cognitive modelers to design task-
specific representations of state features, as well as similarity
metrics, which can be time consuming and fail to generalize
to related tasks. To address this issue, we leverage recent ad-
vancements in Artificial Neural Networks, specifically gen-
erative models (GMs), to learn representations of complex
dynamic decision making tasks without relying on domain
knowledge. We evaluate a range of GMs in their usefulness
in forming representations that can be used by IBL models to
predict human behavior in a complex decision making task.
This work connects generative and cognitive models by using
GMs to form representations and determine similarity.

Introduction
Instance Based Learning Theory (IBLT) represents the cog-
nitive processes for human decision making based on cog-
nitive memory mechanisms (i.e, recognition, recall, decay,
noise) relevant to dynamic decision making tasks (Gonzalez,
Lerch, and Lebiere 2003). IBLT brings together the follow-
ing characteristics: accumulation of examples in memory
through training and task repetition, development of pattern
recognition and selective alternative search, similarity-based
memory retrieval, gradual withdrawal of attention while in-
creasing memory retrieval, and transition from rule-based to
exemplar-based performance.

Although IBLT models have been applied to dynamic
tasks involving complex information, this has previously re-
lied on the use of hand-crafted features of the environment
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being represented in an IBL model and, therefore, the fea-
tures are unique to each environment. Another issue of ap-
plications of IBL modeling is the requirement of a static
definition of similarity in the space of environment states
throughout modeling.

In contrast, Generative Models (GM) are trained to learn
from a data set the underlying distribution that is causally
responsible for generating those data (Salakhutdinov 2015).
In other words, in GMs, the attributes are not hand-crafted,
but are learned from the data. GMs have been integrated with
other learning models to demonstrate impressive success in
improving learning speed (Higgins et al. 2017).

One useful application of such GMs is in unsupervised
and semi-supervised learning, where there data is not cat-
egorized, or only a small fraction has relevant categories
(Kingma et al. 2014). The learning of representations useful
for behavioral goals is an important area of research in mod-
elling human utility-based learning (Radulescu, Shin, and
Niv 2021). However, to date, the integration of GMs with
cognitive models is lacking.

In this work, we propose the integration of GMs and
IBLT, into a new proposed algorithm called Genera-
tive Environment-Representation Instance-Based Learning
(GERIBL) (pronounced as “jur-bl”). This new algorithm
seeks to enable IBLT models to leverage pre-trained models
that form representations of environments for dynamic deci-
sion making. This is done by integrating IBLT with Gener-
ative Models (GMs) that are trained to learn from a data set
the underlying distribution that is causally responsible for
generating such data (Salakhutdinov 2015).

GMs have previously been integrated with Reinforcement
Learning (RL) to predict human learning of the utility of vi-
sual stimuli (Malloy, Klinger, and Sims 2022) and fast gen-
eralization to novel tasks (Malloy et al. 2022). This inte-
gration of GMs and RL has demonstrated the usefulness of
pre-trained GMs in forming representations of environments
that can be used in cognitive models of learning. We expect
that, a similar approach can be taken by integrating GMs into
IBLT, and take advantage of the strong cognitive foundations
of IBLT into cognitive architectures (i.e., ACT-R (Thomson
et al. 2015)).

GERIBL is used as a test bed for the potential integra-
tion of GMs with cognitive models by comparing different
GM approaches. The learning task of generative models is
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closely related to the human experience of making decisions
based on visual information. Humans can leverage their ex-
perience observing visual information outside of the context
of decision making to improve their speed of learning and
high generalization (i.e., transfer of learning). Part of the rea-
son for this is that humans observe visual information in an
unsupervised context and form representations of that infor-
mation that is useful for a variety of tasks. This is similar to
the unsupervised training of Deep GMs which enables them
to form useful representations of information that are gener-
alizable. GERIBL leverages these useful features of GMs to
integrate with the cognitive mechanisms of IBLT.

GERIBL describes the general framework for integrating
environment representations learned by a generative model
into an IBL model. We evaluated two approaches for GMs,
AutoEncoders (AEs) which form representations of stimuli
that are useful for reconstruction; and Generative Adversar-
ial Networks (GANs), which attempt to learn to discrimi-
nate between environment stimuli not in the original data
set while simultaneously learning to generate environment
stimuli that are similar to the underlying data. The results
show the advantages of the integration of GMs and IBLT.

Preliminaries: Instance-Based Learning
Theory

In IBLT, the memory of agents consists of instances (s, a, x)
defined by the state s, their action a and the outcome x (Gon-
zalez, Lerch, and Lebiere 2003). All instances are stored in
memory as outcomes x and options k = (s, a). This means
that an IBL model requires the storage of all instances in
memory in the form of these triplets.

At time t there may be nk,t generated instances (k, xi,k,t).
Calculating the expected utility of an action requires an ag-
gregation of all similar instances to determine their memory
activation and probability of retrieval.

Among a set of actions considered at each time step,
agents take the action with the expected maximum utility.
Expected utility is calculated through a “blending” function
according to:

Vk,t =

nk,t∑
i=1

pi,k,txi,k,t (1)

Where nk,t are the instances in memory, xi,k,t are the out-
comes, and the probability of retrieval is pi,k,t is calculated
as:

pi,k,t =
exp (Λi,k,t/τ)∑nk,t

j=1 exp (Λj,k,t/τ)
(2)

where τ is a temperature parameter and the activation
value Λi,k,t, which represents the ease of recall of a specific
instance in memory, calculated according to:

Λi,k,t = ln

( ∑
t′∈Ti,k,t

(t− t′)−d

)
+ α

∑
j

Simj(f
k
j , f

ki
j )

+ σ ln
1− ξi,k,t
ξi,k,t

(3)

where d and σ are decay and noise parameters, and
Ti,k,t ⊂ {0, ..., t−1} is the previous observations of instance
i. The similarity function Sim(f, f ′) calculates the similarity
of instances in memory with the current instance (Nguyen,
Phan, and Gonzalez 2022). Because of the relationship be-
tween noise σ and temperature τ in IBLT, the temperature
parameter τ is typically set to σ

√
2.

Pattern Recognition
One potential challenge with the use of IBL models in
practice, for real-world problems, is that states can be sig-
nificantly complex. This motivates the formation of hand-
crafted representations of the state by cognitive modelers. A
cognitive modeler often represents the features in the state
of an instance by using the observable attributes in the en-
vironment that are relevant to perform a task. This has the
benefit of more accurately representing cognitive realities,
compared to the alternative of storing complex visual infor-
mation in memory or using hand-crafted features. The model
proposed in this work seeks to determine whether storing
representations of complex information learned from a GM
can still be useful for modeling cognition, or if the task-
relevant information is lost.

Although the hand-crafted features that cognitive model-
ers define might be practical, a disadvantage of this approach
is that they cannot be formed automatically. The representa-
tions depend on the cognitive modelers’ judgment of what
is important for the task. There are no general principles or
guidelines to decide on the features that are relevant for the
state in a task. Although cognitive modelers rely on what is
“observable” in the task, the selection of features may be ar-
bitrary, highly determined by the experience of the cognitive
modeler on the task. The model proposed in this work seeks
to address this requirement on cognitive modelers.

Similarity-Based Memory Retrieval
A key feature of IBLT is that the activation function de-
pends on the similarity Sim(fk, fki) between the character-
istics of the environment and the attributes of the stored in-
stances. This means that recognition, judgment, and choice
depend on the method of determining similarity (Gonzalez,
Lerch, and Lebiere 2003). IBLT also proposes that decision
makers learn to focus their attention on task-relevant fea-
tures and, in turn, select the limited information they attend
to based on this similarity (Gonzalez, Lerch, and Lebiere
2003). However, until now, there has been no principled
method to achieve this goal.

Although measuring similarity is highly relevant in mod-
els designed in IBLT, relatively little work has been done in
IBLT to compare different approaches to measuring similar-
ity. The similarity function used is often linear similarity, but
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some times it is opted for some non-linear similarity func-
tion in a trial-and-error modeling process. In the next sec-
tion, the proposed model will attempt to address the chal-
lenge of automatically producing instance attributes, and
consistently and meaningfully measuring similarity, through
the integration of an IBL model with a generative model.

Preliminaries: Generative Models
Generative Models (GM) are a class of machine learning
methods that attempt to learn from a data set by assum-
ing that a probability distribution generated the data and at-
tempting to learn the underlying distribution (Harshvardhan
et al. 2020). In this research, we propose a set of methods to
integrate IBL models with three major classes of generative
models, Variational Autoencoders (VAEs), Generative Ad-
versarial Networks (GANs), and Visual Transformers (ViT)
to address the current limitations of IBL models described
above.

Figure 1 illustrates the proposed Generative Environment-
Representation Instance-Based Learning (GERIBL) cogni-
tive model. In this proposed model, the environment repre-
sentation can be generated from the GM, producing an envi-
ronment state that the IBL model can use to make decisions
from experience. Furthermore, the figure illustrates how the
execution of actions from an IBL model can influence the
environment presented in the GM.

While other types of generative models exist, these two
were chosen because of their general applicability to vari-
ous input modalities (image, text, audio, etc.) and their use-
fulness in applications of the learning setting described later.
The remainder of this section provides background informa-
tion on these two types of generative models, as well as in-
sight into the usefulness of representations learned by these
approaches in IBL models.

AutoEncoders
Autoencoder (AE) models function by assuming that there
is a set of generative factors ζ that causally explain the data
in a set x ∈ X . The goal of training these models is to learn
an encoding function p(z|x) and a decoding function p(x|z)
that reflect these generative factors. The result is a model that
can approximate the true environmental distribution p∗(x).

When used with image data, these models typically use
the general structure of Convolutional Neural Networks
(CNNs) to learn low-dimensional representations of visual
information that can be used to form reconstructions of un-
observed visual stimuli, such as human faces (Zhang 2018).

Variational Autoencoder: (VAE) models use a deep neu-
ral network to learn an encoder function qϕ(z|x) that outputs
constrained representations z of visual stimuli x (Kingma
and Welling 2014). These representations define a vector of
means µz and variances σz that form a Normal distribution
N (µz, σz). This distribution is sampled to form a vector
that is translated through to the encoder layers pθ(x|z) to
produce a reconstruction. These VAE models are trained to
minimize the difference between input and reconstruction by
maximizing the objective function (Pu et al. 2016):

Figure 1: GERIBL: Generative Environment Representation
Instance Based Learning Model consisting of a generative
model producing environment stimuli representations that
are used by an instance-based learning model to make de-
cisions from experience.

L(θ, ϕ;x, z) = Eqϕ(z|x)[log pθ(x|z)] (4)

This learning objective is guaranteed to learn a generative
model that will approximate the true environmental distri-
bution p∗(x). However, there is no guarantee of any mean-
ingful connection between the learned latent representation
z and the true generative factors ζ (Chen et al. 2016). This
lack of connection could be problematic for decision models
based on these internal representations, potentially motivat-
ing the use of alternative training (Aridor, da Silveira, and
Woodford 2022).

β-Variational Autoencoder: models seek to connect
generative factors ζ and latent representations z by adjusting
the training of traditional VAEs by introducing a β parame-
ter that further controls the information bottleneck (Burgess
et al. 2018). This is done by penalizing a metric of infor-
mational complexity of the representations using the KL-
divergence between the decoder and latent distribution, us-
ing the training function (Higgins et al. 2016):

L(θ, ϕ;x, z, β) = Eqϕ(z|x)[log pθ(x|z)]
−βDKL

(
qϕ(z|x)||p(z)

) (5)

The β parameter allows for additional control over the in-
formation bottleneck of the model by adding a weight to the
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informational complexity of the latent representations defin-
ing the multivariate Gaussian distribution. The result is that
the entire model is trained to balance the accuracy of recon-
struction and the complexity of latent representation in an
adjustable fashion.

Image Transformers
Pre-trained transformer models have the advantage of wide
applicability on a variety of different tasks and domains,
particularly in the context of Natural Language Processing
(NLP) (Wolf et al. 2019). However, concerns have been
raised over the use and usability of massive pre-trained
transformer models, suggesting that their output may be the
results of spurious correlations and stochasticity (Bender
et al. 2021). Part of the testing of the Transformer based
GMs with GIRBL will be to compare models pre-trained
using the exact same stimuli with ones trained using similar
stimuli.

Image-based transformers apply transformer-based self-
attention mechanisms to machine learning domains with vi-
sual data (Parmar et al. 2018; Dosovitskiy et al. 2020). The
two models used to test the GERIBL model use transform-
ers, and differ in their training methods and the size and form
of their representations of visual information.

Vision Transformer VAE: Variational Autoencoders
trained using transformer models are able to learn con-
strained representations of images of variable size that are
still useful for reconstruction (He et al. 2022). These models
can be integrated into the GERIBL cognitive model using
the encodings learned by a Visual Transformer Variational
Autoencoder (ViT-VAE) model.

The ViT-VAE model uses 4 attention heads, and 2 NN
layers of 64 nodes for the multi-layer perceptron layers.
The loss function is based on the difference between the in-
put and reconstruction. The VAE encoding representation is
used by the GERIBL model as an environment state repre-
sentation, and takes the form of a vector of real numbers of
size 100.

Attention: The second transformer based GM that is
compared using the GERIBL model uses learned values
from the self-attention heads of the transformer network
when processing visual information, this model is referred
to as the Attention model.

The Attention model has the same general structure as the
ViT-VAE model with the main difference being that it is not
trained to reconstruct lossy versions of input stimuli. The
second difference is the form and size of the representation
that is used by the GERIBL model. In the case of the Atten-
tion model, the values of the 4 self-attention heads are used
as the representations for the GERIBL model.

Generative Adversarial Networks
Generative Adversarial Network (GAN) models are trained
using generator and discriminator networks (Salakhutdinov
2015). The goal of the generator is to produce images that
appear similar to those in the training data set so that the dis-
criminator network cannot tell the difference. The goal of the
discriminator is to determine if a given image was produced
by the generator or is a genuine original data set member.

These models are trained in tandem in an adversarial struc-
ture. Two GAN based models are used for comparison with
integration with the proposed GERIBL model. Both models
have the same general structure and training, differing only
in the size of their internal representation space and other
network features.

GAN Model: is the first GAN model uses representations
of size 100 to complete the learning objectives of the gen-
erator and discriminator networks. This is considered to be
an ‘unconstrained’ version of a GAN, analogous to the VAE
model which has a larger representation size and informa-
tion complexity compared to the β-VAE model. The calcu-
lation of similarity of the GAN model is determined by the

Constrained GAN: The second GAN-based model is
motivated by a similar motivation to the β-VAE model, in
using an information bottleneck to produce constrained rep-
resentations that are less informationally complex, allowing
for faster generalization, while still being useful for the IBL
module. This is done by reducing the size of the internal rep-
resentation from 100 to 3, the same size as the latent repre-
sentation of the β -VAE model. Additionally, the generator
and discriminator network feature map is reduced from 64
to 8, additionally imposing a stricter information bottleneck.
All other model structures and hyper-parameters are kept the
same.

GERIBL: Proposed Model
The proposed Generative Environment-Representation
Instance-Based Learning (GERIBL) model is the integra-
tion of IBLT (the Python implementation of IBLT called
PyIBL) and generative models. We compare a variety of
GMs, including VAEs and GANs, in their ability to form
representations of visual information that can be used in a
cognitive architecture model of dynamic decision making.
This change is made primarily by replacing environment
state s with the corresponding GM internal representations
p(z). The result is a cognitive architecture that predicts
human recognition, judgement, choice, and execution based
on constrained representations of visual information.

Furthermore, the GERIBL model alters the IBLT activa-
tion function (Eq. 3) by replacing the feature-based simi-
larity function Sim(f, f ′), where similarity is based on the
internal representation of the GM z and the similarity metric
of the GM SimGM as follows:

Λi,k,t = ln

( ∑
t′∈Ti,k,t

(t− t′)−d

)
+ α

∑
j

(SimGM(p(zk|k), p(zkj
|kj)))

+ σ ln
1− ξi,k,t
ξi,k,t

(6)

where p(zs|s) is the GM internal representation of observed
state s and p(zsj |sj) are the GM internal representations of
each instance in memory sj . Importantly, this altered activa-
tion function avoids the necessity of storing the full original
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Figure 2: Contextual bandit learning task stimuli used in Experiment 1 (Right Panel) (https://nivlab.princeton.edu/data) and
in Experiment 2 (Left, Middle, and Right Panel). Left panel: The first set of stimuli shown to participants in Experiment 2.
Middle panel: The second set of stimuli shown to participants in Experiment 2. Right panel: the third and final set of stimuli
shown to participants in Experiment 2. This is also the stimulus used in Experiment 1, to learn which of the 9 possible features
(shape,color,texture) was associated with a higher reward.

environment stimuli, instead allowing for cognitive mech-
anisms to use low-dimensional representations of environ-
ments.

The type of GM that is used in the GERIBL model results
in differences based on how the internal representations of
each GM are formed and how those models determine rep-
resentation similarity. For example, the β-VAE determines
similarity based on the loss in Eq. 5, according to the KL
divergence between the two representation distributions and
their informational complexities.

Model Representations
Another benefit of using GM-acquired representations as in-
stances of IBL models is that they can be updated as the
IBL model learns the utility of choice options. This can re-
flect the tendency of decision makers to attend to features
that are more relevant for a task at hand, which in turn
changes how they represent information internally. Previ-
ous work has compared how β-VAE model representations
can change as utility is learned in a bandit task involving
images of human faces (Malloy et al. 2022). This is inte-
grated into the proposed model by training the generative
model with feedback from the GIRBL model blending func-
tion Vk,t which uses the activation function 6 according to:

L(υ, k) = υ
(
Vk,t − xk

)2 (7)

Where Vk,t is the predicted utility of the IBL model before
choice selection, and xk is the true observed outcome. This
functionality of the proposed model allows for the updating
of representation of environments as the relevance to utility
of different features is learned. This utility-based training
of generative model representations has demonstrated more
human-like decision-making, reproducing biases in utility
selection (Aridor, da Silveira, and Woodford 2022), and fast
generalization (Malloy et al. 2022).

Learning Tasks
Experiment 1: Visual Utility Learning
The first learning task was originally described (Niv et al.
2015) collected by the Princeton University Niv Lab and

made publicly available on their lab website1. The experi-
ment study was approved by the Princeton University Inter-
nal Review Board.

This task consisted of a contextual n-armed bandit in
which participants were shown 3 different choice options
consisting of a shape (square, circle, triangle), color (red,
green, blue), and texture (hatched, dotted, wavy), as shown
in Figure 2 (Right panel). On each trial, the color, shape, and
texture of each option are randomized, with one instance of
each feature type occurring across the stimuli options (i.e.,
there is always 1 green option, 1 square option, etc.).

Experiment trials were variable lengths of roughly 20-25
stimuli decision trials in which the same 1 of the 9 possible
features was associated with a higher probability (75% vs.
25%) of observing a reward of 1 instead of a reward of 0.
Data from 22 participants were collected in this task, each
making a total of 500 choice selections.

Experiment 2: Transfer of Learning
This second experiment was originally collected and de-
tailed in (Malloy et al. 2023) by the Dynamic Decision
Making lab at Carnegie Mellon University, and made pub-
licly available on OSF2. 60 participants were recruited on-
line through Amazon Mechanical Turk. The experiment was
pre-registered on OSF and approved by the Carnegie Mel-
lon University Internal Review Board. For full methods see
(Malloy et al. 2023).

This experiment sought to test human Transfer of Learn-
ing (ToL), referring to the application of previously learned
skills onto a new task. The learning task in Experiment 2
involves ToL in which participants first learned the values
associated with shapes alone, then shapes and colors, and fi-
nally the same shape-color-texture features described in (Niv
et al. 2015). The rewards ranged from roughly 4-6 points,
determined by the features of the chosen option, with ran-
dom noise added to the reward.

The experiment episodes consisted of 14 trials of each
type in the order shown in Figure 2. During one set of trials,
one of the three feature options was associated with a higher

1https://nivlab.princeton.edu/data
2https://osf.io/mt4ws/

330



reward (roughly 7 vs. 5). As the experiment progressed, the
previously high-valued feature continued to indicate that an
option had a higher value. For example, if a square is associ-
ated with a higher expected utility initially, then red squares
will have a higher expected utility than red triangles for the
remainder of the experiment block. The same is true for the
higher utility color once the texture is introduced.

Model and Human Performance
This section compares the 6 previously mentioned GMs in
their ability to be integrated with the proposed GERIBL
model. These GMs are pre-trained with a subset of the stim-
uli shown in Figure 2, either the 3 shape stimuli, 9 shape-
color stimuli, or 27 shape-color-texture stimuli. After this
pre-training, the models are used to produce a representa-
tion that the IBL module of the GERIBL model takes in as
an environment state. We use the two learning experiments
to compare human participant performance, the 6 proposed
GM instantiations of GERIBL, and a handcrafted version of
the IBL model.

Figure 3: Model and participant average probability of se-
lecting the correct option in the contextual bandit task by
within episode, chance rate is at 1/3.

Visual Utility Learning
In the first experiment on visual utility learning, GMs are
pre-trained using only the shape-color-texture stimuli set of

27 images.The results in 3 compare the three types of GMs
(VAE, Transformer, and GAN) with human performance
and an IBL model using hand-crafted features. These results
demonstrate that all GMs roughly emulate human-like per-
formance, with the worst performing GMs being the GAN
and ViT-VAE model.

In Figure 3, the blue models correspond to the GMs with
smaller representation sizes than the orange models which
correspond to the GMs with larger representation sizes. As
shown, the GMs with smaller representations are a better fit
to human behavior compared to those with larger represen-
tations. This is likely due to the fact that smaller representa-
tions are less informationally complex and thus are easier to
quickly generalize. These results indicate that one important
factor of GMs when integrating them in the GERIBL model
is the informational complexity of representations.

However, when using simple representations it is impor-
tant to retain enough information for behavioral goals. If the
GMs representations were too simple, they could remove in-
formation relevant to the task, making it difficult for the IBL
module to learn. This would be a detriment to applying the
GERIBL model, since the main benefit is the possibility of
automatically generating environment features, as well as a
metric for comparing them.

Transfer of Learning
Transfer of learning is related to the goals of applying GMs
onto cognitive modeling in the potential application of pre-
trained models onto novel environments. To compare the
ability of GM representations to be applied onto new tasks,
we limit the training data-sets in Experiment 2 by includ-
ing only the shape images, only the shape-color images, and
finally only the shape-color-texture images (see Figure 2).
This produces 3 sets of GMs for each image type, that are
used to produce representations of the visual information
used to make decisions in the other two types of tasks.

The first noticeable aspect of these results is that the ma-
jority of GMs had a higher transfer of learning compared to
the IBL model with hand-crafted features. This can be ob-
served by the asymptotic reward (measured by the average
reward on the final 5 trials) of each GM trained on a subset of
stimuli and tested in each of the experiment task conditions.
Of these GMs, the best performing is the Transformer model
using Attention values as its representation, which matches
human performance regardless of the stimuli it was trained
on. This indicates that this model has learned an efficient
representation of the stimuli applicable to related tasks.

In addition to testing GMs in their ability to be applied
onto a novel experiment task, these results strengthen the
two other motivations of GIRBL, in automatically deter-
mining relevant stimuli features and a metric of similar-
ity. If GMs required a unique training approach for each
stimuli space limited to that task, then the applicability of
pre-trained models would be significantly diminished. We
show that GMs with small representation spaces can be
applied onto producing human-like learning patterns even
with novel stimuli. This supports GMs as a tool for appli-
cations beyond IBL, such as in cognitive architecture based
approaches.
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Figure 4: GERIBL model average asymptotic reward in the second experiment separated by the experiment condition. Gen-
erative Models were trained only on a subset of the stimuli space indicated by color shade. Purple lines represent IBL model
performance using hand-crafted features. Green lines represent participant performance.

Conclusions
The GERIBL model incorporates GMs into an IBL model,
which had three main benefits. Firstly, it uses representations
of task environments that are generated automatically, with-
out requiring cognitive modellers to develop a feature set
for each new task. Secondly, it allows for an objective met-
ric of similarity defined by the GM itself. Thirdly, it allows
for improved prediction of human behavior, in a transfer of
learning setting.

Results from comparisons of 6 different GM methods in
two experiment paradigms demonstrated a close correspon-
dence with GERBIL model and human behavior. However, a
general trend showed some insights that are useful for cogni-
tive modellers interested in incorporating GMs in cognitive
modeling. In both the GAN and ViT models, when incor-
porated into the GERBIL framework, higher performance
and a closer fit to human behavior was achieved by using
a smaller representation size. While the VAE and β-VAE
models did not replicate this general trend, there is an inher-
ent information bottleneck in both models.

This trend reveals insight into applying GMs to predict-
ing behavior, specifically the usefulness of reduced repre-
sentation sizes. However, there is likely a balance required
to ensure that representations are large enough to effectively
train GMs while learning representations useful for predict-
ing behavior. The nature of this balance points to possible

future research in the functioning of GMs applied to cogni-
tive models.

Of the GMs tested using the GERIBL model, the β-VAE
based model has the closest connection to biological visual
processing, which has been related to the disentanglement
objective (Higgins et al. 2021). However, performing a com-
plete analysis and comparison of different types of GMs pro-
vides support of our proposed model as a general framework
integration into cognitive models and architectures.

In addition to these main benefits, the results shown here
point towards future research investigating the impact of
utility on the representations learned by GMs. This could be
one area where GMs differ highly in their connection to hu-
man cognition, as they would likely react differently to train-
ing that incorporated utility prediction. Previous work has
compared GM representations as utility is learned in simu-
lated settings (Malloy, Klinger, and Sims 2022), but not yet
compared to behavior from human participants
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