
Augmenting Cognitive Architectures with Large Language Models 

Himanshu Joshi1, Volkan Ustun2 

1Wireless R&D Qualcomm Research, Qualcomm Technologies Inc 
2University of Southern California, Institute for Creative Technologies 

himanshu@qti.qualcomm.com, ustun@ict.usc.edu 
 
 
 

 

Abstract 
A particular fusion of generative models and cognitive 
architectures is discussed with the help of the Soar and Sigma 
cognitive architectures. After a brief introduction to cognitive 
architecture concepts and Large Language Models as 
exemplar generative AI models, one approach towards their 
fusion is discussed. This is then analyzed with a summary of 
potential benefits and extensions needed to existing cognitive 
architectures that is closest to the proposal. 

 Introduction    
Generative AI models such as Large Language Models 
(LLM), Vision Transformer (ViT) (Dosovitskiy, et al., 
2020), etc. models have captured much interest in the recent 
years. Several proposals have been made towards leveraging 
strengths of generative AI fused with other models such as 
LSTMs (Lester, Al-Rfou, & Constant, 2021), cognitive 
architectures (Wray, Kirk, & Laird, 2021), or planning and 
reflection with LLMs (Park, et al., 2023) to list a few. The 
approach of fusing planning and reflection with an LLM 
yielded good results for the tasks in simulated environment. 
This has fueled more interest in the question of whether 
LLMs can be leveraged in cognitive architectures in a 
principled fashion with the aim of yielding an agent that can 
utilize the strengths of each approach in different situations 
yielding an integrated agent that is greater than the sum of 
its parts. This work proposes one possible fusion between 
LLMs and cognitive architectures. The attempt here is to 
propose a creative fusion that connects ideas from both 
disciplines to yield an approach that yields a result that is 
potentially better than when either approach – cognitive 
architectures or LLMs – is used in isolation. The rest of the 
paper is organized as follows: first cognitive architectures 
are discussed summarizing key aspects relevant in this 
context, this is followed by a discussion on generative AI 
with a focus on LLMs. LLMs are presented in cognitive 
architecture terminology. Subsequently a fusion of LLMs 
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with cognitive architectures is discussed in the context on a 
particular kind of task: interactive task learning (Kirk J., 
2019). This is then analyzed with a discussion on the 
potential merits and issues this approach yields. Finally, 
conclusion and future work are discussed. 

Cognitive Architectures 
Cognitive architectures model fixed structures and 
processes underlying human intelligence.  Cognitive 
architectures have a rich history and are a result of Newell’s 
strategy (Newell, 1973) combined with early work on 
human problem solving. The key premise is that the problem 
of general human intelligence is difficult because humans 
act in a variety of diverse environments and that this is made 
possible because of the ability of the human mind to 
combine a variety of knowledge sources dynamically on 
demand  (Newell, 1990). The focus then – as a research 
strategy – is to model the common cognitive architecture 
that enables the combination of large knowledge sources. 

Cognitive architectures can be characterized in terms of 
the structures – memories – that hold the agent’s beliefs, 
goals, knowledge etc., the representations for these and the 
processes that act on them  (Langley, Laird, & Rogers, 
2009). Here, we briefly discuss relevant aspects of cognitive 
architectures from the perspective of Soar and Sigma like 
architectures. Very briefly, memories can be either: long 
term memory, which is further categorized as declarative 
(knowledge capturing assertions of the agent), procedural 
(encoding knowledge about how a certain task is 
performed), episodic (encoding knowledge about 
history/episodes), and semantic (encoding facts the agent 
believes), and short-term working memory, which holds 
knowledge relevant to the agent in its current situation. 
Knowledge is typically represented in terms of predicates 
and patterns over predicates. Predicates and predicate 
patterns can be purely symbolic – as in Soar (Laird, 2012) – 

 

AAAI Fall Symposium Series (FSS-23)

281



or have sub-symbolic aspects as in Sigma (Rosenbloom, 
Demski, & Ustun, 2016). In Sigma’s case predicates can 
designate learnable functions. In addition to predicates, 
there are operators in both Sigma and Soar. Operators 
represent actions that the agent can take. Central to the 
processes that act on this knowledge arranged/organized 
across various memories is the cognitive cycle – 
eponymously named after the human cognitive cycle. The 
cognitive cycle represents about 50ms of human mental 
activity and involves four phases: integrating new 
perception, elaborating current state, selecting the next 
action to take – by selection of an operator – to be finally 
followed by effecting any changes in the working memory 
(learning) as well as those requiring any output via the motor 
system. In Sigma operator selection is aided by numerical 
metadata – in the form of utilities and in Soar operator 
selection is aided by numeric preferences that can be learnt 
(as a case of reinforcement learning). The cognitive cycle 
implements a parallel to serial bottleneck where parallel 
processing – of multiple rule firings (Soar) or message 
passing (Sigma) – is followed by deliberate selection of an 
operator analogous to the human cognitive cycle. 
Knowledge is organized according to the Problem Space 
Computation Model (PSCM) in Soar and Sigma. The PSCM 
is defined as a goal, associated state in the working memory 
and available operators – all relevant to a particular problem 
domain. Processing in this setting can be divided into: 
• reactive: the ‘mindless’ aspects of cognition that 

represent the activity within a cognitive cycle,  
• deliberative: the ‘mindful’ aspects of cognition that 

represent a series or sequence of decision cycles, and, 
• reflective: the reflective or meta-aspects of cognition 

where the agent examines its own state and makes 
modification to its internal state. 
This tri-level processing model is supported by the 

decision cycle via the impasse mechanism, where, upon 
failure to select an operator in the operator selection phase, 
an impasse results bringing to bear more knowledge by 
creating a sub-goal to the current goal and a sub-state to the 
current state. 

Learning occurs at multiple levels. Procedural learning 
entails learning rules that prevent future impasses by 
creating a knowledge fragment with preconditions that led 
to the impasse and predicate change – as the action part of 
the rule – that resolved the impasse. Soar supports chunking 
but Sigma does not yet support chunking. Sigma’s cognitive 
cycle is based in graphical models – modified factor graphs 
– and the elaboration phase involves a form of message 
passing. Learning in this context involves updating the 
factors with posterior after message passing. Sigma has 
demonstrated learning of acoustic models, language models, 
various forms of deep learning such as feedforward 
multilayer perceptrons, recurrent neural networks 

(Rosenbloom, Demski, & Ustun, 2017). When the factors in 
a factor graph (Kschischang, Frey, & Loeliger, 2001) – such 
as the kind of network Sigma’s processing and knowledge 
are grounded in – are fully differentiable, factor graphs 
reduce to deep networks and message passing with suitable 
modifications for regularization can yield learning similar to 
gradient descent with backprop. Sigma has also shown 
learning of fixed word embeddings using random 
projections. 

The rest of this work assumes an architecture that is 
similar in spirit to Soar and Sigma, with a tri-level 
processing that supports PSCM and a cognitive cycle that is 
grounded in a form of graphical models that is similar to 
Sigma and supports chunking like Soar. 

Large Language Models 
Large Language Models (LLMs) have gained tremendous 
popularity over the last few years due to their ability to be 
versatile problem solvers in across several natural language 
(NL) tasks and even beyond NL domain. LLMs are trained 
on a very large dataset and require significant investment of 
resources to train. LLMs are made of layers of stacked 
transformer models (Vaswani, et al., 2017) which operate on 
the concept of ‘attention’ i.e. each word in the input 
sequence determines how much influence or ‘attention’ to 
pay to the other words in the input sequence. Attention 
involves calculating three intermediate quantities – the 
query, key, and value vectors – for each word in the input 
sequence. Each word is ‘embedded’ in a low dimensional 
space and then input to the transformer stack. At the top of 
the transformer stack are classifier ‘heads’ that generate a 
distribution over the predicted next word. To begin with, the 
input vocabulary is transformed into sub-word units called 
‘tokens’ using some method such as byte pair encoding 
(BPE) (Shibata, et al., 1999). This helps the model handle 
out of vocabulary words so that any word the model may 
encounter in the future can be tokenized. These tokens are 
embedded. Training then involves using gradient descent to 
predict a (set of) target word(s) – such as the next word(s), 
or a masked word(s) – in the context of the last several 
tokens in the input sequence. Training then learns the model 
parameters along with embeddings for the input tokens. 
 In the context of previously discussed concepts of 
different memories in the cognitive architecture, we can 
think of the LLM transformer stack to be a form of 
declarative memory clubbed with a procedural ‘classifier 
head.’ The lower layers in the transformer stack learn lexical 
features, the middle layers learn syntactic features and the 
top layers near the head learn context sensitive semantic 
features of the target token – in the context of the input 
tokens – while the classifier head can be understood as 
predicate rules that act to choose the next word (‘choose’ 
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here means generating a distribution over the target token). 
The predicted tokens can be sampled using a sampling 
technique and then the sampled tokens can be converted to 
words using a decoding strategy such as top-k decoder. 
Once an LLM is trained on a large dataset, there are several 
ways to use it in a downstream specialized task: 
• finetune (Peters, et al., 2018): The LLM is optionally 

“frozen” and a new classifier head is trained tailored to 
the new task specific dataset, and, 

• prompting (Reynolds & McDonell, 2021): when the LLM 
is provided with an input prompt, it generates an output 
sequence of tokens that when converted to words appears 
very coherent and meaningful. There are several forms of 
prompting methods, including analogical prompting, 
templatized prompting etc. 

Prompting is very popular because the model is frozen after 
initial training and not subsequently updated. Prompting 
templates were initially hand tuned but some work has 
attempted to search good task specific prompts (Shin, 
Razeghi, Logan IV, Wallace, & Singh, 2020). Here a more 
relevant approach is that of soft prompt training (Lester, Al-
Rfou, & Constant, 2021), (Liu, et al.) where task specific 
‘soft tokens’ – i.e., tokens that were not in the original token 
space of the model when it was trained – are inserted in the 
prompt of the model. The soft tokens are encoded using an 
LSTM and then inserted with the other tokens in the prompt. 
Then the soft tokens are learnt in a supervised fashion on a 
per task basis. Once training results in soft token 
embeddings, the LSTM is no longer needed, and the soft 
token embeddings can be used in the same fashion by 
inserting them in the task prompts using the same template. 
The advantage of this method is two-fold: the LLM is frozen 
and does not need to be updated, the task specific tokens can 
be saved, and new tokens initialized and trained for a new 
task. This results in two benefits: firstly the amount of 
training data required is lower, and secondly, the number of 
parameters trained is far lower than what would be required 
if the LLM was being fine-tuned with no loss in 
performance for very large LLM sizes (Lester, Al-Rfou, & 
Constant, 2021). 

LLM Usage in Cognitive Architecture 
There are multiple ways in which LLMs can be used in 
cognitive architectures – as a model of the world, as a 
reasoning agent that can select actions when prompted with 
the current state of the agent etc. Here one potential method 
of LLM integration is proposed. While the LLM itself may 
not be trained in a cognitively plausible fashion, the 
integration of the LLM with cognitive architecture is 
attempted in a cognitively plausible manner. 
 To begin with, it is assumed here that the LLM itself is 
not updated as this is prohibitively costly. The core vision 
here is that an LLM can be used as a prompt-able declarative 

memory in a Sigma/Soar like impasse driven architecture 
where the architecture can prompt the LLM with a task 
specific prompt to extract knowledge from the LLM coupled 
with task specific operators with learnable continuous 
embeddings that are inserted in the LLM prompt based on 
the agent’s goals, knowledge of the task, contents of the 
working memory – that include the current situation – and 
the current operators that are proposed.  
 The cognitive cycle supports the ability to learn this 
continuous representation by using an algorithm similar to 
Sigma’s message passing algorithm. An impasse can be 
triggered by proposing an operator to impasse which will 
then create a substate with the subgoal to bring knowledge 
from LLM to bear on current situation. The task specific 
operator embeddings in each such substate can be initialized 
from parent state’s corresponding embeddings in 
conjunction with lexical embeddings that will be used to 
prompt the model in subsequent step. Prompting the LLM 
involves inserting these task specific learnable soft tokens 
as described in previous section. Multiple prompts can be 
generated based on the goal and various ways in which the 
soft tokens can be embedded with prompt text.  
 The prompts themselves can be stored as task specific or 
general knowledge and several prompt templates can be 
selected to be used in parallel i.e., in a reactive manner in 
the elaboration phase of the model. Several relevant 
templates have been identified in (Wray, Kirk, & Laird, 
2021) in the context of Soar’s interactive task learning 
problem formulation. Knowledge obtained from the LLM 
can be problematic due to several reasons – LLMs 
hallucinate (McKenna, et al., 2023), and their output is not 
always reliable (Wray, Kirk, & Laird, 2021). Once multiple 
responses are retrieved in parallel, one response can be 
selected by combining knowledge from working memory – 
that elaborates the current situation – and curated knowledge 
from curated long-term memories such as episodic memory, 
semantic memory etc. In Sigma, this can potentially be 
implemented as a simple classifier that scores the responses.  
 During the selection phase of the cognitive cycle learning 
updates the continuous soft token embeddings and when the 
impasse resolves, the learnt soft tokens embeddings 
represent a description of the knowledge that was required 
from the LLM to resolve the impasse as a function of the 
current state of the agent and its goals for every task 
operator. Having a labeled dataset which can propagate a 
signal back from the LLM to the soft token embeddings will 
help. However, it is important to note the soft token 
embeddings are learnt not just from the signal from the LLM 
but from the classifier that scores the responses and 
potentially accounts for operator utilities derived from task 
specific knowledge. If the output of the LLM is not usable 
because the agent does not have actions available – either 
because it does not know how to perform the suggested 
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action, or its current state indicates the suggested action is 
impossible – another impasse can be created to resolve this.  
 When a new action operator is created by the agent 
because it does not know how to perform an action 
suggested by the LLM, the associated soft token embedding 
with it will be learnt by further querying the LLM to break 
the complex operator action into a set of simplified actions 
until an action or set of actions are found that the agent can 
perform. The operator specific embedding that was learnt 
for all action operators can be used to determine semantic 
closeness of actions and the agent can try to substitute such 
actions. Unlike semantic embeddings for words that indicate 
semantic similarity in the embedded space, these operator 
embeddings will be a function not just of the words but the 
current state of the agent as well. When action operators are 
available to perform the action, the embeddings can aid – in 
conjunction with other numerical metadata such as utilities 
– in planning required to generate a policy over them. When 
the impasse that led to querying the LLM is resolved, the top 
state shall have potentially created (action) operators or 
updates to predicates with associated embeddings and these 
can be used to update the predicate/operator embeddings in 
the top state. These embeddings can be subsequently used 
as task and state specific embeddings and brought to bear 
either to prevent future impasse in a potentially different 
situation. 
 The work closest in approach to the proposed scheme is 
(Kirk, Lindes, & Peter, 2023) where the authors propose and 
evaluate a Soar based framework (STARS) to query and use 
knowledge from an LLM in the ITL task set. STARS stands 
for Search Tree, Analyze, Repair, and Select corresponding 
to the phases of the framework where LLM is prompted with 
hierarchical tree templatized prompts and a beam search is 
performed to narrow the responses to the most probable set 
of responses. These are analyzed and evaluated for their 
usefulness in the current situation and the best one is 
selected by querying the LLM again. The key difference 
here is that the whole scheme is working with discrete token 
prompts derived from discrete words. As discussed 
previously and based on results from (Lester, Al-Rfou, & 
Constant, 2021), more task specific data is needed when 
working in the discrete prompt domain without soft tokens. 
In this context, this would mean the ST, A, and R phases 
have more work to do. The hierarchical tree-based templates 
are simulating structural properties of the task domain as 
encoded in the English language. The interspersing of soft 
tokens with state prompt using templates in the scheme 
proposed in this paper corresponds to this ST phase. 
Analysis will take place similar to what is proposed in 
STARS but aided by availability of embeddings. Finally, 
repair will take place via an impasse mechanism in this 
proposal. Selection of the next action is left to the cognitive 
architecture in this proposal. In STARS evaluation, the ‘S’ 
selection phase – where the action is selected by the LLM 

itself – did not improve the agent’s task completion 
performance in the task that was evaluated. In the scheme 
proposed here, action selection is done by the cognitive 
architecture with the aid of embeddings, utilities on 
operators, and the contents of the working memory i.e., the 
LLM is used to elicit knowledge in a reactive manner only 
and captured in the task specific operator embeddings which 
are subsequently used reactively (generator selection score 
based on utilities on operators as well as the embedding) as 
well as deliberatively (operator selection). It is unclear how 
the STARS phases work in the context of Soar’s tri-level 
control. Furthermore, it is unclear whether the beam search 
involved in the STARS is cognitively plausible and to what 
extent Soar’s cognitive cycle supports handling probabilistic 
processing. 
 The idea to use embeddings to aid search is not new, 
neither is the idea to use LLM’s to aid in planning (learning 
a policy over actions), or reflection (impasse processing). 
What is new here is the integration of LLM in a cognitive 
setting with soft tokens on task and state specific operators 
that can be used to prompt and extract knowledge from the 
LLM. In the p-tuning work where soft tokens were 
introduced, they experimented with a few prompt insertion 
templates. A cognitive architecture can improve upon this 
manual search of finding suitable prompt insertion template 
by bringing to bear its mechanisms and knowledge from 
other memories – such as episodic or semantic – to guide 
this search potentially improving upon the back and forth 
required with the LLM i.e., the data required to learn the soft 
token embeddings.  
 To evaluate the proposal presented here, the ITL domain 
seems the most natural. Sigma is the most natural candidate 
to consider for evaluating. Sigma’s decision cycle is both 
mixed (symbolic+subsymbolic, including capable of neural 
processing) and hybrid (discrete+continuous) as required by 
proposal. Sigma’s cognitive cycle does not yet support 
embeddings on operators and this is an extension that will 
have to be added. 

Conclusion and Future Work 
A method to augment cognitive architectures with 
generative LLM memory was proposed. The integration 
assumes a cognitive cycle that is capable of simultaneously 
processing symbolic and sub-symbolic information. 
Various aspects of the integration have been independently 
demonstrated in Sigma or Soar but some extensions to 
Sigma will have to be made to support the proposal. 
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