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Abstract

We present an approach to building systems that emulate
human-like intelligence. Our approach uses machine learn-
ing technology (including generative AI systems) to extract
knowledge from pictures, text, etc., and represents it as (pre-
defined) predicates. Next, we use the s(CASP) automated
commonsense reasoning system to check the consistency of
this extracted knowledge and reason over it in a manner very
similar to how a human would do it. We have used our ap-
proach for building systems for visual question answering,
task-specific chatbots that can “understand” human dialogs
and interactively talk to them, and autonomous driving sys-
tems that rely on commonsense reasoning. Essentially, our
approach emulates how humans process knowledge where
they use sensing and pattern recognition to gain knowledge
(Kahneman’s System 1 thinking, akin to using a machine
learning model), and then use reasoning to draw conclusions,
generate response, or take actions (Kahneman’s System 2
thinking, akin to automated reasoning).

Introduction
I don’t see that human intelligence is something that
humans can never understand.

– John McCarthy, March 1989

Words are not in themselves carriers of meaning, but
merely pointers to shared understanding.

– David Waltz

The long-term goal of AI research is to build systems that
are as good as humans. Consider natural language under-
standing (NLU), for example. NLU is a challenging task
since there are multiple skills that humans employ to un-
derstand a typical sentence. First, a person needs to interpret
a sentence and understand its meaning. Second, they need
to be able to interpret the meaning of the sentence in the
current context, using the commonsense knowledge they al-
ready possess. This helps resolve ambiguities in the sentence
and assess if any information is missing. Third, if required,
they should be able to pose a question that would seek to fill
in any information that is missing. Finally, once they attain a
complete understanding of the sentence, they should be able
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to explain what they understood. We believe that all of these
skills are important for an NLU system that seeks to reliably
answer questions or hold a conversation with a human.

Likewise, answering questions about a given picture (Vi-
sual Question Answering or VQA) is another task that has
been undertaken in AI. Humans generally first recognize the
objects in the picture, then they reason with the questions
asked about the picture using their commonsense knowl-
edge. An effective automated VQA system should work in a
similar way. Thus, to “perceive” a picture, ideally, a system
should have intuitive abilities like object and attribute recog-
nition and understanding of spatial-relationships. To answer
questions, it must use reasoning. Natural language questions
are complex and ambiguous by nature, and also require com-
monsense knowledge for their interpretation. Most impor-
tantly, reasoning skills such as counting, inference, compar-
ison, etc., are needed to answer these questions.

We strongly believe that to build intelligent systems that
are as good as humans, we need to approximate the process
that humans follow. When humans view a picture, view a
scene, or read a text, they extract the information in that pic-
ture, scene, or text. This information then resides in their
mind in some abstract form as knowledge. Similarly, knowl-
edge is extracted using other senses (taste, smell, touch).
Humans then interpret this extracted knowledge in the con-
text of commonsense knowledge that they have accumulated
over the years that also resides in their mind. They might
use the commonsense knowledge to conclude, for example,
that the knowledge extracted is inconsistent, or perhaps in-
complete. The extracted knowledge, in conjunction with the
commonsense knowledge, is also used to draw new conclu-
sions using deduction, abduction, or even induction (Gupta
2022).

To build AI systems, we follow an approach similar to
what humans employ. We use machine learning technol-
ogy to extract knowledge from pictures, scenes, text, etc.
We represent this knowledge as pre-defined logical pred-
icates. Commonsense knowledge is represented using an-
swer set programming (Gelfond and Kahl 2014). New con-
clusions can be drawn from the extracted knowledge to-
gether with the commonsense knowledge. A question can
be converted into a query that can then be posed against the
extracted knowledge combined with commonsense knowl-
edge. Knowledge can be extracted from pictures as well as
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text using generative AI tools such as GPT-3 (Brown et al.
2020) and GPT-4 (OpenAI 2023).

In the past, we have used machine learning tools such as
YOLO (Redmon et al. 2016) to label a picture with pred-
icates describing the objects in the picture, their attributes,
their relative spatial placement, etc. These extracted pred-
icates can then be used in conjunction with commonsense
knowledge represented in answer set programming (Gelfond
and Kahl 2014) to answer questions about the picture (Basu,
Shakerin, and Gupta 2020) or for making (autonomous)
driving decisions based on scene analysis (Kothawade et al.
2021). Reasoning involving predicates and commonsense
knowledge is performed through the use of answer set pro-
gramming (Gelfond and Kahl 2014).

Likewise, we use large language models (LLMs) such
as GPT-3 (Brown et al. 2020) to extract knowledge from
text and represent it using pre-defined predicates (akin to
an ontology). In conjunction with commonsense knowledge,
these predicates can be reasoned over to check their con-
sistency, to find missing information, draw new conclusion,
or to advance a conversation. The reasoning with extracted
predicates and commonsense knowledge is performed us-
ing answer set programming (Gelfond and Kahl 2014). In
particular, we use the s(CASP) goal-directed ASP system
to perform this reasoning (Arias et al. 2018). We have used
this framework to build task-specific chatbots that can “un-
derstand” human dialogs and that can verbally interact with
humans to achieve a specific goal (Zeng et al. 2023).

Our framework has many advantages. First, since it re-
lies on reasoning over extracted predicates, every decision
can be explained. Second, consistency of information im-
plicit in the extracted predicates can be checked. Finally, if
the commonsense knowledge being used is correct, we can
guarantee that any conclusion drawn is also correct.

In the rest of the paper we give the relevant background,
and then present one applications of our framework—a chat-
bot that can “understand” dialogs and converse with a human
user to achieve a goal. Other applications of the framework
have been developed that include the AQuA visual question
answering system (Basu, Shakerin, and Gupta 2020) and the
AUTO-DISCERN autonomous driving system (Kothawade
et al. 2021), however, these are not described here.

Background
Large Language Models: Until recently, transformer-based
deep learning models have been applied to NLP tasks by
training and fine-tuning them on task-specific datasets (Ca-
sola, Lauriola, and Lavelli 2022). With the advent of Large
Language Models, the paradigm changed to teaching a lan-
guage model any arbitrary task using just a few demonstra-
tions, called in-context learning. Brown et al. (Brown et al.
2020) introduced an LLM called GPT-3 containing approx-
imately 175 billion parameters that have been trained us-
ing a massive corpus of filtered online text, on which the
well-known ChatGPT system is based. The model was able
to perform competitively on several tasks such as question-
answering, semantic parsing (Shin and Van Durme 2022),
and machine translation. However, such LLMs tend to make

simple mistakes in tasks such as semantic (commonsense)
and mathematical reasoning (Floridi and Chiriatti 2020; Wei
et al. 2022).

In our work, we use GPT-3 for semantic parsing and leave
the reasoning part to answer set programming based com-
monsense reasoning systems such as s(CASP). We theo-
rize that given the vast pre-training they go through, LLMs
can be used to automatically extract knowledge inherent in
the text, just like humans do. Our experiments confirm that
LLMs are able to extract such knowledge as predicates from
sentences—with high accuracy—after learning from a few
example demonstrations. Thus, our experiments show that
LLMs are able to extract, what linguists call, the deep struc-
ture of a sentence, given a sentence’s surface structure.

Answer Set Programming and the s(CASP) system: The
s(CASP) system (developed by Arias et al.(Arias et al.
2018)) is an answer set programming (Gelfond and Kahl
2014) system that supports predicates, constraints over non-
ground variables, uninterpreted functions, and, most impor-
tantly, a top-down, query-driven execution strategy. These
features allow returning answers with non-ground variables
(possibly including constraints among them) and compute
partial models by returning only the fragment of a stable
model that is necessary to support the answer to a given
query. The s(CASP) system supports constructive negation
based on a disequality constraint solver and unlike Prolog’s
negation as failure and ASP’s default negation, not p(X)
can return bindings for X on success, i.e., bindings for which
the call p(X)would have failed. Additionally, s(CASP) sys-
tem’s interface with a constraint solver (over reals) allows
for sound non-monotonic reasoning with constraints.

Complex commonsense knowledge can be represented in
ASP and the s(CASP) query-driven predicate ASP system
can be used for querying it (Gupta 2022; Gelfond and Kahl
2014). Commonsense knowledge can be emulated using (i)
default rules, (ii) integrity constraints, and (iii) multiple pos-
sible worlds (Gelfond and Kahl 2014; Gupta 2022). Default
rules are used for jumping to a conclusion in the absence of
exceptions, e.g., a bird normally flies unless it’s a penguin.
Default rules with such exceptions represent an elaboration-
tolerant way of representing knowledge (Gelfond and Kahl
2014).
flies(X) :- bird(X),

not abnormal bird(X).
abnormal bird(X) :- penguin(X).

Integrity constraints allow us to express impossible situa-
tions and invariants. For example, a person cannot sit and
stand at the same time.
false :- person(X), sit(X), stand(X).

Finally, multiple possible worlds allow us to construct alter-
native universes that may have some of the parts common
but other parts inconsistent. For example, the cartoon world
of children’s books has a lot in common with the real world
(e.g., birds can fly in both worlds), yet in the former birds
can talk like humans but in the latter they cannot.

Default rules are used to model a bulk of our common-
sense knowledge. Integrity constraints help in checking the
consistency of the information extracted. Multiple possible
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worlds allow us to perform assumption-based reasoning (for
example, knowing that “Alice loves Bob”, we could assume
that either Bob also loves Alice or he does not).

Several commonsense reasoning applications have al-
ready been developed using ASP and the s(CASP) system
(Morris 2023; Chen et al. 2016). In application reported in
this paper, we have kept the commonsense reasoning com-
ponent simple, as our main goal is to illustrate our frame-
work for combining LLMs and ASP to develop NLU appli-
cations that are explainable and reliable. Because of the use
of ASP, it is also possible to detect inconsistencies or biases
in the text by reasoning over the predicates extracted. Justi-
fication for each response can also be given, as the s(CASP)
system can generate justifications as proof trees (Arias et al.
2020).

Concierge Bot: A Goal-Directed
Conversational Bot

In this section we describe the conversational bot that we
have developed using our framework. We first leverage
LLMs to extract implicit and explicit knowledge predicates
from a user’s dialogue and then reason over the extracted
predicates using s(CASP) to satisfy the user’s request. To
illustrate the applicability of our method to conversational
AI, we narrow the domain of the bot to a very specific prob-
lem: restaurant recommendations. This ensures that com-
monsense knowledge that needs to be modeled is within a
limited domain that can be expanded later as necessary. We
call this bot the concierge bot. Since the conversational bot
is an interactive application, the commonsense reasoning in-
volved can be complex, since the reasoner has to keep track
of the state of the conversation. In order to make a restaurant
recommendation, the bot needs to ask the user for informa-
tion (preferred cuisine, price range, etc.) and recommend a
restaurant once all information is procured. At any stage, the
bot can explain why it’s asking for a given piece of informa-
tion as well as the reason for its recommendation. The ben-
efits of our framework are more apparent in this application.
The bot can ask user questions to acquire missing informa-
tion or to verify if any errors were made during predicate
generation. We show an example transcript of an interac-
tion session below of the concierge bot with a human user.
The English responses are generated using GPT-3 again after
learning from predicate-text demonstrations (essentially, us-
ing the reverse of the text-to-predicate generation process).

Bot: Hi, what can I assist you with?
Human: Can you help me find a place for

food with curry? Not a pricey one.
Bot: Are you looking for a place with a

specific customer rating?
Human: No, I don’t mind the rating.
Bot: What kind of restaurant would you

like to visit?
Human: A normal restaurant.
Bot: Would you prefer somewhere

family-friendly for tonight?
Human: No. Just for myself.
Bot: Unfortunately, we cannot provide the

results to your request.

Human: How about one with a high price?
But it should be then at least
above average quality.

Bot: Are you looking for a Thai place?
The Rice Boat may be suitable but it
can be pricey and customer feedback
has been mixed. Additionally, it may
not have the best atmosphere for
families.

Human: Yes, that’s what I need! Tell me
where it is.

Bot: The Rice Boat, located on 901 Bangkok
Road, has an average customer rating
and offers Thai cuisine at a premium
cost. Unfortunately, it is unsuitable
for children.

Human: Great! Thank you for the service!
Bot: It’s no problem, I’m happy to assist.

Predicate Generation Using LLMs
We adapt examples from the E2E dataset released by
Novikova et al. (Novikova, Dušek, and Rieser 2017) for our
use case. We employ in-context learning where we give the
LLM examples of pairs containing a natural language sen-
tence and the corresponding restaurant predicates. We use
the following six predicates from the dataset: restaurant-
name, eatType (as establishment type), food (as cuisine),
priceRange, customerRating, familyFriendly.

We use in-context learning where we provide the GPT-
3 model with 11 selected examples from the dataset, which
covers all the predicates along with their possible arguments.
This ensures that the LLM is aware of every possible pred-
icate as well as every possible argument value these predi-
cates can take. To assess the viability of LLMs for the pred-
icate generation task, we tested the model using the first 500
examples in the E2E training set and obtained an accuracy
of 89.33%. The accuracy metric we use is designed to ac-
count for the generation of correct predicates as well as ar-
guments. The high predicate generation accuracy supports
the feasibility of using our framework for the concierge bot.
Our framework can similarly be applied, to build any robust
domain-specific conversational bots such as a front desk of-
fice receptionist or an airline reservation assistant.

Concierge Bot System Construction
To make GPT-3 better understand the meaning of each pred-
icate, we first change the predicate names in E2E as fol-
lows: restaurnt-name, typeToEat, cuisine, priceRange,
customerRating, familyFriendly. We also add two predi-
cates address and phoneNumber to record the location and
contact information for the user’s query. An external pred-
icate prefer is also added to capture the user’s preference
(such as curry, spicy, etc.) The information asked by the user
is expressed by the value “query”. We specialized GPT-3
with about a dozen example sentences along with the cor-
responding predicate(s). Below we show some examples of
the sentences and the predicates generated after this special-
ization.

Sentence: Fitzbillies coffee shop provides
a kid-friendly venue for Chinese food
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at an average price point in the
riverside area. It is highly rated
by customers.

Predicates: restaurant-name(Fitzbillies),
typeToEat(’coffee shop’),
cuisine(Chinese), priceRange(moderate),
customerRating(high), familyFriendly(yes)

Sentence: Can you find a place for food at
a low price? Both English and French
cuisine is fine for me.

Predicates: restaurant-name(query),
cuisine([Engish, French]),
priceRange(cheap)

Commonsense knowledge involved in making a restau-
rant recommendation is coded using s(CASP). The inter-
active bot will take in the user’s response and convert it
to predicates using GPT-3. The predicates become part of
the state. At this stage, we check for user preference. For
example, if the user wants curry, Indian and Thai cuisine
would be automatically added to the state through appro-
priate rules. The bot then examines the state to assess if all
the information needed is present so that it can make a rec-
ommendation and if not, it will generate a question to ask
the user for that information. This logic, shown in Figure
1, can be thought of as a state machine and has been re-
ferred to as a conversational knowledge template (CKT) by
Basu et al. (Basu et al. 2021). The concierge bot determines
which predicates are missing in its state to make a recom-
mendation. One of the missing predicates is then selected
and a query is created using it. Note that we use GPT-3
again to generate natural-sounding text from the predicate(s)
corresponding to the response that our bot computes. The
users can also change their preferences during the conver-
sation and our bot can handle that. Take the conversation
mentioned above as an example. When the user asks “Can
you help me find a place for food with curry? I don’t want
a pricey one.”, following predicates are generated by the
GPT-3 text-davinci-003 model: “restaurant-name(query),
prefer(curry), priceRange([cheap, moderate])”. The pred-
icates are then added to the memory of the bot, where the
log of the user requirements of the current conversation is
stored. Note that the predicates “prefer(curry)” and “cui-
sine([indian,thai])” are also added to the state using the
specific commonsense rule we wrote for this purpose (not
shown due to lack of space). After the state gets updated, the
bot checks to see whether any other key information is miss-
ing using another commonsense rule (not shown also due to
lack of space). If no information is missing, the bot comes
to the recommendation step where it searches for the appro-
priate restaurant in its database, consistent with the user’s
input, and outputs it as a recommendation.

Since we use GPT-3 to generate predicates from user ut-
terances, the user has complete freedom in terms of what
they say. GPT-3 is able to extract the appropriate predicates
from the corresponding deep form of the sentence. GPT-3 is
also used to generate the natural language response of the
bot. As a result, the interaction appears quite natural, as the
example above shows.

Experiments
To explore GPT-3’s ability to generate goal-directed con-
versation without the reasoning component that we use, we
tested the conversation directly on GPT-3 with the sample
conversations as input. We showed GPT-3 three full para-
graphs of conversations and asked GPT-3 to generate a simi-
lar conversation according to the user input. The database of
restaurants used by our concierge bot is also included in the
input to the GPT-3 model. An example interactive conversa-
tion directly with GPT-3 is as follows:
Bot: Hello, what can I do for you today?
Human: I’d like to have a family meal with

my children.
Bot: What type of cuisine would you like?
Human: Mexican food is suitable for me.
Bot: What is your desired price range

for the place?
Human: At a higher price, please.
Bot: I recommend The Wrestlers, a coffee

shop serving Mexican cuisine at a
moderate price range. It is
family-friendly and has an average
customer rating. The address is
470 Main Rd.

The responses given by GPT-3 in the above conversation
are correct except for the price range. In the given database,
the restaurant recommended only serves cheap food. Hence,
GPT-3 modified the information to align with the user’s re-
quest. GPT-3 also follows the given examples and asks about
the cuisine and price, but does not request other information
like our framework does. This is because these questions
are not motivated by missing information, unlike in our ap-
proach. This example shows that although GPT-3 used on
its own as a conversational bot is able to generate natural-
sounding sentences fluently, it is unreliable and does not
understand the knowledge given. Bots developed using our
framework do not face such problems because they employ
explicit commonsense reasoning. The methodology we use
to build the concierge bot is explained in more detail in the
paper Zeng et. al. (Zeng et al. 2023).

Conclusion and Future Work
In this extended abstract, we presented a framework for
developing AI systems that attempt to emulate humans.
Knowledge is extracted from a picture, scene, or text us-
ing machine learning technology, including generative AI
systems. This process can be thought of as Kahneman’s
System 1 thinking (Kahneman 2013). The extracted knowl-
edge is represented as (pre-defined) logical predicates. Sub-
sequently, reasoning is performed over these predicates con-
joined with commonsense knowledge using answer set pro-
gramming, specifically, using our s(CASP) system. This
process is akin to Kahneman’s System 2 thinking. While this
framework is just an approximation of how human thinking
works, it allows us to build many interesting applications,
for example, the task-specific chatbot described above.

One disadvantage of our approach is that the predicates
used to represent the extracted knowledge have to be pre-
defined. Also, commonsense knowledge related to these
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Figure 1: The framework of the reasoning system in Concierge Bot. The green boxes indicate the steps done by LLMs and the
orange ones indicate the steps done by s(CASP).

predicates has to be explicitly modeled. The requirement to
define commonsense knowledge impacts scalability. Future
work thus includes: (i) using pre-defined ontologies such as
WordNet and VerbNet as pre-defined set of predicates, (ii)
generating commonsense knowledge automatically, perhaps
using resources such as WordNet, VerbNet, etc.
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