
A Proposal for a Language Model Based Cognitive Architecture

Kobe Knowles, Michael Witbrock, Gillian Dobbie, Vithya Yogarajan
NAOInstitute, Waipapa Taumata Rau - The University of Auckland, New Zealand

kobe.knowles@auckland.ac.nz

Abstract

Large Language Models (LLMs) have shown impressive per-
formance on a wide variety of tasks. However, apparent lim-
itations hinder their performance, especially on tasks that re-
quire multiple steps of reasoning or compositionality. Ar-
guably, the primary sources of these limitations are the de-
coding strategy and how the models are trained. We pro-
pose, and provide a general description of, an architecture that
combines LLMs and cognitive architectures, called Language
Model based Cognitive Architecture (LMCA), to overcome
these limitations. We draw an analogy between this architec-
ture and “fast” and “slow” thinking in human cognition.

Introduction
Large language models (LLMs) have shown impressive per-
formance on many tasks, such as programming, reasoning,
translation, and question answering, often surpassing human
performance (Anil et al. 2023; Bubeck et al. 2023; Katz et al.
2023; OpenAI 2023). However, even within LLMs’ impres-
sive capabilities, there are evident limitations: LLMs rea-
son semantically, not symbolically (Tang et al. 2023); strug-
gle with pure causal reasoning (Jin et al. 2023); fail to un-
derstand simple identifier swaps in Python (Miceli Barone
et al. 2023); often perform poorly on tasks that require multi-
step reasoning and compositionality (Dziri et al. 2023); and
produce confabulations (OpenAI 2023). These weaknesses
raise questions about whether artificial general intelligence
can be achieved with LLMs and whether they have a deep
intuitive understanding.

Two apparent constraints on contemporary LLMs are (1)
the next-token prediction decoding strategy and (2) the lack
of explicit high-level cognition, which would enable slow
thinking (Kahneman 2011). In (1), the decoding strategy
does not allow back-tracking from a token once it has been
produced, potentially limiting the LLM’s ability to solve
complex problems that are not trivial to answer by just pre-
dicting the next token. There have been attempts to remedy
this, including Tree-of-Thought (Long 2023), Self-Refine
(Madaan et al. 2023), and Voyager (Wang et al. 2023a),
which embed LLMs in a higher-level architecture that al-
lows for iteration over the LLM’s output. Related is (2),

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

high-level cognition, which would allow more complex op-
erations than just predicting the next token. Cognitive ar-
chitectures’ working memory systems exemplify this exten-
sion (Anderson et al. 2004; Laird, Lebiere, and Rosenbloom
2017; Laird 2019).

Fast and slow thinking are terms associated with the dual-
processing theory (Evans and Stanovich 2013; Wason and
Evans 1974), commonly described as System 1 and System
2, respectively (Kahneman 2011). These represent different
modes of thinking: System 1 is fast, biased, and intuitive;
System 2 is slow, effortful, and involves symbolic reasoning.
While concerns have been raised about its validity (Conway-
Smith and West 2023; Kruglanski 2013), this theory still
serves as a useful base in comparing modes of thinking.

Contemporary LLMs are more akin to a version of Sys-
tem 1, whose output could be compared to a thought that
pops into a human’s mind. While we can prompt LLMs,
e.g., with chain-of-thought prompting (Wei et al. 2023), they
still do not have the ability to slowly think about a solution
like human cognition—although, the importance of this can
be argued about; if correct choices are made early enough
and with sufficient accuracy, during feed-forward next-token
prediction, the performance could in principle be similar.
This consideration includes the ability to deliberate on dif-
ferent strategies for solving a problem, concentrate on solv-
ing a specific part of a problem, and backtrack from cur-
rently generated text. There have been many approaches that
attempt to add System 2 abilities to machine learning mod-
els (Chen et al. 2019; Fabiano et al. 2023; Lin et al. 2023;
Miech et al. 2021). While they implement limited aspects of
a higher-level cognition, they lack other critical components
that contribute to the multiple modes of thinking in human
cognition.

We propose an architecture intended to give abilities as-
sociated with human cognition to LLMs (i.e., System 2),
specifically by combining previously described AI cognitive
architectures (Anderson, Matessa, and Lebiere 1997; Laird,
Lebiere, and Rosenbloom 2017; Laird 2019) and LLMs.
We call this Language Model based Cognitive Architecture
(LMCA); subsequent sections provide a brief background
about LLMs and cognitive architectures, detail our LMCA,
and provide concluding remarks regarding its prospects.

AAAI Fall Symposium Series (FSS-23)

295



Background
A transformer is an architecture that eschews recurrence
by relying only on attention, allowing for increased paral-
lelization and the ability to model long-range dependencies
(Vaswani et al. 2017). Transformers consist of many stacked
layers, each consisting of a multi-head attention module
and a point-wise feed-forward module. Transformers are the
building block of current language models (Devlin et al.
2019; OpenAI 2023; Raffel et al. 2019). Language mod-
els with parameters in the billions are referred to as large
language models (LLMs). Prominent LLMs include GPT-4
(OpenAI 2023), PaLM 2 (Anil et al. 2023), and Llama (Tou-
vron et al. 2023a,b).

While their performance is impressive on many accounts
(Bubeck et al. 2023; Katz et al. 2023), recent research puts
into question their level of understanding compared against
humans’ (Jin et al. 2023; Miceli Barone et al. 2023; Tang
et al. 2023). Many approaches exist to improve LLMs’ ca-
pabilities: in-context learning (Chen et al. 2022; Dong et al.
2023; Lampinen et al. 2022; Wei et al. 2023; Wu et al. 2023;
Zhang, Feng, and Tan 2022), including chain-of-thought
prompting (Shi et al. 2022; Wei et al. 2023; Zhang et al.
2022), and instruction tuning (Jang et al. 2023; Longpre
et al. 2023; Ouyang et al. 2022; Peng et al. 2023; Wang et al.
2023c,b; Xu, Shen, and Huang 2023; Ye et al. 2023). While
these approaches each have benefits, they have not yet raised
the level of understanding to that of humans.

Cognitive architectures support research in modelling the
human mind in terms of the underlying mechanisms that
produce behaviour (Kotseruba and Tsotsos 2020; Laird,
Lebiere, and Rosenbloom 2017); they are software imple-
mentations of general theories of intelligence (Laird 2022).
Kotseruba and Tsotsos (2020) categorise cognitive architec-
tures based on their representation and type of information
processing: symbolic, emergent, and hybrid. Symbolic cog-
nitive architectures (Forbus and Hinrich 2017; Gore et al.
2011) are those that represent concepts with symbols that are
manipulated by pre-defined instructions. They perform well
at planning and formal reasoning but are not flexible and ro-
bust. Emergent cognitive architectures (O’Reilly, Hazy, and
Herd 2016; Rohrer 2011) are those associated with the con-
cept of a neuron (biologically plausible or not); information
is processed through the propagation of signals. They per-
form well at learning and adaptability, and allow for enor-
mously parallel processing, but are not transparent and per-
form more poorly at logical inference than their symbolic
counterparts. Hybrid cognitive architectures (Laird 2019;
Ritter, Tehranchi, and Oury 2019; Sun 2017) combine ele-
ments of both symbolic and emergent architectures; some
are more symbolic than emergent and vice versa.

The structure of a cognitive architecture generally con-
sists of short-term and long-term memory, a motor mod-
ule, and a perception module (Anderson et al. 2004; Laird
2019; Sun 2017). Short-term memory is usually called work-
ing memory, and long-term memory is split into declarative
and procedural memory. Some procedure retrieves struc-
tures from long-term memory and stores them in working
memory; alternatively, the perception module can add struc-
tures into working memory. Operations can be applied to

the structures in working memory to create new structures,
modify structures, and remove structures. When appropri-
ate, the motor module produces an action to be executed in
the environment, given the current state of working mem-
ory. The Common Model of Cognition (Laird, Lebiere, and
Rosenbloom 2017) mirrors this characterisation of cognitive
architectures.

Language Model Based Cognitive Architecture
We provide a general description of the proposed architec-
ture, LMCA, depicted in Figure 1, to be used in a textual
input-output setting. LMCA models the interplay between
short-term and long-term memory, with the objective of
completing the input task. The types of tasks we consider are
those limited to the generation of a singular response, i.e.,
they are answerable. Long-term memory consists of mul-
tiple modules: the Memory Module, Thought Module, and
Action Module. Short-term “working” memory, stores struc-
tures created by long-term memory modules. A Retrieval
Module attends to structures in working memory, which are
input to the modules in long-term memory.

Working Memory and Retrieval
Working memory stores relevant structures for solving the
current task. A state in working memory is a snapshot of the
contents of working memory at a given time. We propose
five buffers in working memory: the Memory Buffer, Task
Buffer, Thought Buffer, Struct Buffer, and Action Buffer.
A structure in working memory is defined quite generally
and differs depending on the working memory buffer; each
buffer has its own structure variant, some being more flex-
ible than others. The minimum requirements of a struc-
ture are that it has a natural language representation that
can be input to other modules (i.e., the Retrieval Module,
Memory Module, Thought Module, and Action Module), a
unique identifier, and an integer attention value represent-
ing whether the current structure is attended to. The imple-
mentation of attention in the architecture could correspond
to soft attention (a structure can be partially attended to) or
hard attention (can either be fully attended to or not at all).
There could be an absolute hard cut-off value independent
of other structures in working memory and a relative cut-
off value dependent on other structures in working mem-
ory based on the context length of the modules in long-term
memory.

The Memory Buffer, Thought Buffer, and Action Buffer
store a history of outputs from the Memory Module,
Thought Module, and Action Module from long-term mem-
ory, respectively. The structures in these buffers will have a
time value (when each structure was created), an attention
value, a unique identifier, and a natural language description
(the output of their corresponding modules). Structures in
the Task Buffer are similar, only that there is an additional
boolean value indicating if the structure corresponds to the
input task and a slot for an answer to the task to be inserted.
A sub-task (a task that is not the input task) could be solved
in a sub-working memory where the input task is the sub-
task.

296



Thought Module

Working Memory

Memory Module Action Module

Retrieval Module
(Attend to structures in 

working memory)
Memory 
Buffer

Task
Buffer

Thought 
Buffer

Action 
Buffer

Struct 
Buffer

Action Queue

Answer to Input Task

Long-Term Memory

Generated Thought
(“conscious” awareness)

Answerable 
Input task

Figure 1: The proposed LMCA in a text-only input-output setting. The architecture consists of three long-term memory modules
realised as language models and a retrieval module that attends to structures in working memory; working memory stores
structures that are iteratively added to by long-term memory over multiple time steps until an action is produced, prompting the
architecture to answer the input task. Each long-term memory module receives as input a textual representation of the attended-
to structures in working memory. The Action Module produces actions which are appended to the Action Queue; actions fulfil
the purpose of creating and modifying existing structures in working memory, which are stored in five buffers.

The Struct Buffer, named after structs in C, consists of
more complex structures. A fluctuating number of variables
can be defined in any structure and these variables can have
one of several different data types. An operator is some-
thing that modifies structures in working memory. Allowed
operators, such as modifying a variable (i.e., incrementing
an integer) or performing operations involving two or more
structures, can be defined for structures in the Struct Buffer.
Structures are created by the Action Module.

The Retrieval Module has the sole purpose of attending
to salient structures in working memory based on their rele-
vance to the current action and is biased by recent thoughts
and memories. If the action is to generate memories from the
Memory Module, then salient structures in working mem-
ory should be attended to. The Retrieval Module could be
realised as a language model that has a large enough context
length to process all of the working memory at once, pro-
ducing an attention value for each structure, or instead out-
putting in order the most salient structures autoregressively
by referencing their identifiers.

Memory Module
The Memory Module has the sole purpose of generating rel-
evant memories given the attended-to structures of working

memory and is a form of declarative memory. It can be re-
alised as a language model, a database of some sort, or a
combination of the two. A memory has varying levels of ab-
straction. At the lowest level of abstraction, we can gener-
ate past states of working memory directly. At higher levels
of abstraction, we can generate subsets of previous working
memory states, based on what was attended to in that work-
ing memory state. At the highest level of abstraction, this
could be a natural language description of a previous work-
ing memory state, summarising the most important elements
and their impacts on producing a solution.

Thought Module

The Thought Module’s role is to produce thoughts related
to metacognition, given the attended-to element of working
memory, and is language model based. The thoughts could
be related to monitoring and regulation of cognition, a plan
on how to solve the current task, the next step in solving the
task, generating an answer to the current task, and generating
a new intermediary task that will help solve another task.
The thoughts are stored in the Thought Buffer in working
memory, where they can influence the next action, memory
generated, and what is attended to in working memory.

297



Action Module
The Action Module’s purpose is to produce actions that can
add structures, modify structures, and remove structures in
working memory, and can determine when an output should
be generated for the currently attended-to task, given the re-
trieved structures from working memory. This module is a
form of procedural memory. The Action Module will be a
language model where the decoding process is constrained
to produce valid actions. Multiple actions can be proposed
with one call to the Action Module, where they will be added
to the Action Buffer in working memory and appended to the
Action Queue. The queue will be first-in, first-out; the ac-
tions will be executed sequentially until the queue is empty.
When the Action Queue is empty, the Action Module will
be tasked with producing more actions.

Possible actions include generating a thought based on
working memory, generating memories based on working
memory, generating structures in the Struct Buffer, gener-
ating a new task through generating a thought, modifying
structures in the Struct Buffer in working memory via ap-
plying operators to structures, and generating an answer to
a task. The action-generating process concludes when the
input task is answered.

Realising Fast and Slow Thinking
In LMCA, fast thinking occurs when an action is generated
initially to complete a task. For example, when the task is
to answer “What is 2+2?”, the Action Module should gener-
ate an action tasking the Thought Module to answer with-
out other actions being applied to working memory. The
first thought that the architecture produces is the answer to
the task’s question, i.e., 4; a fast, intuitive, and automatic
thought similar to a thought a human would produce given
the same task. Slow thinking occurs when a way to com-
plete the task cannot be found easily by the architecture.
Thoughts associated with planning, reasoning, and deliber-
ation are generated. To count as slow thinking, the thought
process should be categorized by substantial effort and in-
volve many steps.

Training
The main challenge in realising LMCA is in training it. The
Memory Module, Thought Module, Action Module and Re-
trieval Module are the four components with parameters that
need to be trained.1 Initially, each module should be pre-
trained, i.e., each module should have some innate knowl-
edge. The challenge will be acquiring data involving the
structures of working memory when solving a task and the
associated optimal outputs of each module. This includes
the optimal structures to retrieve from a working memory
state and the optimal memories, thoughts, and actions given
a working memory state.

Instruction tuning (Wang et al. 2023b) is one approach
that can be used for training. A high-quality set of examples
to train each module should be created. This entails con-
structing examples of the desired behaviour when solving a

1If the Memory Module is realised as a database with no lan-
guage model component then there are no parameters to train.

problem, i.e., ideal working memory states and the desired
outputs of each module. Generating data, both manually and
automatically, is a challenge that needs to be overcome. An-
other option is to pre-train the modules on other represen-
tative tasks, ideally in a self-supervised manner. The mod-
ules can be trained further on the previously mentioned in-
struction tuning examples or in a multi-agent reinforcement
learning scenario (Nguyen, Nguyen, and Nahavandi 2020;
Oroojlooy and Hajinezhad 2023; Zhang, Yang, and Başar
2021).

A key aspect of this architecture is its capacity for con-
tinual learning, which depends on updating both long-term
memory—including the storage of experiences—and the
Retrieval Module as the model acquires experience. One key
area to consider supporting continual learning is utilising
thought module states (its “thoughts”) to identify and reason
about errors made. Mechanisms are needed to store memo-
ries and update the parameters of the architecture given these
thoughts, which includes the need to generate errors inter-
nally. Also salient is how to identify and penalise incorrect
thoughts, based on reflection and stored memories of previ-
ous thoughts.

Conclusion
We have proposed an architecture, LMCA, that aims to mit-
igate the limitations of contemporary LLMs by combining
their capabilities with structures drawn from previous work
on cognitive architectures in AI. In the context of fast and
slow thinking, we aim to give LLMs slow thinking capa-
bilities similar to human cognition, but in a fully trainable
setting. In LMCA, LLMs are prominent, being utilised in
all four cognitive modules. Avenues to support training the
architecture are mentioned, along with considerations of im-
portance and difficulty of generating data and the possibil-
ity of generating errors internally dictated by a generated
thought. The next, and vital, step will be realising this archi-
tecture in a software implementation.

References
Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S.;
Lebiere, C.; and Qin, Y. 2004. An Integrated Theory of the
Mind. Psychological Review, 111(4): 1036–1060.
Anderson, J. R.; Matessa, M.; and Lebiere, C. 1997. ACT-R:
A Theory of Higher Level Cognition and Its Relation to Vi-
sual Attention. Human–Computer Interaction, 12(4): 439–
462.
Anil, R.; Dai, A. M.; Firat, O.; Johnson, M.; Lepikhin, D.;
Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; Chu,
E.; Clark, J. H.; El Shafey, L.; Huang, Y.; Meier-Hellstern,
K.; Mishra, G.; Moreira, E.; Omernick, M.; Robinson, K.;
Ruder, S.; Tay, Y.; Xiao, K.; Xu, Y.; Zhang, Y.; Abrego,
G. H.; Ahn, J.; Austin, J.; Barham, P.; Botha, J.; Bradbury, J.;
Brahma, S.; Brooks, K.; Catasta, M.; Cheng, Y.; Cherry, C.;
Choquette-Choo, C. A.; Chowdhery, A.; Crepy, C.; Dave, S.;
Dehghani, M.; Dev, S.; Devlin, J.; Dı́az, M.; Du, N.; Dyer,
E.; Feinberg, V.; Feng, F.; Fienber, V.; Freitag, M.; Gar-
cia, X.; Gehrmann, S.; Gonzalez, L.; Gur-Ari, G.; Hand, S.;
Hashemi, H.; Hou, L.; Howland, J.; Hu, A.; Hui, J.; Hurwitz,

298



J.; Isard, M.; Ittycheriah, A.; Jagielski, M.; Jia, W.; Kenealy,
K.; Krikun, M.; Kudugunta, S.; Lan, C.; Lee, K.; Lee, B.;
Li, E.; Music Li; Li, W.; Li, Y.; Li, J.; Lim, H.; Lin, H.; Liu,
Z.; Liu, F.; Maggioni, M.; Mahendru, A.; Maynez, J.; Misra,
V.; Moussalem, M.; Nado, Z.; Nham, J.; Ni, E.; Nystrom,
A.; Parrish, A.; Pellat, M.; Polacek, M.; Polozov, A.; Pope,
R.; Qiao, S.; Reif, E.; Richter, B.; Riley, P.; Castro Ros,
A.; Roy, A.; Saeta, B.; Samuel, R.; Shelby, R.; Slone, A.;
Smilkov, D.; So, D. R.; Sohn, D.; Tokumine, S.; Valter, D.;
Vasudevan, V.; Vodrahalli, K.; Wang, X.; Wang, P.; Wang,
Z.; Wang, T.; Wieting, J.; Wu, Y.; Xu, K.; Xu, Y.; Xue, L.;
Yin, P.; Yu, J.; Zhang, Q.; Zheng, S.; Zheng, C.; Zhou, W.;
Zhou, D.; Petrov, S.; and Wu, Y. 2023. PaLM 2 Technical
Report. arXiv:2305.10403.
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; Nori, H.; Palangi, H.; Ribeiro, M. T.; and Zhang, Y. 2023.
Sparks of Artificial General Intelligence: Early Experiments
with GPT-4. arXiv:2303.12712.
Chen, D.; Bai, Y.; Zhao, W.; Ament, S.; Gregoire, J. M.; and
others. 2019. Deep Reasoning Networks: Thinking Fast and
Slow. arXiv:1906.00855.
Chen, M.; Du, J.; Pasunuru, R.; Mihaylov, T.; Iyer, S.; Stoy-
anov, V.; and Kozareva, Z. 2022. Improving In-Context Few-
Shot Learning via Self-Supervised Training. In Proceedings
of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, 3558–3573. Seattle, United States: As-
sociation for Computational Linguistics.
Conway-Smith, B.; and West, R. L. 2023. Clarifying Sys-
tem 1 & 2 Through the Common Model of Cognition.
arXiv:2305.10654.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171–4186. Min-
neapolis, Minnesota: Association for Computational Lin-
guistics.
Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.; Sun,
X.; Xu, J.; Li, L.; and Sui, Z. 2023. A Survey on In-Context
Learning. arXiv:2301.00234.
Dziri, N.; Lu, X.; Sclar, M.; Li, X. L.; Jian, L.; Lin, B. Y.;
and others. 2023. Faith and Fate: Limits of Transformers on
Compositionality. arXiv:2305.18654.
Evans, J. S. B. T.; and Stanovich, K. E. 2013. Dual-Process
Theories of Higher Cognition: Advancing the Debate. Per-
spectives on Psychological Science: a Journal of the Asso-
ciation for Psychological Science, 8(3): 223–241.
Fabiano, F.; Pallagani, V.; Ganapini, M. B.; Horesh, L.;
Loreggia, A.; Murugesan, K.; Rossi, F.; and Srivastava, B.
2023. Fast and Slow Planning. arXiv:2303.04283.
Forbus, K. D.; and Hinrich, T. 2017. Analogy and Relational
Representations in the Companion Cognitive Architecture.
AI Magazine, 38(4): 34–42.

Gore, B. F.; Hooey, B. L.; Wickens, C. D.; Socash, C.;
Gosakan, M.; Gacy, M.; Brehon, M.; and Foyle, D. C. 2011.
Workload as a Performance Shaping Factor in MIDAS v5.
In 20th Behavior Representation in Modeling and Simula-
tion (BRIMS) Conference.

Jang, J.; Kim, S.; Ye, S.; Kim, D.; Logeswaran, L.; Lee,
M.; Lee, K.; and Seo, M. 2023. Exploring the Benefits of
Training Expert Language Models over Instruction Tuning.
arXiv:2302.03202.

Jin, Z.; Liu, J.; Lyu, Z.; Poff, S.; Sachan, M.; Mi-
halcea, R.; Diab, M.; and Schölkopf, B. 2023. Can
Large Language Models Infer Causation from Correlation?
arXiv:2306.05836.

Kahneman, D. 2011. Thinking, Fast and Slow. Farrar,
Straus and Giroux.

Katz, D. M.; Bommarito, M. J.; Gao, S.; and Arredondo, P.
2023. GPT-4 Passes the Bar Exam.

Kotseruba, I.; and Tsotsos, J. K. 2020. 40 Years of Cog-
nitive Architectures: Core Cognitive Abilities and Practical
Applications. Artificial Intelligence Review, 53(1): 17–94.

Kruglanski, A. W. 2013. Only One? The Default Interven-
tionist Perspective as a Unimodel—Commentary on Evans
& Stanovich (2013). Perspectives on Psychological Science,
8(3): 242–247. PMID: 26172966.

Laird, J. E. 2019. The Soar Cognitive Architecture. MIT
Press. ISBN 9780262538534.

Laird, J. E. 2022. Introduction to Soar. arXiv:2205.03854.

Laird, J. E.; Lebiere, C.; and Rosenbloom, P. S. 2017. A
Standard Model of the Mind: Toward a Common Compu-
tational Framework across Artificial Intelligence, Cognitive
Science, Neuroscience, and Robotics. AI Magazine, 38(4):
13–26.

Lampinen, A.; Dasgupta, I.; Chan, S.; Mathewson, K.;
Tessler, M.; Creswell, A.; McClelland, J.; Wang, J.; and
Hill, F. 2022. Can Language Models Learn from Explana-
tions in Context? In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, 537–563. Abu Dhabi,
United Arab Emirates: Association for Computational Lin-
guistics.

Lin, B. Y.; Fu, Y.; Yang, K.; Ammanabrolu, P.; Brahman,
F.; Huang, S.; Bhagavatula, C.; Choi, Y.; and Ren, X. 2023.
SwiftSage: A Generative Agent with Fast and Slow Think-
ing for Complex Interactive Tasks. arXiv:2305.17390.

Long, J. 2023. Large Language Model Guided Tree-of-
Thought. arXiv:2305.08291.

Longpre, S.; Hou, L.; Vu, T.; Webson, A.; Chung, H. W.;
Tay, Y.; Zhou, D.; Le, Q. V.; Zoph, B.; Wei, J.; and Roberts,
A. 2023. The Flan Collection: Designing Data and Methods
for Effective Instruction Tuning. arXiv:2301.13688.

Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; Welleck, S.; Majumder, B. P.; Gupta, S.; Yazdanbakhsh,
A.; and Clark, P. 2023. Self-Refine: Iterative Refinement
with Self-Feedback. arXiv:2303.17651.

299



Miceli Barone, A. V.; Barez, F.; Cohen, S. B.; and Konstas,
I. 2023. The Larger they are, the Harder they Fail: Lan-
guage Models do not Recognize Identifier Swaps in Python.
In Findings of the Association for Computational Linguis-
tics: ACL 2023, 272–292. Toronto, Canada: Association for
Computational Linguistics.
Miech, A.; Alayrac, J.-B.; Laptev, I.; Sivic, J.; and Zisser-
man, A. 2021. Thinking Fast and Slow: Efficient Text-to-
Visual Retrieval with Transformers. arXiv:2103.16553.
Nguyen, T. T.; Nguyen, N. D.; and Nahavandi, S. 2020.
Deep Reinforcement Learning for Multiagent Systems: A
Review of Challenges, Solutions, and Applications. IEEE
Transactions on Cybernetics, 50(9): 3826–3839.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
O’Reilly, R. C.; Hazy, T. E.; and Herd, S. A. 2016. The
Leabra Cognitive Architecture: How to Play 20 Principles
with Nature. The Oxford Handbook of Cognitive Science,
91: 91–116.
Oroojlooy, A.; and Hajinezhad, D. 2023. A Review of Coop-
erative Multi-Agent Deep Reinforcement Learning. Applied
Intelligence, 53(11): 13677–13722.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright,
C. L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray,
A.; Schulman, J.; Hilton, J.; Kelton, F.; Miller, L.; Simens,
M.; Askell, A.; Welinder, P.; Christiano, P.; Leike, J.; and
Lowe, R. 2022. Training Language Models to Follow In-
structions with Human Feedback. arXiv:2203.02155.
Peng, B.; Li, C.; He, P.; Galley, M.; and Gao, J. 2023. In-
struction Tuning with GPT-4. arXiv:2304.03277.
Raffel, C.; Shazeer, N. M.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2019. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. ArXiv, abs/1910.10683.
Ritter, F. E.; Tehranchi, F.; and Oury, J. D. 2019. ACT-R:
A Cognitive Architecture for Modeling Cognition. Wiley
Interdisciplinary Reviews. Cognitive Science, 10(3): e1488.
Rohrer, B. 2011. BECCA: Reintegrating AI for Natural
World Interaction. AAAI Spring Symposium: Designing In-
telligent Robots.
Shi, F.; Suzgun, M.; Freitag, M.; Wang, X.; Srivats, S.;
Vosoughi, S.; Chung, H. W.; Tay, Y.; Ruder, S.; Zhou, D.;
Das, D.; and Wei, J. 2022. Language Models are Multilin-
gual Chain-of-Thought Reasoners. arXiv:2210.03057.
Sun, R. 2017. The CLARION Cognitive Architecture: To-
ward a Comprehensive Theory of the Mind. In Chipman, S.
E. F., ed., The Oxford Handbook of Cognitive Science, vol-
ume 375, 117–133. New York, NY, US: Oxford University
Press, xi.
Tang, X.; Zheng, Z.; Li, J.; Meng, F.; Zhu, S.-C.; Liang,
Y.; and Zhang, M. 2023. Large Language Models are In-
Context Semantic Reasoners Rather than Symbolic Reason-
ers. arXiv:2305.14825.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; Rodriguez, A.; Joulin, A.; Grave, E.; and Lam-
ple, G. 2023a. LLaMA: Open and Efficient Foundation Lan-
guage Models. arXiv:2302.13971.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; Bikel, D.; Blecher, L.; Ferrer, C. C.; Chen, M.; Cucu-
rull, G.; Esiobu, D.; Fernandes, J.; Fu, J.; Fu, W.; Fuller, B.;
Gao, C.; Goswami, V.; Goyal, N.; Hartshorn, A.; Hosseini,
S.; Hou, R.; Inan, H.; Kardas, M.; Kerkez, V.; Khabsa, M.;
Kloumann, I.; Korenev, A.; Koura, P. S.; Lachaux, M.-A.;
Lavril, T.; Lee, J.; Liskovich, D.; Lu, Y.; Mao, Y.; Martinet,
X.; Mihaylov, T.; Mishra, P.; Molybog, I.; Nie, Y.; Poul-
ton, A.; Reizenstein, J.; Rungta, R.; Saladi, K.; Schelten, A.;
Silva, R.; Smith, E. M.; Subramanian, R.; Tan, X. E.; Tang,
B.; Taylor, R.; Williams, A.; Kuan, J. X.; Xu, P.; Yan, Z.;
Zarov, I.; Zhang, Y.; Fan, A.; Kambadur, M.; Narang, S.; Ro-
driguez, A.; Stojnic, R.; Edunov, S.; and Scialom, T. 2023b.
Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv:2307.09288.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. arXiv [cs.CL].
Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.; Zhu,
Y.; Fan, L.; and Anandkumar, A. 2023a. Voyager: An
Open-Ended Embodied Agent with Large Language Mod-
els. arXiv:2305.16291.
Wang, Y.; Ivison, H.; Dasigi, P.; Hessel, J.; Khot, T.; Chandu,
K. R.; Wadden, D.; MacMillan, K.; Smith, N. A.; Beltagy,
I.; and Hajishirzi, H. 2023b. How Far Can Camels Go? Ex-
ploring the State of Instruction Tuning on Open Resources.
arXiv:2306.04751.
Wang, Y.; Kordi, Y.; Mishra, S.; Liu, A.; Smith, N. A.;
Khashabi, D.; and Hajishirzi, H. 2023c. Self-Instruct: Align-
ing Language Models with Self-Generated Instructions. In
Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
13484–13508. Toronto, Canada: Association for Computa-
tional Linguistics.
Wason, P. C.; and Evans, J. S. T. B. T. 1974. Dual Processes
in Reasoning? Cognition, 3(2): 141–154.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903.
Wu, Z.; Wang, Y.; Ye, J.; and Kong, L. 2023. Self-Adaptive
In-Context Learning: An Information Compression Perspec-
tive for In-Context Example Selection and Ordering. In Pro-
ceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1423–
1436. Toronto, Canada: Association for Computational Lin-
guistics.
Xu, Z.; Shen, Y.; and Huang, L. 2023. MultiInstruct: Im-
proving Multi-Modal Zero-Shot Learning via Instruction
Tuning. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), 11445–11465. Toronto, Canada: Association for
Computational Linguistics.
Ye, S.; Hwang, H.; Yang, S.; Yun, H.; Kim, Y.; and Seo, M.
2023. In-Context Instruction Learning. arXiv:2302.14691.

300



Zhang, K.; Yang, Z.; and Başar, T. 2021. Multi-Agent Re-
inforcement Learning: A Selective Overview of Theories
and Algorithms. In Vamvoudakis, K. G.; Wan, Y.; Lewis,
F. L.; and Cansever, D., eds., Handbook of Reinforcement
Learning and Control, 321–384. Cham: Springer Interna-
tional Publishing. ISBN 9783030609900.
Zhang, Y.; Feng, S.; and Tan, C. 2022. Active Example Se-
lection for In-Context Learning. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language
Processing, 9134–9148. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics.
Zhang, Z.; Zhang, A.; Li, M.; and Smola, A. 2022. Auto-
matic Chain of Thought Prompting in Large Language Mod-
els. arXiv:2210.03493.

301


