AAAI Fall Symposium Series (FSS-23)

Memory Matters: The Need to Improve Long-Term Memory in LLM Agents

Kostas Hatalis', Despina Christou', Joshua Myers?, Steven Jones®, Keith Lambert*, Adam
Amos-Binks?, Zohreh Dannenhauer’, Dustin Dannenhauer!

I GoCharlie.ai, Allentown PA 18106
2 Applied Research Associates, Inc., Raleigh, NC 27616
3 Center for Integrated Cognition, Ann Arbor, MI 48105
4 Cocoa Al, Chicago, IL 60642
5 Metron, Inc., Reston, VA 20190
kostas @ gocharlie.ai, despina@ gocharlie.ai, jamyers @ara.com, steven.jones @cic.igmri.org, keith@gococoa.ai,
aamosbinks @ara.com, dannenhauerz @metsci.com

Abstract

In this paper, we provide a review of the current efforts to de-
velop LLM agents, which are autonomous agents that lever-
age large language models. We examine the memory man-
agement approaches used in these agents. One crucial aspect
of these agents is their long-term memory, which is often
implemented using vector databases. We describe how vec-
tor databases are utilized to store and retrieve information in
LLM agents. Moreover we highlight open problems, such as
the separation of different types of memories and the manage-
ment of memory over the agent’s lifetime. Lastly, we propose
several topics for future research to address these challenges
and further enhance the capabilities of LLM agents, includ-
ing the use of metadata in procedural and semantic memory
and the integration of external knowledge sources with vector
databases.

Introduction

Over the last year, there has been considerable interest in au-
tonomous agents capable of leveraging large language mod-
els (LLMs). LLMs are evolving at a rapid pace, each with
their own trade-off between size, training cost, and latent
representation thanks to the availability of large corpuses of
text and the development of the attention mechanism. Their
large knowledge bases and general reasoning are bootstrap-
ping the deployment of specialized chat agents, coding assis-
tants (e.g., copilot (GitHub 2023)), and technical question-
answering (e.g., AskYourPDF (AskYourPDF 2023)). We re-
fer to any agent system that relies on an LLM, in capacities
beyond human-machine interfaces (such as task decomposi-
tion, planning, or task execution), as an LLM agent.

Pairing LLMs with autonomy requires memory systems.
These memory systems ensure that interactions are coher-
ent, contextual, and efficient and that the system can learn
and adapt over time. Efforts like Auto-GPT (Significant-
Gravitas 2023) ask a human user to describe a goal in
natural language and proceed to decompose the task into
subtasks that are then executed via terminal commands
and API calls. Information from earlier executions of sub-
tasks is stored as memories to accomplish future subtasks.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

277

Short-term memory was implemented by prepending pre-
vious subtask prompts and results to subsequent subtask
calls. Since LLMs have fixed-size context windows, com-
plex tasks quickly generate more information than can fit
within these limits. Long-term memory solutions currently
implemented via vector databases have significant limita-
tions. We review the current efforts to develop LLM agents,
describe their use of vector databases for long-term memory,
identify open problems in using vector databases as long-
term memory, and propose topics for future work.

Recent LLLM Agents

LLM agents are a recent but rapidly evolving trend. These
agents independently perform tasks, create new ones, prior-
itize them, and adapt to changing requirements to achieve
a specific objective. LLMs, such as GPT-4, serve as the
core controller for these agents. Most LLM agents utilize a
framework containing at least the following components, all
implemented as LLM API calls with different prompts: plan-
ning, task execution, memory management, and tool use.

Planning decomposes complex high-level tasks into
smaller, simpler sub-tasks recursively until sub-tasks are ex-
ecutable. Once the original high-level task is fully decom-
posed into executable sub-tasks, task execution proceeds se-
quentially. Each task attempt is checked for success and is
re-tried until it succeeds, enabling limited adaptation ca-
pabilities. Memory management addresses short-term and
long-term information storage outside of LLM’s context
window, allowing agents to retain context-specific knowl-
edge and recall past experiences. API calls to external tools
enable LLM agents to access real-time information, execute
code, and leverage proprietary databases.

A formal example of such a framework is MRKL (Mod-
ular Reasoning, Knowledge, and Language) (Karpas et al.
2022), a neuro-symbolic architecture for autonomous agents
that combines the power of LLMs with expert modules. The
LLM acts as a central controller, routing inquiries to the
most suitable expert module based on its understanding of
the task and the capabilities of the modules. These modules
can be neural or symbolic, providing the agent with diverse
tools for handling different tasks. MRKL enables agents to
leverage both neural and symbolic reasoning, allowing them
to tackle complex problems effectively.



Several examples of autonomous agents with LLMs have
garnered noteworthy attention. One of the most well-known
examples is Auto-GPT (Significant-Gravitas 2023). Auto-
GPT leverages GPT-4 as its controller and operates with
minimal user input. It employs a self-assigned goal-oriented
approach to break down objectives into sub-tasks and uses
various tools to achieve them. Noteworthy capabilities in-
clude writing, debugging, testing, and editing code. How-
ever, challenges persist, such as confabulatory tendencies
and difficulty in task focus and contextual understanding.

Other examples are BabyAGI (Nakajima 2023) and
SmartGPT (Corman 2023), which demonstrate Al-powered
task management systems. BabyAGI utilizes LLMs like
OpenAl and vector databases like Chroma or Weaviate to
generate, prioritize, and execute tasks. By leveraging LLMs’
natural language processing capabilities, BabyAGI creates
new tasks based on an objective and the results of previ-
ous tasks, enabling it to adapt and evolve based on chang-
ing requirements. SmartGPT, on the other hand, focuses on
enabling LLMs to complete complex tasks without user in-
put. It achieves this by breaking tasks into minor problems,
collecting information from external sources, and leveraging
the internet.

GPT-Engineer (Osika 2023) is an open-platform project
that aims to make it easy for developers to build and ex-
tend their own autonomous agents. By generating an entire
codebase based on a user-defined prompt, GPT-Engineer en-
ables developers to customize the behavior of their agents
according to their specific needs. This project highlights the
potential of LLMs in code generation and the creation of
personalized code-generation toolboxes.

The agents mentioned above are considered generalist
agents to be used to solve open ended problems. ChemCrow
(Bran et al. 2023) is an example of a domain-specific LLM
agent. It utilizes LLMs augmented with expert-designed
tools to accomplish organic synthesis, drug discovery, and
materials design tasks. By combining LLMs with special-
ized tools, ChemCrow demonstrates the potential of au-
tonomous agents in specific domains and showcases how
LLMs can be integrated with existing expert knowledge.

Generative Agents (Park et al. 2023) takes a unique ap-
proach by creating a sandbox environment where multiple
virtual characters, controlled by LLM-powered agents, in-
teract with each other. Inspired by The Sims, this experi-
ment combines LLMs with memory, planning, and reflection
mechanisms to simulate believable human behavior. Gener-
ative Agents highlights the potential of autonomous agents
in interactive applications and the integration of LLMs in
creating realistic virtual environments.

Long-Term Memory via Vector Databases
The common model of cognition (Laird, Lebiere, and
Rosenbloom 2017) is both a theoretical description of the
memory systems that underlie human cognition (Hake, Sib-
ert, and Stocco 2022) and a description of real computational
systems (cognitive architectures) used to implement intel-
ligent agents. The common model distinguishes between
long-term memory and working memory and is depicted in
Figure 1. Working memory represents the current situation,

278

Long-term Declarative Memories

Semantic Memory Episodic Memory

Procedural

king M
Long-term Memory Rionkinsiemery

() (D

Figure 1: The common model of cognition, altered to distin-
guish between episodic and semantic memory. (Jones and
Laird 2023)

including the state of current reasoning and abstractions of
the ongoing physical situation of the agent’s embodiment.
Long-term memory (LTM) systems alter an agent’s behav-
ior by changing the contents of working memory, which can
lead to changes to the abstract representations that control
embodiment. Long-term memory is subdivided into proce-
dural, semantic, and episodic memory. These memory sys-
tems must operate incrementally and in real time, maintain-
ing reactivity to environmental changes.

One approach to leveraging LLMs is to attach a queryable
LLM module to a cognitive architecture. In this approach,
the cognitive architecture’s long-term memory systems can
store knowledge learned from interpreting LLM responses
(Kirk et al. 2022). However, this differs from LLM agents
described above that put the LLM more in control. Another
potential approach is to more directly attach LLMs to spe-
cific cognitive architecture long-term memory modules, but
it is unclear how, given cognitive architecture assumptions
on the forms of mental representations and grounding to an
embodiment where LLMs alone do not provide a theory of
mental representations or grounding.

We propose that LLM agents can potentially align with
the functionality described in the common model of cog-
nition, then review implementations of long-term memory
for these agents. An LLM context window can abstractly
function similarly to working memory. LLM agents can use
a description of the current situation and retrieve contents
of a long-term memory store to populate a prompt tem-
plate. Then, a prompt template program and LLM collec-
tively function similarly to procedural memory by creating
prompts and responses to alter the contents of a context
window over time. Storage of these contents over time (es-
pecially to timescales beyond what a context window can
support) to an external database can provide episodic mem-
ory storage. Additionally, derived facts (either mined from
episodic memory or reasoned) can be stored separately as
semantic memory. We now describe how vector databases
in implemented LLM agents support long-term memory ca-
pabilities, followed by risks and limitations.



Vector Databases

Vector embeddings have become a popular representation
for memories because transformer neural network LLMs use
vector embeddings natively. Input data as raw text is run
through an encoder network that embeds the data in a fixed-
dimensional space. These embeddings represent data such
that distance-based measures can be used to retrieve similar
data.

A vector database is designed to support data storage and
retrieval in an embedding representation rather than more
structured, scalar data in traditional relational databases.
Queries for vector databases rely on similarity matching to
return the top-k£ matches, using algorithms such as cosine
similarity, euclidean distance, or dot product. Metadata can
be added as an additional filtering step' that offers condi-
tional logic filters on top of similarity measure-based re-
trieval (e.g., the year metadata field must be greater than
or equal to >2020).

One instance of a vector database being used to augment
an LLM is Teenage-AGI (Pixel 2023). In this implemen-
tation, each “thought” and memory that the LLM outputs
or perceives is stored in a respective Pinecone vector DB.
Whenever a new thought or perception is processed, both
databases are queried for the top-k£ matches, and these are
added to the context for the LLM prompt (aka the LLM
agent’s working memory). This allows the LLM to attend to
previous experiences related to the current thought or mem-
ory, which often improves the accuracy and meaningfulness
of the output as seen in research on few-shot prompting.

Another instance of an LLM agent utilizing a vector
database is Voyager, an “LLM-powered embodied lifelong
learning agent” (Wang et al. 2023), which acts in Minecraft.
Descriptions of skills (computer programs that interact with
the Minecraft engine) that an agent has learned are retained
in a vector database and a GPT model is used to generate
plans. Plans and a description of the environment are embed-
ded and the closest skills in the db are retrieved. The skills
are refined through iterative prompting until they are cor-
rect, and plans are generated by chain-of-thought prompting
(Zhang et al. 2022) with the agent’s current state as context.

The two previous approaches to enhancing LLM agent
performance with vectors databases add different types of
memory to the agent. In the case of Teenage-AGI, the
database contains declarative and episodic memories (em-
beddings of previous experiences and thoughts) while in the
case of Voyager, the database contains procedural memories
(embeddings of descriptions of skills).

In both cases, the database quickly retrieves relevant ma-
terial to the current state and task even though what the in-
formation is used for is different (informing context vs de-
ciding what skills to use). These approaches are similar to
Kahneman’s System 1 (Kahneman 2011) — the fast, associa-
tive, and intuitive part of human consciousness. However,
without a proper analog to the logical and slower System 2,
underlying issues with LLM agents such as hallucinations
and irrational planning will continue to plague both the data

"https://docs.pinecone.io/docs/metadata-filtering

279

stored in long-term memory and the executive functioning
and planning of the agent.

Fundamental Problems

Separation between types of memories: Poor retrieval
may occur if all types of long-term memory (procedural,
episodic, and semantic) are stored in the same vector
database. For example, an agent could have the knowledge
that the Earth is a globe stored in its semantic memory
but have recently concluded a debate on the flatness of the
Earth. The episodic memories of an argument that the Earth
is flat are directly inconsistent with the agent’s semantic
memory. Therefore memories must be segregated based on

type.

Infinite subtask loop: Current LLM agents can become
stuck trying to revisit the same sub-task over and over. This
usually happens when a subtask fails and the LLM suggests
one or more alternative solutions that also fail. With each
failure, the LLM keeps suggesting from a fixed set of
solutions without trying something new. Episodic memory
offers a way to detect if failures are reoccuring, since each
failure is stored in the long-term memory. Simpler solutions,
such as dev-GPT ? count the number of failures per subtask
strategy and try a new strategy after 10 failures.

Lifelong Memory Management: LLM agents will accu-
mulate many memories as they solve tasks over their life-
time. Vector databases offer performance features such as
indexing, scaling, and metadata-filtered queries, but don’t
address issues such as how the agent’s information flow is
segmented or how memories are organized under metadata
categories. Continuously stored memories will result in a
more complete agent history at the cost of space and time for
retrieval. Solutions to forgetting such as (Martinez-Plumed
et al. 2015) may be required to maintain performance over
many tasks.

Conclusions and Future Work

We review recent efforts to develop LLM agents: agents that
use LLMs in capacities beyond human-machine interfaces
such as problem solving. Agents rely on information over
various time horizons to accomplish complex, multi-step
tasks. We discuss how short-term memory and long-term
memory are currently being used in LLM agents by refer-
encing the common model of cognition (Laird, Lebiere, and
Rosenbloom 2017), and elaborate on the risks with using
vector-databases for long-term memory.

In future work, exploring the development of learning
mechanisms for metadata in both procedural and semantic
memory would be valuable. This would involve investigat-
ing how the agent can autonomously learn and update meta-
data attributes based on experiences and interactions with
the environment. For procedural memory, the agent could
learn metadata attributes such as the success rates, reliability
scores, or preferences of different actions, allowing it to pri-
oritize and adapt its decision-making process. Similarly, for

*https://github.com/jina-ai/dev-gpt



semantic memory, the agent could learn metadata attributes
that capture the occurrence frequencies, probabilistic infor-
mation, or temporal context of concepts and relationships,
enabling more efficient retrieval and utilization of memories.
Generalizing these, future work could explore the capacity
of LLM agents to use metamemory judgments to deliber-
ately alter memory indexing.

It would also be beneficial to investigate the integration of
metadata attributes with external knowledge sources, such
as ontologies or knowledge graphs. An agent could lever-
age these sources’ rich semantic relationships and structured
information by linking the LTM with external knowledge
bases. This integration could enable more comprehensive
and accurate metadata attributes, as well as facilitate the rea-
soning and inference capabilities of the LLM. For instance,
an agent could use the metadata attributes to perform se-
mantic searches or traverse the knowledge graph to retrieve
related concepts and relationships. This would enhance
an agent’s ability to contextualize and interpret memories
within a broader knowledge framework, leading to more ro-
bust decision-making and problem-solving capabilities. Re-
cent approaches such as OntoGPT and graphGPT look to
achieve semantic parsing and node generation through the
use of LLMs to create the Knowledge base/ontology from
which an episodic or declarative LTM grounding can take
place.

References

AskYourPDF. 2023. AskYourPDF. https://askyourpdf.com/.
Accessed: 2023-09-21.

Bran, A. M.; Cox, S.; White, A. D.; and Schwaller, P. 2023.
ChemCrow: Augmenting large-language models with chem-
istry tools. arXiv preprint arXiv:2304.05376.

Corman. 2023. SmartGPT. https://github.com/Cormanz/
smartgpt. Accessed: 2023-09-12.

GitHub. 2023. GitHub Copilot. https://github.com/features/
copilot. Accessed: 2023-09-19.

Hake, H. S.; Sibert, C.; and Stocco, A. 2022. Inferring a
Cognitive Architecture from Multitask Neuroimaging Data:
A Data-Driven Test of the Common Model of Cognition Us-
ing Granger Causality. Topics in Cognitive Science, 14(4):
845-859.

Jones, S. J.; and Laird, J. E. 2023. A cognitive architecture
theory of anticipatory thinking. Al Magazine.

Kahneman, D. 2011. Thinking, Fast and Slow. Macmillan.
ISBN 978-1-4299-6935-2.

Karpas, E.; Abend, O.; Belinkov, Y.; Lenz, B.; Lieber, O.;
Ratner, N.; Shoham, Y.; Bata, H.; Levine, Y.; Leyton-Brown,
K.;etal. 2022. MRKL Systems: A modular, neuro-symbolic
architecture that combines large language models, external

knowledge sources and discrete reasoning. arXiv preprint
arXiv:2205.00445.

Kirk, J. R.; Wray, R. E.; Lindes, P.; and Laird, J. E. 2022.
Evaluating diverse knowledge sources for online one-shot
learning of novel tasks. arXiv preprint arXiv:2208.09554.

280

Laird, J. E.; Lebiere, C.; and Rosenbloom, P. S. 2017. A
standard model of the mind: Toward a common computa-
tional framework across artificial intelligence, cognitive sci-
ence, neuroscience, and robotics. Ai Magazine, 38(4): 13—
26.

Martinez-Plumed, F.; Ferri, C.; Hernandez-Orallo, J.; and
Ramirez-Quintana, M. J. 2015. Knowledge acquisition with
forgetting: an incremental and developmental setting. Adap-
tive Behavior, 23(5): 283-299.

Nakajima, Y. 2023. BabyAGI. https://github.com/
yoheinakajima/babyagi. Accessed: 2023-09-13.

Osika, A. 2023. GPT Engineer. https://github.com/
AntonOsika/gpt-engineer. Accessed: 2023-09-22.

Park, J. S.; O’Brien, J. C.; Cai, C. J.; Morris, M. R.;
Liang, P.; and Bernstein, M. S. 2023. Generative agents:

Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442.

Pixel, S. 2023. Teenage-AGI. https://github.com/seanpixel/
Teenage- AGI. Accessed: 2023-09-19.

Significant-Gravitas. 2023. Auto-GPT: An Autonomous
GPT-4 Experiment. https://github.com/Significant-Gravitas/
Auto-GPT. Accessed: 2023-09-18.

Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.; Zhu,
Y.; Fan, L.; and Anandkumar, A. 2023. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Zhang, Z.; Zhang, A.; Li, M.; and Smola, A. 2022. Auto-
matic Chain of Thought Prompting in Large Language Mod-
els. In The Eleventh International Conference on Learning
Representations.



