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Abstract

We explore the potential integration of Transformers, trained
online in real-time using an agent’s ongoing experiences, as a
learning and memory component of a cognitive architecture
such as Soar. We identify key challenges and potential capa-
bilities enabled by such an integration.

Introduction
Transformers (Vaswani et al. 2017) are trained offline from
large, existing corpora, with a prime example being the cre-
ation of Large Language Models (LLMs), such as GPT-4
(OpenAI 2023). LLMs have demonstrated impressive per-
formance in retrieving contextually relevant data but do not
have all the capabilities required of a cognitive agent, such as
perceptual processing, decision-making, planning, and dif-
ferent forms of reasoning (spatial, temporal, meta). More-
over, they no do not support online lifelong persistent learn-
ing. In contrast, cognitive architectures (Kotseruba and Tsot-
sos 2020; Newell 1990) provide the computational infras-
tructure for creating embodied agents, including the ability
to pre-encode knowledge and learn new persistent knowl-
edge through various online learning mechanisms, including
procedural composition, reinforcement learning, semantic
learning, and episodic learning. Although diverse, those ex-
isting cognitive-architecture learning mechanisms have yet
to show the ability to learn and retrieve the contextually sen-
sitive similarity-based predictive knowledge that Transform-
ers might afford.

This paper explores the challenges and opportunities
of integrating Transformers with a cognitive architecture
agent, where the Transformer is trained online with the
agent’s experiences. The Transformer becomes a memory
for the agent that provides context-sensitive similarity-based
predictions based on the agent’s current situation. In a
Transformer-based LLM, the model learns to predict the
next word based on the words seen thus far and, in doing
so, learns the structure of the language and how language is
used. Our goal is not to predict the next word but to predict
the next percept, thought, or action based not on external
language produced by humans but on internal agent experi-
ences. That is, we aim to use an LLM to learn “the structure
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of thought,” enabling an agent to extend its reasoning to new
situations and tasks while maintaining consistency with its
existing knowledge and prior experiences. Recent advances
in robot action-learning suggest the feasibility of capturing a
subset of this knowledge (Brohan et al. 2023), in which low-
level manipulation systems are trained based on observed
visual and natural-language inputs to the robot.

The next section describes the desiderata of such an in-
tegration and related efforts to achieve some of those goals.
Following that is an abstract description of a potential ap-
proach to realizing such an integration, a list of the technical
challenges that directly relate to the desiderata, the potential
capabilities such integration would engender, and a conclud-
ing discussion.

Desiderata and Related Work
Our goal is to develop long-lived, adaptive, intelligent, em-
bodied agents that have many of the cognitive capabilities
we associate with humans, including perception of com-
plex environments, decision-making informed by large bod-
ies of knowledge, multiple representations of knowledge,
planning, meta-reasoning, communication and coordination
capabilities, broad motor capabilities and multiple learning
mechanisms. Below, we identify additional desiderata we
consider relevant to integrating a novel learning capability
based on Transformers, with commentary on how existing
agent systems that use LLMs fare.

Learning is Online and Incremental
General embodied agents must adapt to novel tasks and en-
vironments through online learning, acquiring knowledge
as they experience it. Given the likelihood of returning to
a task, they must also maintain that knowledge throughout
their existence.

Existing LLMs use offline batch learning and often adopt
the goal of zero-shot learning, meaning that everything for a
task is learned before the task is encountered. Although this
approach may be appropriate for agents that perform lim-
ited, repeated tasks, it does not allow an agent to learn new
tasks or customize its task performance to the preferences of
individual human users (Kirk, Wray, and Lindes 2023).

There is a concept in the LLM literature of “in-context
learning,” which involves adaptation to the current situa-
tion via the prompt and previous retrievals (Brown et al.
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2020). However, in-context learning does not involve per-
sistent weight changes (it seems odd to call it learning, as it
is only a temporary adaptation to the current context). Thus,
although there are LLM applications where agents demon-
strate sophisticated command following (Ahn et al. 2022;
Yao et al. 2023), they do not learn new tasks or concepts that
persist beyond an engagement with a human.

Another learning approach used with Transformers is
fine-tuning, where the final layers of the LLM are retrained
for specific tasks. However, fine-tuning is not online, and
the repeated fine-tuning of the final layers risks the loss of
knowledge acquired for earlier tasks.

Learning can be included by augmenting an LLM within
an agent architecture as demonstrated in the Generative
Agent (Park et al. 2023). The Generative Agent incorporates
an additional learning mechanism and memory (specifically
episodic memory) that provides persistent learning and be-
havioral change. The Generative Agent approach does not
modify the knowledge encoded in the underlying Trans-
former, but the additive memories are used as persistent (re-
trievable) context for future queries to the LLM.

Learned Knowledge is Grounded

To be useful, the knowledge in an embodied agent must
be grounded in the agent’s experiences, its perception of
the world, and its motor capabilities (Maher, Ventura, and
Magerko 2023).

LLM knowledge is derived from language and possibly
visual databases, but neither directly connects to an agent’s
experience. Thus, grounding is achieved through additional
mechanisms (possibly other pre-trained Transformers). A
challenge is extending LLMs so that their training data is
more directly from agent experience and represented in the
forms an agent uses for internal reasoning.

In an interesting twist, the Generative Agent “grounds” its
linguistic knowledge in its environment, but only because all
interactions with its environment are through language.

Learned Knowledge Correctly Transfers to New,
Similar Situations

The learned knowledge should not be tied to specific expe-
riences but generalized to apply in new, similar situations.
A strength of LLMs is their ability to learn implicit, gen-
eral knowledge that (usually) applies appropriately in novel
but similar situations. For example, LLMs learn hierarchical
and abstract syntactic structures that they can use to gener-
ate novel text. However, they also can hallucinate, generat-
ing incorrect responses, making this a significant challenge
in using LLMs with autonomous agents.

Agent Responds in Realtime

The agent’s computational demands are such that it can ac-
cess and reason with its knowledge in real time relative to
the dynamics of the environment and that its overall opera-
tion, including learning, occurs in real time.

Proposed Integration
Figure 1 shows the abstract architectural structure for the
proposed integration of the Soar cognitive architecture
(Laird 2012, 2022) and a Transformer.1 Soar is representa-
tive of many cognitive architectures (Kotseruba and Tsotsos
2020) whose structure is consistent with the proposed Com-
mon Model of Cognition (Laird, Lebiere, and Rosenbloom
2017).

Figure 1 envisions a straightforward integration from an
architecture perspective as the Transformer is included as a
new long-term memory that operates asynchronously from
the other modules with its own retrieval and learning mech-
anisms. Because of underlying challenges in meeting the
desiderata above (see next section), in a final discussion,
we explore a more complex architectural integration that re-
quires less innovation in terms of Transformer technology.

Below are four aspects of the integration:

Transformer Input

Transformer input comes from the architecture’s short-term
memories. We consider only working memory for simplicity
and defer considering modality-specific memories (such as
from the spatial visual system). In Soar, as in many cognitive
architectures, working memory is a symbolic graph structure
derived from sensor data, internal reasoning, and long-term
memories. It represents the agent’s current situation, task-
ing, goals, plans, actions, communication with other agents,
etc. Thus, in contrast to LLMs that focus only on language,
we see language as only one component of the input to the
Transformer.

One aside on the issue of language is that given that LLMs
have been trained exclusively on language, one approach in
other integrations of LLMs with other architectural compo-
nents is to make language (words, phrases, sentences) the
underlying “language of thought.” That is not the approach
we are taking here, and one question is whether language
proves to be sufficient for all internal reasoning or whether
the approach we are taking, where it is one of many possible
representations, will be necessary.

Learning

Changes to working memory from perception and re-
trievals from long-term memories (procedural, semantic,
and episodic) occur in parallel, resulting in “waves” of
changes. For each wave, the Transformer will be trained to
predict future changes. As noted above, these are changes to
graph structures and not a linear string of tokens. As noted
below, both cognitive architecture features (multiple parallel
changes, changes to graph structures) raise challenges for
using Transformers, requiring linearization of graphical rep-
resentations (Gao et al. 2023).

1Transformers are singled out as a potential neural architecture;
however, other neural approaches should be considered (Ororbia
and Kelly 2023; Furlong and Eliasmith 2023; Smolensky et al.
2022).
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Figure 1: Proposed integration of GTN in Soar

Retrieval Prompting
Retrieval prompting for semantic and episodic memory in-
volves the deliberate creation of a cue sent to the long-term
memory. For the proposed memory, there are two possibili-
ties that we would investigate. As with episodic and seman-
tic memory, an agent’s procedural memory can deliberately
create a specific prompt (symbolic graphic structure) for re-
trieval to focus the memory on a particular topic. An alterna-
tive is that all working memory forms the prompt/context for
retrieval. This would allow spontaneous retrieval so that the
complex content of working memory (which includes prior
predictions) is used to determine what is retrieved.

Transformer Output
Similar to retrievals from episodic memory, the Transformer
output would be deposited in a separate buffer within work-
ing memory to distinguish retrievals from the Transformer
from other sources. Procedural knowledge can access that
buffer and use it for decision-making, planning, and creat-
ing other structures in working memory that influence the
agent’s behavior.

Challenges
Here we identify major challenges to realizing this integra-
tion approach.

Format of Transformer Input
The input for standard Transformers is a sequence of to-
kens, such as parts of words. Here, the input would be a
symbolic, graphical structure, which, with traditional Trans-
formers, would require linearization into a list of individual
tokens. Another possibility would be to attempt to use Graph
Transformer Networks (GTNs) (Yun et al. 2020; Dwivedi
and Bresson 2021) as the underlying Transformer technol-
ogy. Whether the assumptions underlying GTNs are com-
patible with this proposed use with cognitive architectures is
unclear. For example, the current practice appears to train on
static graph structures instead of a sequence of graph struc-
tures that can be incrementally modified over time, as in a
cognitive architecture working memory.

A related issue is that cognitive architectures do not have a
stream of single changes to working memory. Instead, many
changes to working memory can occur in parallel. Thus, the

desired behavior is to predict multiple changes to working
memory from multiple changes to working memory. Once
again, such changes could be linearized, but there might be
unforeseen negative interactions with the operation of other
cognitive architecture components, such as matching by pro-
cedural memory.

Incremental Versus Batch Training
In current practice, Transformers are batch-trained on fixed
input, followed by fine-tuning. Our use of Transformers re-
quires incremental online training. Whether this approach
will converge and avoid problems such as catastrophic for-
getting is an open question. Developing new online algo-
rithms for Transformers that do not depend on batch train-
ing may be necessary. If online learning is impractical, we
explore an alternative in the discussion section.

Initial Agent Knowledge
What knowledge does an agent require to exploit the ca-
pabilities of the Transformer? In the following section, we
list cognitive abilities that might be realized or enhanced
with a Transformer trained on experience, but how does the
agent know how to use the Transformer to achieve these
(and potentially other) capabilities? Is there general knowl-
edge that can be encoded in agents to use these capabilities
across whatever tasks an agent pursues? Do those capabil-
ities emerge? Discovering and encoding that knowledge (if
necessary) is an additional challenge.

Sufficiency of Experience
One lesson from LLMs is that more is better, with perfor-
mance improving as the amount of data used in training and
the number of parameters in the model increase. Further-
more, during training, the same data is used repeatedly.

It is an open question as to whether the singular exposure
of experiences of an agent over a reasonable time will be
sufficient to result in useful knowledge. Although a poten-
tially fraught comparison, humans require extensive experi-
ence with the world, at least years, to learn complex cogni-
tive skills. What level of experience (and timeline) can we
expect from the learning we proposed?

Real-time Responsiveness
There could be challenges regarding the real-time integra-
tion of a Transformer within a cognitive architecture. The
good news is that cognitive architectures like Soar are de-
signed to support asynchronous long-term memories. Even
if the Transformer is orders of magnitude slower than the in-
ner loop of the cognitive architecture (< 1 msec in Soar on
modern CPUs), the overall design is robust. However, the
Transformer must also keep up with the dynamics of the en-
vironment both in providing timely responses and process-
ing input for training. A final (positive) caveat is that the total
data (and thus the necessary size of the Transformer) would
be many orders of magnitude smaller than what is required
for LLMs.
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Potential Capabilities
Transformers are prediction engines, so if such an integra-
tion succeeds, they should be able to predict the most likely
future working memory states, which have many potential
uses as outlined in Table 1.

Capability Description
Anomaly detection Detecting that a situation is no

longer routine
Action modeling Predicting the effects of an action
World modeling Predicting world dynamics
Anticipation Predicting details of a possible

future event before it occurs
Preparation Taking action to change an

expected future

Table 1: Capabilities enabled by prediction

Existing cognitive architectures take advantage of implicit
predictions (such as those encoded in memory activation and
association strength) and explicit prediction through using
the contents of episodic memory, but they lack three poten-
tial differentiators that Transformers might provide:
1. Broader, more complete contextual retrieval that a Trans-

former could provide.
2. Spontaneous retrieval without explicit prompting (ACT-

R provides comparable functionality in some cases).
3. Implicit, similarity-based generalization and synthesis of

past experiences that predict the future.
These capabilities do not negate the value or necessity of
episodic memory as it provides instances of experience,
whereas a Transformer would provide generalization and
synthesis over those experiences. Instances are critical for
answering questions about what actually happened in the
past. In contrast, the synthesis provided by Transformers
could support predicting future states, even from states
that were never experienced. On the surface, these may
seem like distinctions without important differences; how-
ever, episodic memory allows an agent to remember exactly
what commitments it has made in the past to another agent,
whereas synthesis enables an agent to predict, in general, the
type of commitments it (or possibly others) would make in
the current situation.

Beyond the prediction capabilities envisioned in the table,
it is difficult to anticipate all the capabilities an integrated
Transformer-based memory and learning system could en-
gender. One of the lessons we take away from LLMs is how
the field has found uses for them that, although grounded
in the LLM’s prediction capability, appear qualitatively dif-
ferent than a prediction. There is the straightforward use of
them as a knowledge source (Kirk, Wray, and Laird 2023),
similar enough to long-term semantic memory that it might
replace it (in contrast to episodic memory, as noted above).
Similarly, a Transformer could provide entailments of the
current situation (called elaborations in Soar) that enrich sit-
uational awareness for the agent. However, some capabilities
involve creating complex, extended structures, such as writ-
ing a summary or critique of an article, providing task plans,

and others. An implication appears to be that improved pre-
diction in language supports a wide variety of cognitive
functions. One of our hopes is that prediction, grounded in
an agent’s experience in addition to the language it uses and
hears, will offer similar functional advantages and opportu-
nities for the agent.

Discussion
Given the uncertainty of the ability to create graphical
Transformers that can robustly and incrementally learn from
graphical data, it may be worthwhile to explore alterna-
tive architectures to achieve learning from experience with
a Transformer. To simplify the description, imagine a robot
that is active for 8 hours a day. During that time, it relies
on previous training of its Transformer while depending on
other architectural learning and memory mechanisms and
context learning for short-term adaptation. During inactive
time (sleep), the agent could replay its experiences stored
in episodic memory to fine-tune the Transformer. At an ab-
stract level, there appear to be parallels between these pro-
cesses and consolidation in humans during sleep. When the
robot has a longer period of inactivity, it could retrain using
episodic memory (not a process found in humans). Answer-
ing the question as to the ratio of active experience to the
time required for fine-tuning and retraining downtime would
influence the practicality of this approach in real-world sce-
narios.

One intriguing possibility is that this approach could be
completely under the agent’s control. It would require some
deliberate control of initiating fine-tuning and training of the
Transformer by feeding it reconstructed experiences from
episodic memory. This approach might be a preferred start-
ing point as it would provide a baseline and research expe-
rience with GTNs, fine-tuning, and retraining before con-
fronting real-time online learning of a Transformer.
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