
Augmenting Cognitive Architectures with Large Language Models

Himanshu Joshi1, Volkan Ustun2

1Wireless R&D Qualcomm Research, Qualcomm Technologies Inc
2University of Southern California, Institute for Creative Technologies

himanshu@qti.qualcomm.com, ustun@ict.usc.edu

Abstract
A particular fusion of generative models and cognitive
architectures is discussed with the help of the Soar and Sigma
cognitive architectures. After a brief introduction to cognitive
architecture concepts and Large Language Models as
exemplar generative AI models, one approach towards their
fusion is discussed. This is then analyzed with a summary of
potential benefits and extensions needed to existing cognitive
architectures that is closest to the proposal.

 Introduction
Generative AI models such as Large Language Models
(LLM), Vision Transformer (ViT) (Dosovitskiy, et al.,
2020), etc. models have captured much interest in the recent
years. Several proposals have been made towards leveraging
strengths of generative AI fused with other models such as
LSTMs (Lester, Al-Rfou, & Constant, 2021), cognitive
architectures (Wray, Kirk, & Laird, 2021), or planning and
reflection with LLMs (Park, et al., 2023) to list a few. The
approach of fusing planning and reflection with an LLM
yielded good results for the tasks in simulated environment.
This has fueled more interest in the question of whether
LLMs can be leveraged in cognitive architectures in a
principled fashion with the aim of yielding an agent that can
utilize the strengths of each approach in different situations
yielding an integrated agent that is greater than the sum of
its parts. This work proposes one possible fusion between
LLMs and cognitive architectures. The attempt here is to
propose a creative fusion that connects ideas from both
disciplines to yield an approach that yields a result that is
potentially better than when either approach – cognitive
architectures or LLMs – is used in isolation. The rest of the
paper is organized as follows: first cognitive architectures
are discussed summarizing key aspects relevant in this
context, this is followed by a discussion on generative AI
with a focus on LLMs. LLMs are presented in cognitive
architecture terminology. Subsequently a fusion of LLMs

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with cognitive architectures is discussed in the context on a
particular kind of task: interactive task learning (Kirk J.,
2019). This is then analyzed with a discussion on the
potential merits and issues this approach yields. Finally,
conclusion and future work are discussed.

Cognitive Architectures
Cognitive architectures model fixed structures and
processes underlying human intelligence. Cognitive
architectures have a rich history and are a result of Newell’s
strategy (Newell, 1973) combined with early work on
human problem solving. The key premise is that the problem
of general human intelligence is difficult because humans
act in a variety of diverse environments and that this is made
possible because of the ability of the human mind to
combine a variety of knowledge sources dynamically on
demand (Newell, 1990). The focus then – as a research
strategy – is to model the common cognitive architecture
that enables the combination of large knowledge sources.

Cognitive architectures can be characterized in terms of
the structures – memories – that hold the agent’s beliefs,
goals, knowledge etc., the representations for these and the
processes that act on them (Langley, Laird, & Rogers,
2009). Here, we briefly discuss relevant aspects of cognitive
architectures from the perspective of Soar and Sigma like
architectures. Very briefly, memories can be either: long
term memory, which is further categorized as declarative
(knowledge capturing assertions of the agent), procedural
(encoding knowledge about how a certain task is
performed), episodic (encoding knowledge about
history/episodes), and semantic (encoding facts the agent
believes), and short-term working memory, which holds
knowledge relevant to the agent in its current situation.
Knowledge is typically represented in terms of predicates
and patterns over predicates. Predicates and predicate
patterns can be purely symbolic – as in Soar (Laird, 2012) –

AAAI Fall Symposium Series (FSS-23)

281

or have sub-symbolic aspects as in Sigma (Rosenbloom,
Demski, & Ustun, 2016). In Sigma’s case predicates can
designate learnable functions. In addition to predicates,
there are operators in both Sigma and Soar. Operators
represent actions that the agent can take. Central to the
processes that act on this knowledge arranged/organized
across various memories is the cognitive cycle –
eponymously named after the human cognitive cycle. The
cognitive cycle represents about 50ms of human mental
activity and involves four phases: integrating new
perception, elaborating current state, selecting the next
action to take – by selection of an operator – to be finally
followed by effecting any changes in the working memory
(learning) as well as those requiring any output via the motor
system. In Sigma operator selection is aided by numerical
metadata – in the form of utilities and in Soar operator
selection is aided by numeric preferences that can be learnt
(as a case of reinforcement learning). The cognitive cycle
implements a parallel to serial bottleneck where parallel
processing – of multiple rule firings (Soar) or message
passing (Sigma) – is followed by deliberate selection of an
operator analogous to the human cognitive cycle.
Knowledge is organized according to the Problem Space
Computation Model (PSCM) in Soar and Sigma. The PSCM
is defined as a goal, associated state in the working memory
and available operators – all relevant to a particular problem
domain. Processing in this setting can be divided into:
• reactive: the ‘mindless’ aspects of cognition that

represent the activity within a cognitive cycle,
• deliberative: the ‘mindful’ aspects of cognition that

represent a series or sequence of decision cycles, and,
• reflective: the reflective or meta-aspects of cognition

where the agent examines its own state and makes
modification to its internal state.
This tri-level processing model is supported by the

decision cycle via the impasse mechanism, where, upon
failure to select an operator in the operator selection phase,
an impasse results bringing to bear more knowledge by
creating a sub-goal to the current goal and a sub-state to the
current state.

Learning occurs at multiple levels. Procedural learning
entails learning rules that prevent future impasses by
creating a knowledge fragment with preconditions that led
to the impasse and predicate change – as the action part of
the rule – that resolved the impasse. Soar supports chunking
but Sigma does not yet support chunking. Sigma’s cognitive
cycle is based in graphical models – modified factor graphs
– and the elaboration phase involves a form of message
passing. Learning in this context involves updating the
factors with posterior after message passing. Sigma has
demonstrated learning of acoustic models, language models,
various forms of deep learning such as feedforward
multilayer perceptrons, recurrent neural networks

(Rosenbloom, Demski, & Ustun, 2017). When the factors in
a factor graph (Kschischang, Frey, & Loeliger, 2001) – such
as the kind of network Sigma’s processing and knowledge
are grounded in – are fully differentiable, factor graphs
reduce to deep networks and message passing with suitable
modifications for regularization can yield learning similar to
gradient descent with backprop. Sigma has also shown
learning of fixed word embeddings using random
projections.

The rest of this work assumes an architecture that is
similar in spirit to Soar and Sigma, with a tri-level
processing that supports PSCM and a cognitive cycle that is
grounded in a form of graphical models that is similar to
Sigma and supports chunking like Soar.

Large Language Models
Large Language Models (LLMs) have gained tremendous
popularity over the last few years due to their ability to be
versatile problem solvers in across several natural language
(NL) tasks and even beyond NL domain. LLMs are trained
on a very large dataset and require significant investment of
resources to train. LLMs are made of layers of stacked
transformer models (Vaswani, et al., 2017) which operate on
the concept of ‘attention’ i.e. each word in the input
sequence determines how much influence or ‘attention’ to
pay to the other words in the input sequence. Attention
involves calculating three intermediate quantities – the
query, key, and value vectors – for each word in the input
sequence. Each word is ‘embedded’ in a low dimensional
space and then input to the transformer stack. At the top of
the transformer stack are classifier ‘heads’ that generate a
distribution over the predicted next word. To begin with, the
input vocabulary is transformed into sub-word units called
‘tokens’ using some method such as byte pair encoding
(BPE) (Shibata, et al., 1999). This helps the model handle
out of vocabulary words so that any word the model may
encounter in the future can be tokenized. These tokens are
embedded. Training then involves using gradient descent to
predict a (set of) target word(s) – such as the next word(s),
or a masked word(s) – in the context of the last several
tokens in the input sequence. Training then learns the model
parameters along with embeddings for the input tokens.
 In the context of previously discussed concepts of
different memories in the cognitive architecture, we can
think of the LLM transformer stack to be a form of
declarative memory clubbed with a procedural ‘classifier
head.’ The lower layers in the transformer stack learn lexical
features, the middle layers learn syntactic features and the
top layers near the head learn context sensitive semantic
features of the target token – in the context of the input
tokens – while the classifier head can be understood as
predicate rules that act to choose the next word (‘choose’

282

here means generating a distribution over the target token).
The predicted tokens can be sampled using a sampling
technique and then the sampled tokens can be converted to
words using a decoding strategy such as top-k decoder.
Once an LLM is trained on a large dataset, there are several
ways to use it in a downstream specialized task:
• finetune (Peters, et al., 2018): The LLM is optionally

“frozen” and a new classifier head is trained tailored to
the new task specific dataset, and,

• prompting (Reynolds & McDonell, 2021): when the LLM
is provided with an input prompt, it generates an output
sequence of tokens that when converted to words appears
very coherent and meaningful. There are several forms of
prompting methods, including analogical prompting,
templatized prompting etc.

Prompting is very popular because the model is frozen after
initial training and not subsequently updated. Prompting
templates were initially hand tuned but some work has
attempted to search good task specific prompts (Shin,
Razeghi, Logan IV, Wallace, & Singh, 2020). Here a more
relevant approach is that of soft prompt training (Lester, Al-
Rfou, & Constant, 2021), (Liu, et al.) where task specific
‘soft tokens’ – i.e., tokens that were not in the original token
space of the model when it was trained – are inserted in the
prompt of the model. The soft tokens are encoded using an
LSTM and then inserted with the other tokens in the prompt.
Then the soft tokens are learnt in a supervised fashion on a
per task basis. Once training results in soft token
embeddings, the LSTM is no longer needed, and the soft
token embeddings can be used in the same fashion by
inserting them in the task prompts using the same template.
The advantage of this method is two-fold: the LLM is frozen
and does not need to be updated, the task specific tokens can
be saved, and new tokens initialized and trained for a new
task. This results in two benefits: firstly the amount of
training data required is lower, and secondly, the number of
parameters trained is far lower than what would be required
if the LLM was being fine-tuned with no loss in
performance for very large LLM sizes (Lester, Al-Rfou, &
Constant, 2021).

LLM Usage in Cognitive Architecture
There are multiple ways in which LLMs can be used in
cognitive architectures – as a model of the world, as a
reasoning agent that can select actions when prompted with
the current state of the agent etc. Here one potential method
of LLM integration is proposed. While the LLM itself may
not be trained in a cognitively plausible fashion, the
integration of the LLM with cognitive architecture is
attempted in a cognitively plausible manner.
 To begin with, it is assumed here that the LLM itself is
not updated as this is prohibitively costly. The core vision
here is that an LLM can be used as a prompt-able declarative

memory in a Sigma/Soar like impasse driven architecture
where the architecture can prompt the LLM with a task
specific prompt to extract knowledge from the LLM coupled
with task specific operators with learnable continuous
embeddings that are inserted in the LLM prompt based on
the agent’s goals, knowledge of the task, contents of the
working memory – that include the current situation – and
the current operators that are proposed.
 The cognitive cycle supports the ability to learn this
continuous representation by using an algorithm similar to
Sigma’s message passing algorithm. An impasse can be
triggered by proposing an operator to impasse which will
then create a substate with the subgoal to bring knowledge
from LLM to bear on current situation. The task specific
operator embeddings in each such substate can be initialized
from parent state’s corresponding embeddings in
conjunction with lexical embeddings that will be used to
prompt the model in subsequent step. Prompting the LLM
involves inserting these task specific learnable soft tokens
as described in previous section. Multiple prompts can be
generated based on the goal and various ways in which the
soft tokens can be embedded with prompt text.
 The prompts themselves can be stored as task specific or
general knowledge and several prompt templates can be
selected to be used in parallel i.e., in a reactive manner in
the elaboration phase of the model. Several relevant
templates have been identified in (Wray, Kirk, & Laird,
2021) in the context of Soar’s interactive task learning
problem formulation. Knowledge obtained from the LLM
can be problematic due to several reasons – LLMs
hallucinate (McKenna, et al., 2023), and their output is not
always reliable (Wray, Kirk, & Laird, 2021). Once multiple
responses are retrieved in parallel, one response can be
selected by combining knowledge from working memory –
that elaborates the current situation – and curated knowledge
from curated long-term memories such as episodic memory,
semantic memory etc. In Sigma, this can potentially be
implemented as a simple classifier that scores the responses.
 During the selection phase of the cognitive cycle learning
updates the continuous soft token embeddings and when the
impasse resolves, the learnt soft tokens embeddings
represent a description of the knowledge that was required
from the LLM to resolve the impasse as a function of the
current state of the agent and its goals for every task
operator. Having a labeled dataset which can propagate a
signal back from the LLM to the soft token embeddings will
help. However, it is important to note the soft token
embeddings are learnt not just from the signal from the LLM
but from the classifier that scores the responses and
potentially accounts for operator utilities derived from task
specific knowledge. If the output of the LLM is not usable
because the agent does not have actions available – either
because it does not know how to perform the suggested

283

action, or its current state indicates the suggested action is
impossible – another impasse can be created to resolve this.
 When a new action operator is created by the agent
because it does not know how to perform an action
suggested by the LLM, the associated soft token embedding
with it will be learnt by further querying the LLM to break
the complex operator action into a set of simplified actions
until an action or set of actions are found that the agent can
perform. The operator specific embedding that was learnt
for all action operators can be used to determine semantic
closeness of actions and the agent can try to substitute such
actions. Unlike semantic embeddings for words that indicate
semantic similarity in the embedded space, these operator
embeddings will be a function not just of the words but the
current state of the agent as well. When action operators are
available to perform the action, the embeddings can aid – in
conjunction with other numerical metadata such as utilities
– in planning required to generate a policy over them. When
the impasse that led to querying the LLM is resolved, the top
state shall have potentially created (action) operators or
updates to predicates with associated embeddings and these
can be used to update the predicate/operator embeddings in
the top state. These embeddings can be subsequently used
as task and state specific embeddings and brought to bear
either to prevent future impasse in a potentially different
situation.
 The work closest in approach to the proposed scheme is
(Kirk, Lindes, & Peter, 2023) where the authors propose and
evaluate a Soar based framework (STARS) to query and use
knowledge from an LLM in the ITL task set. STARS stands
for Search Tree, Analyze, Repair, and Select corresponding
to the phases of the framework where LLM is prompted with
hierarchical tree templatized prompts and a beam search is
performed to narrow the responses to the most probable set
of responses. These are analyzed and evaluated for their
usefulness in the current situation and the best one is
selected by querying the LLM again. The key difference
here is that the whole scheme is working with discrete token
prompts derived from discrete words. As discussed
previously and based on results from (Lester, Al-Rfou, &
Constant, 2021), more task specific data is needed when
working in the discrete prompt domain without soft tokens.
In this context, this would mean the ST, A, and R phases
have more work to do. The hierarchical tree-based templates
are simulating structural properties of the task domain as
encoded in the English language. The interspersing of soft
tokens with state prompt using templates in the scheme
proposed in this paper corresponds to this ST phase.
Analysis will take place similar to what is proposed in
STARS but aided by availability of embeddings. Finally,
repair will take place via an impasse mechanism in this
proposal. Selection of the next action is left to the cognitive
architecture in this proposal. In STARS evaluation, the ‘S’
selection phase – where the action is selected by the LLM

itself – did not improve the agent’s task completion
performance in the task that was evaluated. In the scheme
proposed here, action selection is done by the cognitive
architecture with the aid of embeddings, utilities on
operators, and the contents of the working memory i.e., the
LLM is used to elicit knowledge in a reactive manner only
and captured in the task specific operator embeddings which
are subsequently used reactively (generator selection score
based on utilities on operators as well as the embedding) as
well as deliberatively (operator selection). It is unclear how
the STARS phases work in the context of Soar’s tri-level
control. Furthermore, it is unclear whether the beam search
involved in the STARS is cognitively plausible and to what
extent Soar’s cognitive cycle supports handling probabilistic
processing.
 The idea to use embeddings to aid search is not new,
neither is the idea to use LLM’s to aid in planning (learning
a policy over actions), or reflection (impasse processing).
What is new here is the integration of LLM in a cognitive
setting with soft tokens on task and state specific operators
that can be used to prompt and extract knowledge from the
LLM. In the p-tuning work where soft tokens were
introduced, they experimented with a few prompt insertion
templates. A cognitive architecture can improve upon this
manual search of finding suitable prompt insertion template
by bringing to bear its mechanisms and knowledge from
other memories – such as episodic or semantic – to guide
this search potentially improving upon the back and forth
required with the LLM i.e., the data required to learn the soft
token embeddings.
 To evaluate the proposal presented here, the ITL domain
seems the most natural. Sigma is the most natural candidate
to consider for evaluating. Sigma’s decision cycle is both
mixed (symbolic+subsymbolic, including capable of neural
processing) and hybrid (discrete+continuous) as required by
proposal. Sigma’s cognitive cycle does not yet support
embeddings on operators and this is an extension that will
have to be added.

Conclusion and Future Work
A method to augment cognitive architectures with
generative LLM memory was proposed. The integration
assumes a cognitive cycle that is capable of simultaneously
processing symbolic and sub-symbolic information.
Various aspects of the integration have been independently
demonstrated in Sigma or Soar but some extensions to
Sigma will have to be made to support the proposal.

284

Acknowledgments
The authors would like to thank Taesang Yoo and June
Namgoong of Wireless R&D, Qualcomm Research for
several fruitful discussions on LLMs and cognitive
architectures.

 References
Dosovitskiy, A., Beyer, L., Kolsenikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., & Houlsby, N. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint,
arXiv:2010.11929.
Joshi, H., Rosenbloom, P. S., & Ustun, V. 2014. Isolated word
recognition in the Sigma cognitive architecture. Biologically
Inspired Cognitive Architectures(10), 1-9.
Kirk, J., 2019. Learning Hierarchical Compositional Task
Definitions through Online Situated Interactive Language
Instruction. PhD dissertation, Department of Computer Science,
University of Michigan, Ann Arbor, MI.
Kirk, J. R., Lindes, P., & Wray, R. 2023. Improving Knowledge
Extraction from LLMs for Robotic Task Learning through Agent
Analysis . arXiv preprint, arXiv:2306.06770 [cs.AI]. Ithaca, NY:
Cornell University Library.
Kschischang, F. R., Frey, B. J., & Loeliger, H.-A. 2001. Factor
graphs and the sum-product algorithm. IEEE Transactions on
Information Theory, 47, 498-519.
Laird. 2012. The Soar Cognitive Architecture. Cambridge, MA:
MIT Press.
Langley, P., Laird, J. E., & Rogers, S. 2009. Langley, Pat, John E.
Laird, and Seth Rogers. Cognitive Systems Research, 10(2), 141-
160.
Lester, B., Al-Rfou, R., & Constant, N. 2021. The power of scale
for parameter-efficient prompt tuning. arXiv preprint,
arXiv:2104.08691 [cs.CL]. Ithaca, NY: Cornell University
Library.
McKenna, N., Li, T., Cheng, L., Hosseini, M. J., Johnson, M., &
Steedman, M. 2023. Sources of Hallucination by Large Language
Models on Inference Tasks. arXiv preprint, arXiv:2305.14552
[cs.CL]. Ithaca, NY: Cornell University Library.
Newell. 1973. You can't play 20 questions with nature and win:
Projective comments on the papers of this symposium. (W. G.
Chase, Ed.) Visual Information processing.
Newell. 1978. Harpy, production systems and human cognition.
Perception and production of fluent speech, 299-380.
Newell. 1990. Unified theories of cognition. Cambridge, MA:
Harvard University Press.
Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., &
Bernstein, M. S. 2023. Generative agents: Interactive simulacra of
human behavior. arXiv preprint arXiv:2304.03442 [cs.HC]. Ithaca,
NY: Cornell University Library.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., & Zettlemoyer, L. 2018. Deep contextualized word
representations. CoRR abs/1802.05365.
Raschka, S. 2023 Understanding Large Language Models -- A
Transformative Reading List.
https://sebastianraschka.com/blog/2023/llm-reading-list.html.
Accessed: 2023-08-01.

Reynolds, L., & McDonell, K. 2021. rompt programming for large
language models: Beyond the few-shot paradigm. . CHI
Conference on Human Factors in Computing Systems Extended
Abstracts of the 2021 , pp 1-7.
Rosenbloom. 2012a. Deconstructing reinforcement learning in
Sigma. Proceedings of the 5th Conference on Artificial General
Intelligence, (pp. 262-271).
Rosenbloom. 2013. The Sigma cognitive architecture and system.
AISB Quarterly, 136, 4-13.
Rosenbloom, P. S., Demski, A., & Ustun, V. 2016. The Sigma
cognitive architecture and system: Towards functionally elegant
grand unification. Journal of Artificial General Intelligence, 7, 1-
103.
Rosenbloom, P. S., Demski, A., & Ustun, V. 2016. The Sigma
cognitive architecture and system: Towards functionally elegant
grand unification. Journal of Artificial General Intelligence, 7, 1-
103.
Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A.,
Shinohara, T., & Arikawa, S., 1999. Byte Pair encoding: A text
compression scheme that accelerates pattern matching.
https://www.researchgate.net/profile/Takeshi-
Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_C
ompression_Scheme_That_Accelerates_Pattern_Matching/links/0
2e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-
Compression-Scheme-That-Accelerates-Pattern-Matching.pdf.
Accessed: 2023-08-01.
Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S.
2020. Autoprompt: Eliciting knowledge from language models
with automatically generated prompts. arXiv preprint,
arXiv:2010.15980 [cs.CL]. Ithaca, NY: Cornell University
Library.
Wray, R. E., Kirk, J. R., & Laird, J. E. 2021. Language Models as
a Knowledge Source for Cognitive Agents. arXiv preprint,
arXiv:2109.08270 [cs.AI]. Ithaca, NY: Cornell University Library.

285

https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf
https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf
https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf
https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf
https://www.researchgate.net/profile/Takeshi-Shinohara/publication/2310624_Byte_Pair_Encoding_A_Text_Compression_Scheme_That_Accelerates_Pattern_Matching/links/02e7e522f8ea00c318000000/Byte-Pair-Encoding-A-Text-Compression-Scheme-That-Accelerates-Pattern-Matching.pdf

	Abstract
	Cognitive Architectures
	Large Language Models
	LLM Usage in Cognitive Architecture
	Conclusion and Future Work

