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Abstract 
An evolutionary perspective on embodiment puts 
maintenance of physiology within a functional envelope as 
the brain’s base goal, with all other goals as refinements. 
Thus, all goals have physiological perturbation for their 
motivation and allostatic recovery as their signal of 
fulfillment. From this account, two entailments emerge. First, 
an object’s properties are not intrinsic to the object but a 
situated function of the morphology of the object and the 
affordances required by the goal. Second, categories do not 
exist without reference to some goal; they are constructed at 
the time of perception by blending prior conceptual 
knowledge to create an understanding of the perception with 
respect to the goal. Our thesis is that generative large 
language model (LLM) architectures are part of the solution 
to creating artificial organic-like cognitive architectures, but 
that LLMs as currently trained are generative only at a 
surface-level of behavior rather than deeper levels of 
cognition and, furthermore, that generative architectures 
must be coupled with an embodied cognitive agent 
architecture, which suggests both the additional levels at 
which generativity must operate and capabilities that the 
combined architecture must support. 

Introduction    
The performance of generative large language models 
(LLMs) is by turns extraordinary and extraordinarily 
untrustworthy. It is itself generating extraordinary interest 
throughout artistic, social, educational, commercial, and 
governmental, including military, stakeholders. Within the 
cognitive sciences, discussion about LLMs is the current 
manifestation of the on-going conversation about the nature 
and distinction of organic intelligence and general artificial 
intelligence (AI). LLMs are useful now, will be more useful 
(e.g., highly performant within well-bounded domains), and 
will be made to be more trustworthy (perhaps, e.g., as the 
user interface to other, more transparent, systems). Here, 
however, we describe critical barriers to the general or 
common-sense intelligence that many in the field of AI 
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desire (e.g., Marge et al. 2022, Blaha et al. 2022) that we 
feel LLMs, alone, will not bridge. 
 An evolutionary biology perspective on embodiment puts 
physiological homeostasis at the center of brain function, 
with a ca. 600-million-year history (Shaffer et al. 2022). If 
we adopt the proposal that the base goals of an organism 
involve maintenance of physiology within a functional 
envelope that facilitates the “four Fs” – feeding, fleeing, 
fighting, and reproduction (Churchland 1987), then let us 
adopt a strong position for the sake of argument: all goals 
are refinements of this base goal. This is a strong sense in 
which cognition is embodied – even abstract goals (e.g., 
math, economic transactions) have physiological 
perturbation for their motivation and allostatic recovery as 
the signal of their fulfillment (Barrett 2017). 
 On this account, two requirements emerge, which have 
been explored in psychology and linguistics but seldom 
addressed in cognitive architectures. First, perception serves 
goals – its function is to detect affordances in the 
environment that help the organism achieve its goals. 
Properties of an object, then, are not intrinsic to the object 
but temporary, situated functions of the morphology of the 
object and the affordances required by current goals. 
Second, concepts are blended – categories do not exist 
without reference to some goal or function and are instead 
constructed at the time of perception by blending prior 
conceptual knowledge to create an understanding of the 
perception with respect to the goal.  
 Our thesis is that generative LLM architectures are part 
of the solution to creating artificial organic-like intelligence, 
but that LLMs as currently trained are generative only at a 
surface-level of behavior (language production) rather than 
deeper levels of cognition (e.g., models of entities in the 
world and their relations). Furthermore, the generative 
architectures must be coupled with an embodied (sensu 
Lakoff 2008) cognitive agent architecture. Embodiment 
suggests both the additional levels at which generativity 
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must operate and capabilities that the combined architecture 
must support.  
 To develop this thesis, our starting point is the problem of 
LLM trust as an illustration of misaligned goals and 
affordances. That discussion leads us to the critical 
importance of embodied goals, active perception, and 
constructivist categorization, and eventually to hypotheses 
about the capabilities an integrated embodied, generative, 
cognitive architecture will need.  

Designed versus Embodied Goals 
LLMs, like any engineered system, become untrustworthy 
when people use them to achieve goals for which they were 
not designed (i.e., goals the LLMs themselves do not share, 
because they were not designed with that goal in mind). For 
example, using an LLM as an internet search engine or a 
calculator can produce wrong answers. It should not be 
surprising when the answers are wrong, because LLMs were 
designed (i.e., their goal is) to produce naturalistic language 
output, not factual output. LLMs, alone, are ill suited as 
search engines – companies are working to put guardrails in 
place to make workable search engines of LLMs (e.g., 
Microsoft, for Bing with ChatGPT). So, trust requires 
shared goals. Where do human goals come from? They 
come from our bodies, of course, and every act is a kind of 
goal (problem or drive or behavior may also be suitable 
words). Goals decompose into subgoals, such that the goal 
of, e.g., changing a light bulb, has subgoals that include 
resolving contrast gradients to detect edges, which construct 
objects, such as a stepstool, and raising your blood pressure 
sufficiently to support climbing the stepstool to change the 
lightbulb. 

Affordances 
The way humans and other animals solve a problem is by 
detecting the affordances in the environment that address the 
problem. We perceive the environment according to how it 
can fulfill our needs. If your goal is to grasp an object, you 
detect features of the object that afford grasping (Gibson 
1977; Hedblom et al. 2015). LLMs are generative at levels 
of word, phrase, and longer language structures. However, 
mismatch of user goals versus LLM design causes perceived 
useability failures because the affordances LLMs detect 
(e.g., associations developed during training) do not match 
those that the humans need to solve the problem that humans 
bring to the LLM in the form of a prompt. For example, 
LLMs can learn the affordances of writing in a particular 
linguistic style (where such affordances might correspond to 
phrase structures and word choices characteristic of the 
style). However, mismatch can occur when factual accuracy 
of the content is an important part of the goal (see, e.g., 

Cheng 2023), because LLMs are not designed to detect the 
affordances of producing accurate output (where such 
affordances might be source reputability or returning a 
verbatim quote rather than a paraphrase). Our point is that 
generativity needs to operate on affordances because it is 
affordances that suggest solutions to achieving goals. AI is 
called brittle and untrustworthy when it is not capable of 
detecting the affordances that address the goals that the user 
has brought to the AI. The generativity of LLMs is effective 
but applied to a limited set of goals – specifically, natural-
seeming written language. 

Goal-Directed Perception 
Perception serves goals – it detects features, affordances, in 
the environment that can be used to achieve a goal. An agent 
perceives affordances that are suited to what the agent can 
do in the world, the goals it has, and problems it can solve. 
Because perception is about affordances with respect to 
current goals, perception does not discover intrinsic 
properties of things in the world. It discovers properties that 
are suitable for addressing the current goal. What is intrinsic 
to this process is in the agent, not in the world. The agent’s 
goal and affordances have intrinsic meaning for the agent 
because they are grounded in their functional relevance to 
the agent – what the agent needs to be successful, such as 
the four Fs for an organic agent. 

Concept Blending and Category Construction 
We have said that organic intelligence perceives the world 
through the lens of its goals. Here, “perceives the world” 
means apply knowledge about a concept (e.g., one’s goal) to 
one’s current perception. It is this act of categorization of 
sensory input that creates understanding; it imputes meaning 
to sensory input. Meaning is always with respect to a goal, 
otherwise there is no grounding to the body’s physiology. 
From the embodied cognition perspective, categorization is 
understood to be constructed (Barrett 2017), blended 
(Turner 2019), or situated (Barsalou 2015), all of which are 
descriptions that capture the notion that categories do not 
exist without reference to some goal or function and are 
instead constructed at the time they are needed by blending 
prior conceptual knowledge, a process influenced by the 
exigencies of the current situation (i.e., internal and external 
context, including current goals and past history). This 
process is what enables a person to who needs to change a 
light bulb (the goal) to understand that a chair (the sensor 
input) can be used as a stepstool (a prior concept believed to 
have affordances suited to the goal). Blending the desired 
affordances from the stepstool concept with the inferred 
attributes of the current chair percept constructs a new, 
situated category: chair-as-stepstool. This ad hoc category 
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gives meaning to the perception (the chair) with respect to 
the goal (changing a light bulb). 

Predictive Coding 
LLMs exemplify a performant, if shallow, generative 
architecture. Agent cognitive architectures exemplify 
attempts to capture features of embodiment and biologically 
inspired cognitive constructs, including goals, affordances, 
perception, decision, memory, and action selection. In 
contrast, organic intelligence appears generative at every 
level of organization, an idea captured by the neural theory 
of predictive coding (Allen and Friston 2018). Like LLMs, 
predictive coding is generative, but it is also deeply 
hierarchically predictive, implementing causal models at all 
levels of cognition. Notably, this organization may not align 
with traditional cognitive constructs and psychological 
faculties embedded in cognitive architectures (e.g., a 
predictive coding hierarchy blurs the distinction between 
perception, decision, and action; Chanes and Barrett 2016, 
Lynn 2018). Predictive coding is congruent with the 
constructivist approach described here and deserves 
consideration as a key feature of agent cognitive 
architectures.  
 In the traditional stimulus-response model of cognition, 
cognitive processes categorize perceived stimuli to build 
models from which to derive meaning and make decisions. 
Beliefs and concepts are the result of perception. In contrast, 
from the predictive coding perspective, beliefs about the 
world yield predictions about sensory inputs. Beliefs and 
concepts are the beginning of perception, not the result. The 
upper levels of a predictive coding hierarchy are about 
physiological allostasis, which motivates behavior (Barrett 
& Simmons 2015). The predictions become increasingly 
specific down the hierarchy towards sensory and motor 
neurons. Prediction errors, not stimulus properties, as passed 
upward in the hierarchy. Predictive coding offers a model of 
how a generative architecture can integrate with 
conventional cognitive architectures. Parent nodes in the 
hierarchy are more functionally oriented (what the system 
needs to do to: goals), child nodes are more mechanistically 
oriented (how the system might do it: affordances). 

Embodied Generative Agents 
What must the architecture look like that can support this 
dynamic concept blending in the service of deriving 
meaning from perceptions over hierarchies of goals and 
subgoals? Our consideration of how embodied, organic 
intelligence derives meaning from sensory inputs suggests 
seven characteristics that a cognitive architecture must 
implement to escape brittleness and engender trustful 
human-AI teaming. 

1. Embodied: As an agent-based cognitive architecture, the 
agent’s goals must motivate categorization of its 
perceptions in support of its possible actions. 

2. Hierarchical: The architecture must have data structures 
that support what we have called goals and subgoals, from 
top-level functions down toward raw sensor processing to 
some arbitrary depth that is sufficient to detect the 
affordances by which the system can achieve its goals. 

3. Constructive: The architecture must blend or construct 
new conceptual structures from prior knowledge to 
explain inputs.  

4. Situated: The concept blending must be influenced by 
multiple conceptual structures – some of which supply 
inputs to the blend (sources), but some of which constrain 
or select which elements of prior knowledge are inherited 
by the new blended concept (contexts). 

5. Generative: The architecture must be generative at many 
levels, not merely behavior (e.g., LLM output) but also 
generating collections of affordances hypothesized to 
solve a problem so that the system can understand the 
environment with respect to its goals before candidate 
behaviors can be generated. 

6. Sub/Symbolic: The architecture must combine non-
symbolic, data-driven approaches with symbolic, model-
like knowledge representations. LLM narratives are often 
nonsensical or “imaginative” because there is no 
underlying model of relationships or processes beyond 
mere associations learned from the text-based training 
material. It is therefore common for this generated 
narrative to violate human expectations, which 
themselves appear model-like, with causes that we use to 
explain our observations.  

7. Learnable: Learning must, to some extent, be able to 
occur during operation, reflecting the refining, blending, 
and generation of new concepts as the system acquires 
new goals or executes familiar goals in new situations.  

 These characteristics intersect with and expand on LLMs 
and current cognitive architectures. For example, agents can 
provide embodied goals, sensing, and behavior to 
semantically ground LLM associations (e.g., Kirk et al. 
2023).  Additionally, the reasoning LLMs perform might 
benefit from fine-tuning with structured agent experience 
(Xiang et al. 2023), which can provide cognitive models; 
hierarchically organized knowledge can provide that 
structure. As well, learnability suggests an important role for 
cognitive architecture integration; traditional faculties, such 
as learning and memory, symbolic representation, temporal 
reasoning, chunking, and concurrent goal execution would 
be required for autonomous fine-tuning of LLM-equipped 
agents. 
 We have investigated preliminary computational 
feasibility of some of the ideas described here (e.g., Pfeffer 
and Lynn 2019, Hyland et al. forthcoming), and developed 
an open-source probabilistic and composable AI 
framework, Scruff, capable of integrating the components 
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expressing the desired characteristics (Pfeffer et al. 2021, 
github.com/charles-river-analytics/Scruff.jl).  

Conclusion 
The approach described here grows an embodied deep 
generative agent. The agent grows because it can start with 
a shallow hierarchy, limited sensoria, few goals, and simple 
actions. Initially, its goals and actions are necessarily simple 
by dint of limited depth and sensors. It is embodied because 
it the meaning of sensory and motor processes are only 
defined with respect to its goals, which are intrinsically 
motivating. It is deep because it spawns new computational 
nodes in a hierarchy as it learns. The hierarchical 
architecture efficiently provides richness of representation 
as the system grows. It is generative because the motivation 
to perceive and act is causal. The same generative 
mechanism can efficiently motivate both perception and 
action. 
 The outline provided here of the theory of embodied 
cognition as developed in psychology, linguistics, and 
biology over the last three decades suggests that category 
construction in the service of perceiving affordances that 
can be used to satisfy goals is a critical perspective missing 
from many current approaches in AI. Integrating generative 
and embodied approaches should be part of the solution to 
AI brittleness and trustworthiness because it is through 
embodied generative hierarchies, spanning perception to 
concept, that meaning is grounded – the environment is 
understood with respect to goals, which serve to maintain 
the agent’s functions. 
 To increase autonomy and human-AI teaming, the 
challenge is to provide the AI with human-like conceptual 
structure. “Common ground” refers to congruent 
knowledge, beliefs, and assumptions among a team about 
their objectives, context, and capabilities (Clark and Wilkes-
Gibbs 1986). Common ground is essential to human-AI 
teaming and trusted autonomy (Dafoe et al. 2021). A 
cognitive architecture that provides the AI with 
representational capacity and algorithms that mimic features 
of human conceptual structure and flexibility by integrating 
deep generativity and constructive processes can shift 
human-AI common ground from mere user interface 
transparency to concept congruency, where it resides for 
trusted human-human interactions. 
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