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Abstract

Cognitive architectures and generative models are two very
different approaches for developing general embodied intelli-
gence. This paper investigates their initial motivation, imple-
mentation ways, and the complementary strengths and weak-
nesses, and targets to fuse them into a general embodied in-
telligence so as to leverage strengths and complement weak-
nesses. Firstly, with analyzing their different application sce-
narios and the difficulties in further research and develop-
ment, the potential synergy and possible integration strategies
are explored between them. Then, by combining the strengths
of cognitive architectures, which model human-like cognitive
processes, and generative models, which excel in generating
novel content based on learned patterns, it achieves the goal
of creating embodied agents with enhanced overall capabil-
ities. Finally, a comprehensive framework demonstrating the
integration of cognitive architectures, generative models, and
other AI methods to achieve general embodied intelligence is
presented accompanied by an illustrative example.

Introduction
The potential of artificial intelligence (AI) technology has
been percolating in the background for years. But when
ChatGPT, the AI chatbot, began grabbing headlines in lat-
erly 2022, it put generative AI in the spotlight .

ChatGPT is a form of generative AI – a tool that lets users
enter prompts to receive humanlike images, text or videos
that are created by AI. Generative AI refers to sorts of unsu-
pervised and semi-supervised machine learning algorithms
that enable computers to use existing content like text, audio
and video files, images, and even code to create new possi-
ble content. Its main idea is to generate completely original
artifacts that would look like the real deal.

Generative AI can be applied extensively across many ar-
eas of the business. It make it easier to interpret and under-
stand existing content and automatically create new content.
Developers are exploring ways that generative AI can im-
prove existing workflows, with an eye to adapting workflows
entirely to take advantage of the technology.

From coding assistance to book summaries, people have
been using the chatbot to help access and understand infor-
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mation where a simple Google query might fall short. The
technology seems to have endless potential.

Such a range of capabilities in a single ChatGPT system is
a strong sign of approaching general embodied intelligence.
Innovations integrating such models will also expand along
the maturation of such AI systems and exhibit unforesee-
able applications that will have important impacts on sev-
eral aspects of societies. In light of the remarkable progress
in generative AI, as demonstrated by systems like ChatGPT,
researchers in the field of CA have recently begun to inquire
about its continued significance as another critical research
direction in the field of AI.

CAs, which originate from the field of AI, implement
models for problem-solving and decision-making. These ar-
chitectures have a wide room for implementation in in-
dustrial applications ie. general embodied intelligence. CA
provide a general framework for developing computational
decision-making applications and are often, but not neces-
sarily, based on theories of the human mind.

Autonomous decision-making ability is demanded in the
context of the growing complexity of industrial applications.
The CA have a potential to contribute to such applications.
Unfortunately, till now, the few examples of industrial appli-
cations. Therefore, Kotseruba (2016, 2020) raise the ques-
tion whether CAs are suitable to apply for software develop-
ment besides of experiments. Wendt (2018) addressed this
problem through proposing an approach to enhance the sys-
tematic application of CAs in the field of industrial sys-
tems. Liu (2021) argued that CA is most sutable way for
general embodied intelligence.

In this paper, a comprehensive elucidation is presented of
the principles and strengths underlying generative models
and CAs. It thoroughly analyzes the limitations associated
with each approach while identifying their potential comple-
mentarity. By conducting a comparative study, it proposes an
integrated approach that harmoniously combines both meth-
ods. Through practical examples, it vividly demonstrates the
successful implementation of general embodied intelligence
using this integrated approach.

CAs: Principles and Strengths
CA is the theory regarding the human mind, its structure,
and how the various components work in sync to manage
intelligent behavior in complex environments.
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CAs and Components
The motivation of CA is using cognitive psychology re-
search to create a complete computer-based cognition model
firstly. Afterwards, it aims to create artificial computational
system processes that work like natural cognitive systems
or humans. The technology works as a blueprint for intelli-
gence agents, and its theory focuses on combining AI with
cognitive sciences. With the rise in popularity and adoption
for machine learning and AI technology, CA will only fur-
ther garner research and become a more refined practice with
a wide range of applications.

One notable feature of CAs is their ability to model gen-
eral embodied intelligence in a rational manner, other than
just algorithms, which are designed to solve a specific task.
Cognitive model should be able to present solutions to a var-
ious field of problems.

In the context of developing general embodied intelli-
gent agents, CAs offer the potential to provide agents with
a rich cognitive framework that mimics human-like cogni-
tive processes. These cognitive processes encompass a wide
range of functions, including perception, learning, memory,
decision-making, reasoning, and actions etc.

Modeling Cognitive Processes and Reasoning
Modeling human-like cognitive processes and reasoning is
a fundamental aspect of CAs and a key strength in the de-
velopment of general embodied intelligent agents. The ar-
chitectures aim to capture the intricate workings of human
cognition, including perception, attention, memory, and rea-
soning, to emulate human-like decision-making processes.
By modeling these cognitive processes, CAs enable agents
to analyze and interpret sensory information, extract mean-
ingful patterns, and make informed decisions based on ac-
quired knowledge and past experiences.

One of the primary goals of modeling human-like cog-
nitive processes is to achieve a higher level of cognitive
reasoning. CAs provide mechanisms for logical reasoning,
problem-solving, and planning, allowing agents to engage
in complex decision-making tasks. By employing symbolic
representations, rule-based systems, and cognitive maps, the
architectures facilitate the manipulation and manipulation of
knowledge in a structured manner, leading to more sophisti-
cated cognitive reasoning abilities. This modeling of human-
like cognitive processes enables agents to exhibit flexible
and adaptable behavior in response to changing environ-
ments and tasks.

Notable Examples for CAs
Over 300 CAs have been proposed to date, with some of
the most renowned ones being Learning Intelligent Distribu-
tion Agent (LIDA), Adaptive Control of Thought—Rational
(ACT-R), and Soar etc. These highly acclaimed architectures
serve as successful examples, offering diverse approaches to
modeling the processes of cognitive activity.

Applications and Successes of CAs
CAs have been successfully applied in AI, education,
robotics, and decision support, enabling better modeling of

human cognition and enhancing various domains. In ad-
dition, CAs also have bridged the gap between cognitive
science and neuroscience, providing frameworks for study-
ing brain function and cognitive processes. Overall, CAs
have left a significant mark on numerous disciplines, en-
hancing our understanding of human cognition and fostering
progress in various fields.

Limitations and Challenges of CAs
One of CAs’ significant limitation is the complexity of mod-
eling human-like cognitive processes accurately. While CAs
strive to emulate various aspects of human cognition, there
are inherent gaps in our understanding of the intricacies of
the human mind. Modeling complex cognitive phenomena,
such as emotions, creativity, and social intelligence, poses
challenges as these processes are not yet fully understood or
replicated in computational frameworks. Another challenge
faced by CAs is the difficulty in abstracting model knowl-
edge from enormously complex scenarios.

Generative Models: Principles and Strengths
A generative model is a type of AI model that is designed
to generate new data that is similar to the data it was trained
on. Generative models have numerous applications, includ-
ing data augmentation, image and video synthesis, text gen-
eration, and more, making them a crucial component in the
field of AI.

Overview of Generative Models
Generative AI, also known as Generative AI model, is an AI
approach that utilizes generative models to create new data
and is aptly named after the fundamental technique it em-
ploys. This technology, it should be noted, is not brand-new.
But it was not until 2014, with the introduction of generative
adversarial networks, or GANs – a type of machine learning
algorithm – that generative AI could create convincingly au-
thentic images, videos and audio of real people.

On the one hand, this newfound capability has opened up
opportunities that include better movie dubbing and rich ed-
ucational content. It also unlocked concerns about deepfakes
– digitally forged images or videos – and harmful cybersecu-
rity attacks on businesses, including nefarious requests that
realistically mimic an employee’s boss.

Generative AI Work Principles
Large language models (LLM) are actually a part of a dif-
ferent class of models called foundation models works with
language. The term ”foundation models” was coined since
it seems a sign of new paradigm the field of AI converges
to. Generative AI could include LLMs or foundation models
when these are used for generative use cases, but not when
used in other ways.

Where before, AI applications were being built by train-
ing, maybe a library of different AI models, where each AI
model was trained on very task-specific data to perform very
specific task. What predicted by using of LLM that it is go-
ing to start moving to a new paradigm, where it is a foun-
dational capability, or a foundation model, that would drive

308



all of these same use cases and applications. So the same ex-
act applications envisioned with conventional AI before, and
the same model could drive any number of additional appli-
cations. The point is that this model could be transferred to
any number of tasks. What gives this model the super power
to be able to transfer to multiple different tasks and perform
multiple different functions is that it’s been trained on a huge
amount, in an unsupervised manner, on unstructured data.
And what that means, in the language domain, It is basically
when feeding a bunch of sentences – and it responses with
terabytes of data there – to train this model. It’s this genera-
tive capability of the model – predicting and generating the
next word – based on previous words that it’s seen before-
hand, that is why that foundation models are actually a part
of the field of AI called generative AI because it’s generat-
ing something new in this circumstances, the next word in a
sentence.

Abilities for Generate Novel Content
The ability to generate novel content is a fundamental aspect
of generative models in the field of AI. Generative models
are designed to learn from existing data and then produce
new data that resembles the patterns and distribution of the
training data. This capacity to generate novel content is par-
ticularly prevalent in various types of generative models.

Through combining various AI algorithms to represent
and process content, the generative power of these mod-
els has led to remarkable breakthroughs in fields like natu-
ral language processing, computer vision, and creative arts.
They can produce realistic images, lifelike human speech,
compelling music, and coherent text passages, among other
outputs. This capability has wide-ranging applications, in-
cluding data augmentation for training machine learning
models, content creation for entertainment and artistic pur-
poses, and even assisting in medical imaging and drug dis-
covery. For example, ChatGPT, built on the principles of the
Transformer architecture, has been trained on vast amounts
of internet text, enabling it to capture the intricate structures
and semantic relationships within language.

Applications and Successes of Generative Models
The accomplishments of chatGPT exemplify the potential of
generative models in enabling intelligent agents to commu-
nicate effectively, adapt to user needs, and generate human-
like language, all of which are integral to advancing the de-
velopment of general embodied intelligent agents.

Recent progress in transformers such as Google’s BERT
(Bidirectional Encoder Representations from Transformers),
OpenAI’s GPT and Google AlphaFold have also resulted in
neural networks that can not only encode language, images
and proteins but also generate new content. Diffusion mod-
els are a new class of state-of-the-art generative models that
generate diverse high-resolution images. They have already
attracted a lot of attention after OpenAI, Nvidia and Google
managed to train large-scale models.

Nowadays, pioneers in generative AI are developing bet-
ter user experiences that let you describe a request in plain
language. After an initial response, user can also customize

the results with feedback about the style, tone and other ele-
ments you want the generated content to reflect.

Limitations and Challenges of Generative Models
One of the primary challenges is the issue of generating co-
herent and contextually appropriate responses consistently.
While chatGPT excels at generating language, it can some-
times produce outputs that are nonsensical or lack relevance
to the input query. This challenge stems from the difficulty
of capturing the full complexity of language and context
within the training data.

Additionally, generative models like chatGPT heavily rely
on the data trained on, which means they may inadvertently
perpetuate biases or generate inappropriate content if the
training data contains such biases or inappropriate examples.

Another limitation of generative AI is the lack of rational
controls over the generated outputs.

Complementary Strengths and Integration
Potential of CAs and Generative Models

AI’s core is about creating machines that can think and act
like humans, or even surpass human general embodied intel-
ligence. Tremendous approaches have been tried and tested
to achieve them, such as the symbolic, the connectionist, the
hybrid, and whole-organism architecture etc. Though there
are many approaches to creating AI, Hinton argued that there
are two distinct paths to intelligence, and the two paths share
knowledge between agents in very different ways. Though
it can not be imagined out what does the Hinton’s mortal
and immortal computation look like upon a sudden, these
two types of computation can be roughly felt they are simi-
lar to machine paradigm computation and human paradigm
computation. These coincide with the algorithm-based and
brain-inspired AI literally, which covers the gererative AI
and CAs-based AI depicted above.

Advantages and Drawbacks of Two Approaches
It is apparently that each AI method has his own strengths,
drawbacks and complementary one each. The best way to
achieve general embodied intelligence is to fully benefit the
advantages of them and make complementary disadvantages
for each others. For this purpose, Table 1 depicts a brief
comparation of the strengths and the weaknesses of CAs and
generative models.

It’s needs to be pointed out that the strengths and weak-
nesses mentioned in above table are generalizations, and
specific models within CAs and generative AI can have dif-
ferent characteristics and variations.

Complementary Aspects between Two Approaches
CAs provide a principled and structured framework for mod-
eling human cognition, enabling agents to reason, simulate
complex tasks, and exhibit explainable behavior. Generative
models excel in generating coherent and contextually rele-
vant content, allowing agents to engage in natural language
interactions and produce creative outputs.
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Cognitive architecture Generative models
Disciplinary foundation Cognitive psychology, brain science,

neurobiology, logic, information sci-
ence, etc.

Manchine learning, deep learning, re-
inforcement learning, and xNN.

Knowledge representation Explicit. Implicit.
Symbolic reasoning Logical, rule-based. Limited, emergent.
Cognitive plausibility Emulates human cognition. Lacks direct cognitive plausibility.
Interpretability More interpretable. Less interpretable.
Data generation Not focused on data generation. Proficient in data generation.
Unsupervised learning Limited emphasis on unsupervised

learning.
Leveraged for unsupervised learning.

Creative applications Limited focus on creative applica-
tions.

Promising for creative applications.

Data augmentation Limited utility for data augmentation. Valuable for data augmentation.
Scalability May face scalability challenges. Can scale well.
Flexibility Relatively rigid and less flexible. More flexible and adaptable.
Learning from data Limited learning from data. Emphasize learning from data.
Knowledge acquisition Require manual knowledge acquisi-

tion.
Learn knowledge from data automat-
ically.

Model collapse Not applicable to model collapse. Model collapse can occur.
Evaluation challenges Evaluation challenges vary. Evaluation challenges exist.
Computational complexity Computational complexity varies. Can be computationally intensive.
Controllability Higher controllability. Lower controllability.
Possibility of loss of control Lower possibility of loss of control. Higher possibility of loss of control.
Wrong or misleading output Outputs tend to be more reliable and

accurate.
Outputs can be more prone to errors
and inaccuracies.

Future prospects Potential for improved cognitive un-
derstanding.

Promising for creative applications
and data generation.

Future prospects for AI Advancing explainability and human-
like intelligence.

Expanding creative applications and
data-driven capabilities.

Future prospects for general
embodied intelligence

Potential with comprehensive reason-
ing.

Potential with diverse data genera-
tion.

Aspects for advanced
robotics applications

Emphasis on advanced cognitive
reasoning and decision-making in
robotics.

Focus on enhancing robotic capa-
bilities through data-driven learning
and adaptation, with potential for ad-
vanced applications.

Roles for developing gen-
eral embodied intelligent
agents

Provide a framework for developing
general embodied intelligent agents
with a focus on cognitive reasoning
and understanding.

Contribute to developing general em-
bodied intelligent agents by leverag-
ing data-driven learning and gener-
ation capabilities, enhancing percep-
tion and behavior.

Table 1: The strengths and weaknesses comparison of CAs and generative AI models.

Integration Enhance Overall Agent Capabilities
By integrating CAs and generative models, both strengths of
the two approaches can be harnessed. The interpretability,
explainability, and reasoning abilities of CAs can enrich the
generative models’ outputs, ensuring more controlled, con-
textually appropriate, and explainable responses. Similarly,
the generative capabilities of models can enhance the CAs’
ability to generate novel and creative content, enabling more
adaptive and engaging interactions with the environment and
users. These complementary aspects between CAs and gen-
erative models offers promising directions for exploring the
fusion of these approaches and unlocking the potential for
developing more advanced and intelligent embodied agents.

Potential Benefits and Advantages of Integration
The integration of these two approaches and others it will
hold several potential benefits and advantages in the pursuit

of general embodied intelligence.
By integrating these approaches, it will leverage the in-

terpretability and reasoning abilities of CAs to enhance the
generative models’ outputs. This integration offers the po-
tential for more controlled, contextually appropriate, and ex-
plainable responses from the agents.

Furthermore, the generative capabilities of models can
augment the CAs’ ability to generate novel and creative con-
tent, expanding the agents’ adaptability and versatility. The
integration can also lead to more robust and adaptable sys-
tems that can learn from and adapt to new environments,
improving their overall performance and intelligence.

Ultimately, the potential benefits and advantages of inte-
gration lie in the ability to create agents that possess a holis-
tic set of cognitive and generative skills, enabling them to
tackle complex tasks, engage in natural and meaningful in-
teractions, and exhibit creative and contextually appropriate

310



Nature Intelligence

Algorithm / Model Based

Machine Intelligence

Machine Learning

Machines that think and act like Human

Deep 
Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

RL & DL

Learning from data examples

Biology / Brain Inspired

Cognitive 
Atchitecture

Knowledge 
Representation

Memory

LearningPerception

Motor

Decision 
Making

Cognitive 
Characteristic

Performance

Interaction
Emotion

Humanity

Logic

Vision

Auditory

Haptic

Collabration

Artificial Intelligence

① ②

③

Algorithm 

④

⑤
⑥

⑦

⑧

⑨

⑩

Fusion

Cognitive 
Model

Figure 1: Two AI approaches (CAs and generative model) and their fusion to implement human-like intelligence.

behavior in a wide range of real-world scenarios.

Approaches for Integration
By bringing together the principled framework of CAs,
which capture human-like cognitive processes, with the
power of generative models, the intelligent agents created
with can possess both reasoning and generative capacities.
Through a comprehensive exploration of the approaches for
integration, it will pave the way for a deeper understanding
of how combining minds and machines can lead to the de-
velopment of general embodied intelligent agents with en-
hanced cognitive and generative abilities.

Researches and Approaches for Integrating CAs
and Generative Models
The overarching objective of AI is to develop machines that
can exhibit human-like behavior and perform tasks typi-
cally executed by humans. Significant efforts have been ded-
icated since its inception, and result in remarkable progress.
Through conducting a comprehensive literature review and
method analysis, this study elucidates the interrelationships
among different AI efforts, as illustrated in Figure 1.

Drawing intelligence research inspired by nature intel-
ligence, AI researches are classified into 10 comprehen-
sive categories labeled with circled number. In Figure 1,
1⃝ indicates the way creating AI directly from nature in-

telligence, this research like Merel’s work (2019). The
work creating CA from nature intelligence is labeled with
2⃝, such as Anderson’s (2004, 2005) and Baxter’s work

(2008). The work from CA create AI labeled with 3⃝, such
as Lieto (2018) and Liu (2021). Creating AI with Algo-
rithm is labeled with 4⃝, work such as Malekmohamadi
(2020), Team (2021), and Wittkuhn (2021). Label 5⃝ indi-
cates the method creating AI from model, such as Richards’s
work (2022). The method from discriminative model cre-
ate AI is labeled with 6⃝, for example Graves (2016). Cre-
ating Generative AI from generative model is labeled with
7⃝, such as Taniguchi and Yüksel. Building CAs from algo-

rithm/model is marked with 8⃝, and work such as Bertolero
(2015), Taniguchi (2021), and Petersen (2015). Fusion/Inte-
gration to achieve AI is with 9⃝, and work for example Ban-
ino (2018), Flesch (2018), Gupta (2023), Langley (1989),
Miyazawa (2019), and Wayne (2018). Another research on
AI is to study nature intelligence through CA which is shown
with 10⃝, and the example like Laird’s work (2017).
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The existing research and approaches strongly indicate a
clear trend towards the integration of CAs and generative
models. This fusion of them is crucial in providing valuable
insights into achieving general embodied intelligence.

Incorporating Generative Components into CAs
CAs incorporate mechanisms for learning and adaptation,
essential components of human cognition. These archi-
tectures employ techniques such as reinforcement learn-
ing, unsupervised learning, and incremental learning to en-
able agents to acquire new knowledge, refine their existing
knowledge, and adapt their behavior based on feedback and
experience. This capacity for learning and adaptation allows
agents to continually improve their cognitive processes and
reasoning abilities, leading to enhanced performance and
decision-making capabilities over time.

Incorporating Cognitive Cells into Generative AI
Incorporating cognitive components into generative models
open up new possibilities for enhancing the contextual un-
derstanding and reasoning abilities of these models, thereby
advancing their potential for general embodied intelligence.

One approach is to integrate cognitive components in-
spired by frameworks into the architecture of generative
models. By incorporating cognitive reasoning mechanisms,
such as working memory and attentional processes, into the
generative model, it becomes capable of generating more
contextually informed and coherent responses. This integra-
tion allows the generative model to exhibit reasoning abili-
ties and produce outputs align with human-like cognition.

Another strategy involves leveraging CAs to guide the
training and fine-tuning of generative models. By incorpo-
rating cognitive principles and constraints during the train-
ing process, the generative model can learn to generate con-
tent that adheres to cognitive rules, exhibits plausible rea-
soning, and aligns with human-like behavior.

Hybrid architectures that combine elements of both gener-
ative models and CAs have been proposed to strike a balance
among various efforts for machine intelligence.

Exploration of Hybrid Models and Challenges
Hybrid models aim to leverage the strengths of both ap-
proaches, creating a symbiotic relationship that allows for
seamless integration. However, the implementation of hy-
brid models comes with its own set of challenges. One chal-
lenge lies in finding an optimal balance between cognitive
reasoning and generative creativity. Another challenge in-
volves managing the trade-off between control and novelty.
Hybrid models must strike a balance between generating
novel and contextually relevant content while avoiding over-
reliance on pre-learned patterns or biases.

Case Studies and Examples
By fortunate circumstances, a nuclear power plant (NPP)
was presented with an opportunity to implement these com-
prehensive integration for its intelligence applications. Fig-
ure 2 illustrates the overarching framework of this process.

Case Studies and Their Outcomes
The overall requirements for AI technology in NPP can be
summarized into two application entities: cognitive robots
and digital humans. Cognitive robots perceive the on-site
environment and collaborate with the team to control on-
site operations and gather dynamic information. Digital hu-
mans, on the other hand, are intelligent agents that can be
customized according to specific needs within the enterprise
intranet. They have the ability to utilize data resources and
work together with humans and robots to accomplish col-
laborative tasks and decision-making processes. Digital Hu-
mans can also leverage generative AI to address inquiries
related to cognitive entities, propose design and planning so-
lutions, and handle procedures for issues or incidents. Both
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cognitive robots and digital humans can effectively use in-
ternal data and collaborate with internal cognitive entities to
achieve seamless and cooperative operations.

Improved Performance and Capabilities for Both
To address possible errors or biases that may arise from us-
ing generative models and lead to decision-making mistakes,
the decision-making knowledge from cognitive models are
integrated into the decision phase for controlling behavior of
robots or digital humans. For decreasing the intensive man-
ual labor of knowledge’s extraction during cognitive mod-
eling, model firstly learns from the vast enterprise data us-
ing generative models, and following that, critical decision-
making knowledge is either manually intervened or subject
to evaluation for permission, so as to ensure alignment with
the cognitive model’s requirements.

This integration augments decision process’ controllabil-
ity and helps avoid generating negative outcomes. More-
over, utilizing generative AI for pre-generating knowledge
during cognitive modeling significantly improves modeling
efficiency and enhances the overall application level.

Strengthened Task Behavior for Applications
By combining two approaches and more, robots or digi-
tal humans experience significant enhancement in percep-
tion, learning, and decision-making capabilities. The acqui-
sition of cognitive model knowledge and the ability to inno-
vate are achieved are achieved through generative AI. Com-
munication and collaboration between humans and robotics
are effectively facilitated by speech recognition, speech-
to-text, and text-to-speech technologies. AI-powered image
and speech recognition enable audiovisual sense and percep-
tion. Leveraging generative AI for learning and further re-
fining cognitive model knowledge ensures more reliable and
efficient decision-making behavior.

Furthermore, the implementation of sense, perception,
and cognitive functionalities during cognitive modeling all
incorporate generative models and AI algorithms.

Conclusion
By leveraging the complementary strengths of these two ap-
proaches, we have witnessed the potential for creating intel-
ligent agents with heightened capabilities. Through a thor-
ough analysis of their principles and strengths, we have
highlighted the power of CAs in modeling human-like cog-
nitive processes and reasoning. Similarly, generative models
have demonstrated their prowess in generating novel content
based on learned patterns.
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