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Abstract

Large language models (LLMs) provide capabilities far be-
yond sentence completion, including question answering,
summarization, and natural-language inference. While many
of these capabilities have potential application to cognitive
systems, our research is exploiting language models as a
source of task knowledge for cognitive agents, that is, agents
realized via a cognitive architecture. We identify challenges
and opportunities for using language models as an external
knowledge source for cognitive systems and possible ways
to improve the effectiveness of knowledge extraction by in-
tegrating extraction with cognitive architecture capabilities,
highlighting with examples from our recent work in this area.

Introduction
Cognitive architectures1 (Anderson et al. 2004; Laird 2012;
Kotseruba and Tsotsos 2020; Newell 1990) are foundational
tools for research toward the realization of cognitive capabil-
ities. Architectures also facilitate development of cognitive
systems (“agents”) that manifest various integrated cogni-
tive capabilities, including planning, learning, plan execu-
tion, and many others. An agent uses these capabilities in
concert to act, to perform sophisticated tasks, and to achieve
short- and long-term goals.

A key limitation of scaling agents to ever larger and more
complex tasks and applications is their ability to acquire and
integrate new task knowledge. As a consequence, a signif-
icant thrust of applied cognitive architecture research over
the years has been exploring various knowledge engineering
(Yost 1993; Crossman et al. 2004; Ritter et al. 2006), expe-
riential learning (Nejati, Langley, and Konik 2006; Choi and
Langley 2018; Pearson and Laird 1998), and instructional
(Huffman and Laird 1995; Gluck, Laird, and Lupp 2019)
approaches intended to mitigate the costs of acquiring new,
effective, and robust task knowledge. While improvements
have been achieved, none of these approaches has resulted in
routine, low-cost, large-scale knowledge resources for cog-
nitive agents.

In contrast, Large Language Models (LLMs) (OpenAI
2023; Driess et al. 2023) provide a huge breadth of poten-
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1Portions of this paper draw from and update Wray, Kirk, and
Laird (2021).

tial knowledge. However, exploiting this knowledge is chal-
lenging because the production of knowledge is unreliable
and untrustworthy (Lenat and Marcus 2023). As a knowl-
edge source, LLM responses can be corrupted by hallucina-
tion, irrelevancy, incorrectness and can be unethical and/or
unsafe. Further, for most applications of LLMs, the models
themselves are fixed: they do not learn or adapt to the spe-
cific situations in which they are used.

We are exploring the hypothesis that an integration of
LLMs and cognitive architectures can offset the limitations
of each in the context of reliable knowledge scaling. LLMs
can be used as a rich, (largely) low-cost source of knowledge
for agents to extend their task knowledge. In concert, agent
cognitive capabilities, realized within a cognitive architec-
ture, can be applied to the LLM to improve the “precision”
and correctness of the task knowledge that an LLM is asked
to produce. This approach emphasizes what cognitive archi-
tectures do best (support end-to-end integration of interac-
tion, reasoning, language processing, learning, etc., using
structured, curated knowledge) and what language models
do best (provide associational retrieval from massive stores
of latent unstructured, possibly unreliable knowledge). We
expect that by using LLMs to acquire new task knowledge,
agents can reduce their reliance on more costly sources of
task knowledge (e.g., extensive training, human instruction,
explicit knowledge engineering) and, consequently, scale
more readily to larger task domains and applications.

In this paper, we discuss the dimensions of this problem,
requirements for a solution, and some examples of some in-
teractions between LLMs and cognitive architectures that
appear important for task acquisition.

Potential Patterns of Integration
We introduce three different ways cognitive-architecture-
LLM integration could be realized for acquiring task knowl-
edge, and we outline potential benefits and costs of each.2
The alternatives are illustrated in Figure 1. In the diagrams,
an agent is viewed as a combination of its (cognitive) archi-
tecture and content (task knowledge), the standard formula-
tion of an agent (Russell and Norvig 1995). While this struc-

2This list is not comprehensive and other options for consider-
ing LLMs as source of knowledge for cognitive agents are feasible;
e.g., see Lenat and Marcus (2023) for an alternative list.
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ture (over-)simplifies the details of most cognitive agents,
it is a reasonable approximation for considering systems-
integration alternatives.

In the figure, we assume LLMs (and in 1a, external knowl-
edge repositories) as sources of general or unspecialized
knowledge. In some cases, for a particular task, domain-
or task-specific knowledge bases may be available or an
LLM that has been fine-tuned for a specific problem domain.
When these are available, an agent should generally attempt
to use them. However, we are more focused on the case of a
general intelligent agent where the agent (or developer) can-
not assume that a special-purpose knowledge source is read-
ily available. In this case, the agent generally will need to
attempt to extract knowledge from more general resources,
like an LLM or a world-knowledge repository such as Con-
ceptNet (Speer, Chin, and Havasi 2017).

The three integration patterns we consider are:

• (a) Indirect extraction: In this option, general extrac-
tion processes designed for LLMs are used and responses
from an LLM are placed in a knowledge store. The agent
then accesses the knowledge store to obtain task knowl-
edge. For example, general knowledge extraction from
LLMs is being developed to populate knowledge graphs
(Bosselut et al. 2019) which is a specific example of the
use of LLMs as a knowledge base (Petroni et al. 2019).
As a consequence, this alternative leverages that ongo-
ing research. Further, any existing cognitive agent capa-
bilities that draw and exploit external knowledge stores
could also be re-purposed for exploring this alternative
(Wray, Kirk, and Laird 2021).

• (b) Direct extraction: In this option, the agent directly
formulates and sends queries to the LLM and then in-
terprets the responses it receives. The responses are in-
terpreted and internalized within with agent’s process-
ing, resulting in situation-specific learning of new task
knowledge (represented by the arrow from the cognitive
architecture to task knowledge components). This option
requires that the agent encode capabilities that perform
the same kinds of processes needed for indirect extrac-
tion (i.e., the blue “extraction” process in 1a, but within
its own agent knowledge).

• (c) Direct Knowledge Encoding: This option provides
“direct wiring” for the agent, encoding task knowl-
edge directly into the agent’s internal knowledge repre-
sentations and memories. For instance, using program-
code generation capabilities of LLMs (Chen et al. 2021;
Austin et al. 2021), researchers have shown that LLMs
can be used to create programs for robotic control of em-
bodied agents (Singh et al. 2023; Brohan et al. 2023).
Because cognitive architectures generally provide pro-
grammable interfaces, code generation might be apt for
cognitive-architecture agents. This option could thus em-
ploy an external extraction process that programmed
agent knowledge directly. However, while these extrac-
tion processes might be able to build on existing extrac-
tion methods, the extraction processes would need to be
specialized for cognitive architectures (and likely for in-
dividual architectures).

Figure 1: Possible approaches to CA-LLM integration in
support of task-knowledge acquisition.

Our work to-date focuses on direct extraction. We chose
direct extraction over indirect extraction for two reasons.
First, in indirect extraction (1a), task-knowledge extraction
is not tied to the agent’s specific, current knowledge needs.
We hypothesize that direct extraction enables the agent to
use its specific situation and context (including its embod-
iment) to query the LLM resulting in improved precision
(relevance to the specific situation). Second, because extrac-
tion processes not tied to the agent cannot fully anticipate
agent needs, the knowledge base in 1a cannot be assumed to
be an exhaustive resource for all the knowledge that could
be extracted from the LLM. Thus, even an agent that used
1a might need to sometimes resort to processes akin to 1b
when the knowledge base was found lacking.

The primary potential downside of the direct extraction
approach is that the agent must have the ability to man-
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age the potential challenges of extraction from the LLM it-
self (e.g., determining whether some response is plausible)
rather than depending on specialized extraction processes
(as in 1a). In other words, the agent must have more so-
phisticated capabilities to directly query and interpret LLM
responses.

Direct encoding is another option that we recommend be
explored in the community, although we do not discuss it
further here. Because task specification languages and tools
have already been developed (for both general AI systems
and cognitive agents), it may be feasible to leverage the code
generation capabilities of LLMs to generate executable task
knowledge. Fine-tuning a code generation model with exam-
ples that illustrate how task capabilities are realized within
the distinct representational and memory systems of cogni-
tive architectures is likely to result in better results than in-
context learning because the execution models of cognitive
architectures often differ substantially from traditional pro-
gramming languages.

Direct Extraction:
Challenges and Opportunities

Knowledge extraction is the process by which an agent gains
knowledge of its task and/or environment from an external
knowledge source. Successful extraction results in the agent
having (new) knowledge it can bring to bear on its tasks.
From a cognitive-systems perspective, what is important is
that the knowledge produced by an extraction process is “ac-
tionable” by the agent. Thus, the goal of extraction is not
simply to add knowledge but to add knowledge that allows
the agent to improve its ability to function as an autonomous
entity in a multitask environment.

Direct extraction requires that an agent directly interact
with an LLM (send queries, receive responses) rather than
through an intermediary. In this section, we characterize
some of the features of LLMs relevant to direct extraction
and, in some cases, contrast those extraction processes with
extraction from more curated knowledge sources (e.g., Cyc,
WordNet, ConceptNet). Relevant features include:

• Breadth and Depth of Knowledge: A major strength of
LLMs, such as GPT3, GPT4 or PALM-E, compared to
curated knowledge bases (KBs) is their extensive breadth
of encoded knowledge.

• Provenance and Accuracy of Knowledge: The quality of
behavior for a cognitive agent is invariably tied to the
quality of knowledge it reasons with. With traditional
KBs, task knowledge is typically either curated or at least
derived from the agent’s own experience with the world.
In contrast, LLMs are (largely) derived from uncurated
web resources, and the knowledge’s provenance is un-
known and very likely includes errors and conflicts.

• Relevance of Knowledge: Even when the LLM contains
the knowledge relevant to the agent’s needs, extracting
it can be highly sensitive to the specific query sent to
the LLM (Pezeshkpour and Hruschka 2023). In addition
to the basic question, a query to an LLM will often in-
clude additional context (Reynolds and McDonell 2021),

related examples (Brown et al. 2020), and additional in-
structions, such as “show your reasoning steps” (Wang
et al. 2023). The resulting responses are highly dependent
on all these factors. This sensitivity to the query context
makes it difficult to ensure that whatever information is
retrieved from the LLM is actually relevant to the context
of the agent.

• Situatedness of Knowledge: Curated knowledge bases
(such as Cyc) and LLMs encode “ungrounded” knowl-
edge about the world. As general-purposes resources,
they do not encode knowledge about an agent’s current
situation, its embodiment (what it can sense and how
it can act), and its goals and plans, which may be en-
coded in an agent’s long-term semantic or episodic mem-
ory. Thus, an open question is the extent to which the
agent can embed relevant information from its under-
standing of its situation to obtain knowledge that can be
connected or “grounded” to its performance context. As
mentioned above, the potential disconnect between the
general knowledge of an LLM and the specific knowl-
edge needs of an agent motivates the exploration of direct
extraction methods in particular.

• Accessibility of Knowledge: In a typical AI knowledge
base, the APIs for query/response and knowledge repre-
sentation are well-defined, making it straightforward for
an agent to attempt to retrieve information and to parse
any responses. For an LLM, the specific form of a request
and response are (generally) less structured, e.g., natural-
language sentences. While tools such as LangChain’s
output parser3 are designed to bridge accessibility issues,
it remains a challenge for an agent to interpret responses
from the LLM; in the extreme, an agent must parse natu-
ral language to extract what information is provided in a
response.

• Structural Integration: Traditional knowledge bases im-
pose low to moderate computational costs and latency
and have reliable access. In contrast, many LLMs, es-
pecially the largest, are web resources with restricted ac-
cess, high relative latency, and access depends on internet
connectivity. Many LLMs charge by the token sent and
received, imposing direct economic constraints on effi-
cient and robust interaction. A cognitive agent will thus
need to be strategic in using an LLM in applications that
involve real-time environmental and human interaction.

Requirements and Measures
For our research, we have pursued a strategy that prioritizes
the issues of Accuracy, Relevance, Situatedness, and Acces-
sibility from the previous section. For direct extraction to
be practical, an embodied agent needs methods that allow
it to elicit responses from the LLM in a manner that pro-
duces highly relevant ones (when an LLM has the capacity
to potentially produce almost anything), that are appropriate
given the situation, and that the agent can access or inter-
pret (which is required for any internalization and use in ac-
tual task execution). Here, we further define and refine four

3https://github.com/langchain-ai/langchain
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requirements (Kirk, Wray, and Lindes 2023) that an agent
must meet to successfully extract actionable task knowledge
from an LLM. Specifically, responses from the LLM must
be:

1. Interpretable: To use responses, the agent must be able
to parse and understand them. Responses that are rep-
resented as code can often be directly executed by an
agent; e.g., JSON, first-order logic (Olmo, Sreedharan,
and Kambhampati 2021), action commands as in RT2
(Brohan et al. 2023) or even Python programs (Singh
et al. 2023). More typically, natural language (NL) re-
sponses from an LLM require NLP capabilities that the
agent can use to interpret those responses. Because re-
sponses from the LLM must be interpretable given the
agent’s existing capabilities (as above), the agent’s query
construction process must attempt to guide LLM re-
sponses so that the resulting responses conform to what-
ever those native agent language capabilities are.

2. Groundable to Situation: As above, an agent must de-
termine if/how it can situate an LLM response to its cur-
rent environment. Objects, properties, relations, actions,
etc. referenced in the response must be connected to the
agent’s situation. In the simplest case, groundedness re-
quires the agent to map from perceptions to responses.

3. Compatible with Affordances and Embodiment: The
LLM response must also be compatible with the agent’s
embodiment and the affordances known to the agent. For
example, an agent might be embodied in a robot with a
single arm or as a phone app acting as a personal assis-
tant. When the affordances or embodiment of the agent
are not comparable to those of humans, eliciting com-
patible responses may be particularly challenging for an
LLM trained on a corpus (typically and primarily) de-
scribing human activities that presume human embodi-
ment and affordances.

4. Match Human Expectations: Users will have differ-
ing preferences about how tasks or actions should be
performed and what behavior is appropriate for differ-
ent situations (Kirk et al. 2022). This criterion is impor-
tant because it is impossible for the LLM (alone) to pro-
vide responses that ensure a match to human preferences.
For example, imagine a household robotic agent tasked
with putting away groceries. Should a can of beans be
stored in a cupboard or a pantry? Either answer is plau-
sible (Lenat and Marcus 2023). However, in some spe-
cific home, there is likely a clear preference for one loca-
tion for the beans to be stored. The resulting requirement,
from the point of view of extraction, is that an agent must
anticipate the need to elicit human preferences because
the LLM cannot disambiguate between plausible alterna-
tives when the user has a preference for one or another.

The first three requirements are related to the viability of
extracted task knowledge; in other words, is the agent able
to interpret, internalize, and use a response in service of a
task? The fourth requirement derives from constraints that
arise from particular task environments: responses should be
aligned with human expectations.

Figure 2: Schematic process for direct extraction of task
knowledge for task learning in a cognitive agent.

As above, the threshold for the fourth requirement is that
the responses produced by the LLM must be plausible. A re-
sponse that was viable, but that suggested that the can beans
from the previous example should be stored in the sink or
dish rack is very likely to be wrong. For our research, the
more important criterion is that the response should be not
just reasonable or plausible but also responsive and relevant
to a specific human user’s expectations for that situation.

Agents must evaluate LLM responses to identify if re-
sponses meet these requirements. When these requirements
are not met, if the agent attempts to use them (as is), the
result will be incorrect learning or failure.

These requirements also suggest how we can, as re-
searchers, measure and evaluate progress toward direct ex-
traction. What fraction of responses were viable when at-
tempting to extract knowledge in support of a new task? For
those that were not viable, what fraction failed due to incom-
patibility with affordances vs. interpretability, etc? Measur-
ing performance on these kinds of questions can facilitate
the evaluation of progress and comparison of alternative ap-
proaches.

Supporting Direct Extraction
In this section, we briefly summarize our high-level ap-
proach to direct extraction. We have used this approach to
enable agents to learn new tasks, demonstrating the feasibil-
ity of the direct extraction approach (Kirk et al. 2022; Kirk,
Wray, and Lindes 2023; Kirk et al. 2023).

Figure 2 illustrates the basic process. Rather than extract-
ing knowledge for only the sake of gaining new knowledge,
the cognitive agent seeks to extract knowledge for a specific
purpose: enabling the agent to perform a (current or antici-
pated) task. Our extraction strategy takes advantage of prior
work in cognitive systems in accessing and using external
knowledge sources (some of these steps are also used for
internal knowledge access).

Steps that overlap with general extraction patterns are il-
lustrated in green; process steps specific to LLMs are in blue.
Our current implementations use an existing agent (Kirk and
Laird 2019; Mininger 2021) that learns from human instruc-
tion. These components provide general extraction capabili-
ties that can be employed for LLMs (i.e., the agent is already
“extracting” knowledge from a human instructor via natural-
language interaction). In what follows, we refer to this agent
and its capabilities as the “Interactive Task Learning Agent”
(or ITL Agent). We have extended this ITL Agent, which
previously obtained new knowledge from natural-language
interaction with a user, to now also extract knowledge thru
interaction with an LLM. Roughly, the extraction process
comprises the following six steps:
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1. The agent identifies a knowledge need, such as a gap in
its knowledge. The ITL agent already has existing ca-
pabilities to detect knowledge gaps (including assessing
what kinds of gaps it has encountered, such as needing
a goal or action, not understanding a term, etc.) In our
current work, we assume that the agent seeks the LLM
first as a resource for potentially providing the ability to
bridge these knowledge gaps and then relies on human
input only when the LLM is insufficient. (Longer term,
cognitive agents will likely need to evaluate if/when an
LLM is an appropriate source for a specific gap.)
Importantly, from the point of view of the integration
patterns described in Section 2, the agent’s fine-grained
identification of a gap or need makes direct extraction
highly relevant to resolving the gap. The agent can use
its specific need to develop a more precise and targeted
query to the LLM. We employ a template-based prompt-
ing approach, a common method in prompt engineering
(Reynolds and McDonell 2021). Templates are focused
on specific gaps that the agent may encounter (Wray,
Kirk, and Laird 2021), such as eliciting the steps needed
to perform a task (Kirk et al. 2022), eliciting task sub-
goals, such as putting away the can of beans as part of
tidying the kitchen (Kirk et al. 2023), and refining a prior
response (Kirk, Wray, and Lindes 2023).

2. The agent prompts an LLM, choosing a specific prompt
template based on its evaluation of its knowledge
gap/need. It instantiates the template with information/-
data it has from the situation and context, and sets pa-
rameters to the LLM given the situation (e.g., setting the
temperature or “variability” in the LLM response). Thus,
the resulting, agent-constructed prompt is not only spe-
cific to the context but also the particular type of knowl-
edge gap. (We further detail this approach to prompting
in a subsequent section.)

3. The agent then interprets the response(s) from the LLM.
Although we did briefly explore having an LLM generate
logical expressions (Kirk et al. 2022), interpretation for
our approach requires the agent to use its internal natural-
language understanding capabilities to convert the LLM
response text to the agent’s internal knowledge repre-
sentation. Because the ITL Agent already has natural-
language processing (NLP) capabilities for learning from
human instruction, the extended approach leverages that
existing NLP capability. However, this choice also lim-
its what the agent can interpret because the ITL Agent’s
NLP capabilities are fairly modest. To date, one of the
primary pain points in our explorations has been deter-
mining if/when an interpretation problem should be re-
solved by further refining LLM responses to match our
agent’s NLP capabilities or whether to change/refine the
existing NLP capabilities.

4. Because the results from the LLM are not necessarily
accurate and reliable (as noted above), the agent evalu-
ates, tests, and attempts to verify extracted results from
the LLM. Although verification of acquired knowledge
has been explored in cognitive systems, verification of
knowledge derived from LLMs presents new challenges.

For example, in the ITL Agent, we assumed that the hu-
man instructor would provide accurate, grounded, inter-
pretable knowledge to the agent that reflected the instruc-
tor’s preferences. None of these assumptions are likely to
consistently hold for a response from an LLM, resulting
in verification processes that must address all the require-
ments introduced above. We have developed a novel,
multi-step approach to verification, detailed further be-
low.

5. Following verification, the agent encodes the knowledge
it has obtained into its own memory(-ies) as appropriate
for current and future use in task performance. In the ITL
Agent, this encoding is accomplished via a 2-step pro-
cess. First, the agent takes the step(s) indicated by a ver-
ified LLM response (such as planning to achieve a goal
or executing an action), allowing the agent to determine
in practice (in addition to the analytic assessment dur-
ing verification) if the new knowledge suits the task. A
second step involves the agent deliberately reviewing the
steps of the task (“retrospection”). Using Soar’s chunk-
ing process (Laird, Rosenbloom, and Newell 1986), the
retrospective analysis is compiled into new procedural
knowledge that enables the agent to perform the same
step/task in the future without resorting to the LLM.
While other approaches to encoding could be realized
(even others within Soar), this approach, first developed
for the ITL Agent, is sufficient for encoding new knowl-
edge that it derives from the LLM.

6. In the final step, the agent uses the knowledge it has ac-
quired and continues to monitor its correctness and util-
ity, and refines it based on its experience in using it.
Although it is likely that knowledge could be incom-
plete, over-general, etc., to date, we have not encountered
significant problems that require downstream refinement
and thus have not yet explored if LLMs present unique
new requirements for this step in the process.

Prompting Approach
The agent must choose a prompting strategy and then formu-
late a specific prompt appropriate for its task and environ-
ment, the knowledge needed, and the requirements of the
LLM itself. Prompt engineering (Reynolds and McDonell
2021), crafting and refining prompts so that they produce
desired results, has been shown to be an effective strategy
for retrieving reasonable knowledge. Using template-based
prompting, one kind of prompt engineering, an agent selects
an appropriate template designed to elicit the desired knowl-
edge and then instantiates the template with context specific
to the task it is attempting to learn.4 To date, we have used
a template-based approach, although we have only had to
develop a few templates, as shown in Table 1.

We combine template-based prompting with few-shot
prompting (Brown et al. 2020). Few-shot prompting embeds
examples of desired responses in the prompt. Prompt exam-
ples include similar queries and the respective desired re-
sponse to influence the LLM’s response to the main prompt.

4This approach is used so routinely that it is now directly sup-
ported in LLM development tools such as LangChain.
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Template Description Example
Goal Request a goal for a given task, situation,

and object of focus.
Action Request the next action step given a task,

situation, object of focus, and steps thus far.
Repair Request a re-formulation of a response,

given the previous prompt, the failed re-
sponse, and a categorization of the type of
failure.

Table 1: Examples of templates used in template-based
prompting.

(EXAMPLES)
(TASK)Task name: store object.
Task context: I am in mailroom. Aware of package
of office supplies; package is in mailroom.

(RESULT) The goal is that the package is in the closet
and the closet is closed.(END RESULT)

(END TASK)
(TASK)Task name: deliver package.

Task context: I am in mailroom. Aware of package
addressed to Gary; package is in mailroom.
(RESULT)The goal is that the package is in Gary’s office.
(END RESULT)

(END TASK)
(END EXAMPLES)
(TASK)Task name: tidy kitchen.

Task context: I am in kitchen.
Aware of mug in dish rack.
(RESULT)

Table 2: Example of an agent-created prompt for eliciting
goals. Agent instantiations in the prompt from its situational
context are highlighted in bold.

One of the main roles examples play in our approach is bi-
asing responses toward simple and direct language that the
ITL Agent’s NLP interpreter can parse. Prompt examples
can also introduce patterns for the LLM to follow, such as
in Chain of Thought (Wei et al. 2022), which influence the
LLM to reason about problems step by step.

This discussion provides a high-level outline of our
template-based prompting approach which is detailed else-
where (Kirk et al. 2022). Table 2 presents an example of a
prompt constructed by the agent for a task to “tidy a kitchen”
in which the agent is looking at a mug in a dish rack in that
kitchen.5 In our work to-date, we have primarily used GPT-3
(Brown et al. 2020) as the LLM for research. From the point
of view of direct extraction, the relatively simple approach
enables the agent to construct prompts that effectively elicit
mostly interpretable (and viable) responses.

5The indentation is for human readability alone; the prompt is
constructed without line breaks.

Figure 3: Agent analysis of LLM responses via internal sim-
ulation

Verification Approach
Another burgeoning research area is identifying effective
tools to verify the responses of LLMs. These include rank-
ing responses from the LLM based on interaction with and
feedback from the environment Logeswaran et al. (2022), re-
sponse sampling (Wang et al. 2023), using planning knowl-
edge (Valmeekam et al. 2023), additional LLM prompting
about the veracity of retrieved responses (Kim, Baldi, and
McAleer 2023), and using human feedback/annotation (Wu
et al. 2023; Kirk et al. 2022).

Cognitive architectures provide both a framework for the
evaluation of LLM responses and the knowledge (encoded
in various memories) required to analyze them. As outlined
briefly above, our agent simulates the process of learning
from a response in order to evaluate the result of using that
response (Kirk, Wray, and Lindes 2023).

Figure 3 summarizes the primary components of this anal-
ysis and the relevant memories from the cognitive architec-
ture that the agent relies on for analysis. The agent uses its
NLP parser and linguistic knowledge encoded in semantic
memory to evaluate if the response is interpretable by the
agent (1, orange). It uses knowledge of the current situation
(encoded in working memory) to ground references in the
LLM response and to evaluate if any references cannot be
grounded (2, green). Finally, it uses knowledge encoded in
semantic memory, and the context of the current environ-
ment from working memory, to analyze if responses align
with its embodiment and affordances (3, blue), evaluating if
the task goal is achievable by the agent.

Once the analysis is complete, any issues that are iden-
tified can be used in subsequent prompts to repair the re-
sponses that are misaligned with these requirements. The
repair template was (outlined in Table 1) is comparable to
the prompt shown in Table 2 but adds the incorrect LLM re-
sponse, the identified issue (e.g., a word that is unknown),
and asks for another response.
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Figure 4: Categorization of responses retrieved from the
LLM during agent experiment.

A final strategy for evaluation is enabling human over-
sight by asking a user if a task action or goal is correct before
the agent uses the response. Human evaluation enables the
agent to conform to the final requirement, aligning with hu-
man expectations. Correct task performance often requires
eliciting individual human preferences, as discussed above.

Figure 4 shows an analysis of responses extracted from
the LLM by our agent during an experiment where it learns
to tidy a kitchen with 35 common kitchen objects. The
chart shows the (human-determined) classification of all the
responses retrieved from the LLM, including unviable re-
sponses in red (not aligned with the first three requirements),
viable but not reasonable responses in orange, reasonable
responses in yellow, and situationally relevant responses in
green that match the human preferences for this task. A take-
away from this analysis is the large percentage of total re-
sponses (over 70%) that are not viable for the embodied
agent, indicating the necessity for evaluation of responses
for reliable learning. In other words, this iterative prompt-
refine-re-prompt approach to verification allows the agent to
generate and to identify the relatively small proportion of
responses that are viable and situationally relevant, resulting
in “actionable” knowledge for the agent.

Further evaluation of responses using other capabilities
of cognitive architectures is potentially useful, but not yet
explored. A cognitive architecture agent could use episodic
memory to see if retrieved knowledge matches actions per-
formed in the past. It could also use planning knowledge to
see if retrieved goals are achievable, or retrieved actions are
executable. Cognitive architectures also support interfacing
with other knowledge sources (e.g., knowledge bases such
as WordNet or ConceptNet) which could provide additional
information for evaluation (e.g., finding synonyms for un-
known words).

Conclusion
Autonomous systems, whether they are realized with cogni-
tive architectures or not, will have to acquire new knowledge
to perform tasks and accomplish their goals. However, the
lack of reliable, scalable acquisition of new task knowledge,

especially online acquisition of knowledge, has limited the
operation and impact of cognitive systems. The integration
of LLMs with cognitive architectures presents an intriguing
opportunity to exploit the breadth of knowledge in LLMs to
overcome limits on knowledge acquisition.

In this paper, we presented various ways one might ap-
proach this problem and highlighted the potential of direct
extraction from LLMs as an integration path. We summa-
rized the challenges and requirements for exploring this inte-
gration and a high-level, step-wise process for pursuing this
goal. We outlined some of the ways we are attempting to
pursue this research vision, highlighting the use of template-
based prompting and knowledge-driven evaluation that en-
ables more reliable and useful responses from the LLM.

A more complete realization of the entire task-learning
pipeline (as envisioned in Figure 2), as well as an evaluation
of the pipeline in terms of scaling for knowledge acquisi-
tion, remain as future work. One notable result in terms of
scaling, however, has been to observe the synergistic inter-
actions between different sources of knowledge within task
learning. The extended ITL Agent uses look-ahead planning,
human oversight, and the LLM to attempt to acquire new
knowledge. Early results (Kirk et al. 2023) suggest that plan-
ning can virtually eliminate the need for an agent to ask for
actions (at least in the task domains we have explored) when
the agent acquires a correct (i.e., verified) goal description.
Similarly, using LLMs to elicit goals in conjunction with the
verification process requires significantly less human over-
sight. In summary, this integrated-knowledge approach real-
ized within and enabled by a cognitive architecture, is sug-
gestive of a potential breakthrough in knowledge acquisition
and task learning for cognitive agents.
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