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Abstract

Knowledge engineering is an important task for creating and
maintaining a knowledge base for cognitive models. It in-
volves acquiring, representing, and organizing knowledge in
a form that computers can use to make decisions and solve
problems. However, this process can be a bottleneck for de-
signing and using cognitive models. Knowledge engineering
is a time-consuming and resource-intensive task that requires
subject matter experts to provide information about a domain.
In addition, models can acquire knowledge but require signif-
icant mechanisms to structure that information in a structured
format appropriate for general use. Given the knowledge en-
gineering bottleneck, we propose a solution that relies on nat-
ural language processing to extract key entities, relationships,
and attributes to automatically generate chunks encoded as
triples or chunks from unstructured text. Once generated, the
knowledge can be used to create or add to a knowledge base
within cognitive architectures to reduce knowledge engineer-
ing and task-specific models.

1 Introduction
Cognitive architectures are a type of intelligent system de-
signed to model human cognition. One such type of system
is ACT-R (Anderson and Lebiere 2014): a modular cogni-
tive architecture that includes perceptual, motor, and declar-
ative memory modules integrated with a procedural module
that consists of productions to represent knowledge about
conducting specific tasks. Buffers connect modules in ACT-
R (except for the procedural memory), and the contents of
buffers at a given moment in time represent the state of ACT-
R. ACT-R behavior is guided by a pattern matcher that finds
the production(s) best matching the state of the buffers (en-
vironment) and the series of executed productions and state
changes represent human cognition.

Models developed using the ACT-R architecture can cap-
ture various cognitive activities and reproduce aspects of
human data such as learning, errors, and patterns of brain
activities. However, a significant effort is required to de-
velop and maintain procedural (in the form of productions)
and declarative knowledge for each specific task. Declar-
ative memory is an essential component of ACT-R to ac-
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cumulate knowledge chunks and retrieve chunks. Procedu-
ral knowledge often operates over declarative knowledge
to complete tasks. Given the separation of these modules,
knowledge engineering is an important task for creating and
maintaining a knowledge base for cognitive models that in-
volves acquiring, representing, and organizing knowledge in
a form that intelligent systems can use to make decisions
and solve problems. One reason for this is the difficulty in
acquiring knowledge in a structured format that works with
productions designed to complete a specific task. However,
developing and maintaining both declarative and procedural
knowledge leads to a knowledge engineering bottleneck for
designing and using cognitive models.

Knowledge acquisition is a time-consuming and resource-
intensive task that requires subject matter experts to provide
information about a domain. Therefore, we propose using ar-
tificial intelligence (AI) methods to generate chunks for cog-
nitive architectures to develop the knowledge base required
for specific tasks. Recent advances in AI, such as large lan-
guage models, have significantly improved parsing unstruc-
tured text to structured representations (Drozdov et al. 2022;
Kirk et al. 2022). Inspired by these advances, we focus on
knowledge acquisition to build up the declarative knowledge
for models implemented in ACT-R. As a first attempt, we
focus on generating knowledge chunks for hybrid cognitive
models designed to interact and complete analogical reason-
ing tasks.

Analogical reasoning is a canonical task in human cogni-
tion, and more recently in artificial intelligence, to under-
stand similarities across two or more situations to reason
about target situations (Gentner and Smith 2013; Hope et al.
2017). Specifically, models designed to complete analogical
reasoning tasks aim to understand knowledge and infer new
information by comparing structured representations (Gen-
tner and Forbus 2011; Hough et al. 2023) (see Section 2 for
details). For these types of tasks, collecting knowledge in
the form of structured representations is a significant bottle-
neck for cognitive models. Therefore, we propose automat-
ically generating knowledge in triples or chunks from un-
structured text to help facilitate analogical reasoning capa-
bilities in cognitive architectures. The work relies on a nat-
ural language processing pipeline that first extracts key enti-
ties, relations, and attributes from the input text. Once these
key elements have been identified, the system will generate
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triples or chunks that capture the most important informa-
tion from the text in a structured format using a large lan-
guage model (LLM). Next, we determine the plausibility of
the generated chunks to ensure correctness. Once generated
and verified, the chunks generated by the pipeline can be
used as declarative memory to bootstrap the analogical rea-
soning capabilities for models implemented in ACT-R.

In Section 2, we provide more details on the current ana-
logical reasoning capabilities of ACT-R and highlight limi-
tations in the current approach. Section 4 introduces our so-
lution to address the limitations. Finally, in Section 6, we
present future directions and a summary of our findings.

2 Analogical Reasoning Capabilities for
ACT-R

As mentioned, analogical reasoning is a canonical task that
allows individuals to use prior knowledge and experiences
and apply them to new tasks. Analogies are defined by
comparing the (labeled) relationships between entities and
other relations. A popular form of analogy involves map-
ping or comparing a familiar source domain to a less famil-
iar target domain where higher-order relations constrain the
lower-order relations and guide the analogical mapping pro-
cess (Gentner and Forbus 2011; Gentner and Smith 2013).
Analogies are typically decomposed into multiple subpro-
cesses (Gentner and Forbus 2011): retrieval, mapping, ab-
straction, and representation. The retrieval process finds an
analog similar to the situation at hand. Next, the mapping
process considers the two situations and structurally aligns
them to generate candidate inferences with a structural eval-
uation score that provides a numerical measure of how well
the base and target align. The abstraction process stores
the results of comparison as an abstraction and produces a
schema or other rule-like structure. Finally, given a partial
match, the representation process allows for improving one
or both analogs to improve the match.

Structure-mapping Engine (i.e., SME; (Falkenhainer, For-
bus, and Gentner 1989; Forbus et al. 2017)) is a compu-
tational implementation of Structure-mapping Theory (i.e.,
SMT; (Gentner 1983)). The theory suggests mapping new
(i.e., target) and existing (i.e., base) knowledge structures
underlies experiential learning. While mapping, one as-
sumes relations in the base also exist in the target. There is a
preference for relations over attributes (e.g., and interrelated
or second-order relations over lower-order). This preference
for greater coherence is referred to as the systematicity prin-
ciple, and it guides the mapping process. In SMT, mappings
are restricted to one-to-one correspondence (i.e., one item
in base maps to only one in target) and are structurally con-
sistent (i.e., if second-order relations map, then their first-
order must too). SME incorporates these features, generates
matches between objects and relations (i.e., match hypothe-
ses), and calculates structural evaluation scores. Some pre-
vious cognitive models have mapped objects and relations
in two domains based on chaining first-order relations us-
ing direct matching rather than structure or semantics (e.g.,
path-mapping (Salvucci and Anderson 2001)). Models using
the SME typically generate candidate inferences with deep

structure, compared with other models that chain together
first-order relations and require a set of rules to map objects
in one domain to another. More recently, Hough (Hough
et al. 2023) leveraged both the SME and the path mapping
model implemented in ACT-R to understand analogical rea-
soning capabilities within cognitive models.

The model implemented by (Hough et al. 2023) operates
over knowledge stored as chunks in declarative memory. It
is presented with a base subject for each analogy task, and
the pre-designed productions compile the relevant chunks
for that subject. The SME aggregates information in two for-
mats: 1) dgroup to describe and represent the system as a
list of entities and predicates and 2) a vocabulary file. Each
target subject is mapped to the base subject one at a time.
After a target subject is compiled into a representation, the
mapping production passes both the complied base and tar-
get representations to the SME. SME computes the match
hypotheses, a structural evaluation score, and candidate in-
ferences that extrapolate information from the base to the
target.

The model can successfully map target subjects to the
base subject, and adding the SME module allows for a new
method of learning by experience by abstractly comparing
new knowledge to existing knowledge through analogical
reasoning. As an initial proof-of-concept (POC), Hough et
al. designed an experiment to solve analogies among sports
representations (Hough et al. 2023) (see Figure 1). The POC

Figure 1: Proof-of-concept demo model processes and
chunk types with SME interactions outlined in blue (Hough
et al. 2023).

model stored three different types of chunks in declarative
memory: 1) sport chunks that contain two entities that “best”
represent the sport, 2) single-entity chunks that contain sin-
gle entities, and 3) relation chunks that contain a relation and
entities order to represent their roles with the given relation.
Limitations: For the (POC) model, Hough et al. manu-
ally created and designed the knowledge chunks stored in
DM for eight sports. The current approach to knowledge
engineering is cumbersome, tedious, and time-consuming.
Moreover, to reason about other sports, knowledge must
manually be formatted and provided to the model, or the
model must have a significant amount of mechanisms to
parse and format information. Constructing the representa-
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tions again requires a manual process with the same lim-
itations. Additionally, with the current approach, the model
only operates over a fixed set of chunks in DM and is not up-
dated as new information is learned. While it is possible to
have the model learn new information and add it to DM, this
capability would require providing text or auditory informa-
tion to the model. In addition, the model would need many
new productions to parse text, comprehend it, and format in-
formation into triples. This introduces additional bottlenecks
and limitations. The current SME methodology for analog-
ical mapping is purely structure-based. For instance, swap-
ping entities across chunks would result in the same analogi-
cal reasoning process within the model. For instance, “(kicks
foot ball)” would map to “(kicks ball foot)” and foot and ball
would be matched as being similar objects. Whereas, for
human reasoning, interchanging the entities across chunks
would invalidate chunks and lead to incorrect knowledge
representations. Therefore, the similarity score to decide a
target could benefit from semantic information about the en-
tities. Specifically, language models from the AI community
could serve as a good source of semantic information for
these entities.

We chose this cognitive modeling framework because it
provides a task-independent capability to reason and de-
velop relations between existing memory that relies on SME
to generate similarities rather than task-dependent similari-
ties or functions defined by the modeler (e.g., most previ-
ous models in ACT-R). This reduces “tailorability” (Forbus
et al. 2017) where model results depend on the representa-
tion choices of the modeler. However, the limitations out-
lined above highlight tailorability and generality are still is-
sues as pre-structured knowledge is provided by the mod-
eler. Given these limitations, we aim to automatically gener-
ate the chunks stored in the declarative memory for this POC
model to address the knowledge engineering and general-
ity bottleneck. Together, using SME and automatic chunk
generation align with best practices to reduce tailborability
and increase generality (Falkenhainer 1990). Our approach
is outlined in Section 4. In future work, we aim to improve
the analogical reasoning approach in ACT-R by including
semantic information.

3 Related Work
Current cognitive architectures are not typically equipped
with knowledge bases that can capture the world knowl-
edge that humans possess and use (Lieto, Lebiere, and Oltra-
mari 2018). While models implemented in ACT-R are usu-
ally equipped with task-specific knowledge, they often lack
general cross-domain knowledge. Recent work has explored
extending the declarative memory modules of models to en-
rich the models with general knowledge. Past works have
looked at expanding the knowledge layers of ACT-R with
ontologies, lexical databases, and knowledge graphs (Oltra-
mari and Lebiere 2012; Lieto, Lebiere, and Oltramari 2018;
Salvucci 2014; Ball, Rodgers, and Gluck 2004; Carlson et al.
2010; Bollacker et al. 2008; Speer, Chin, and Havasi 2017;
Mintz et al. 2009; Oltramari and Lebiere 2011). Other works
have focused on creating knowledge bases for cognitive ar-
chitectures to use. Existing approaches to creating knowl-

Algorithm 1: Chunk Generation
*Future work: development of a ranking model

1: for dn ∈ D do
2: E = extractEntities(di)
3: end for
4: for dn ∈ D do
5: T = extractTriples(di)
6: T ′ = filterTriples(T,E)
7: T ′′ = rankTriples(T ′)∗

8: T = smeFormatting(T ′′)
9: return T

10: end for

edge bases rely on knowledge graphs that contain informa-
tion on named entities but lack general world knowledge,
use lexical databases with limited relations, and often re-
quire large amounts of training data (Carlson et al. 2010;
Bollacker et al. 2008; Speer, Chin, and Havasi 2017; Han,
Liu, and Sun 2018; Distiawan et al. 2019; Wang et al. 2021).

To overcome these limitations, more recently, Ribeiro and
Forbus populate an ontology with knowledge already de-
fined in an existing knowledge base using a cognitive archi-
tecture. Specifically, Riberio and Forbus combine the Com-
panion Cognitive Architecture with the CNLU natural lan-
guage processing system (Tomai and Forbus 2009) and the
SME (Forbus et al. 2017) with the NextKB knowledge base
(Forbus and Hinrich 2017). Their system automatically gen-
erates training data for analogical training using distant su-
pervision by extracting general knowledge from Wikipedia
articles. They combine structural similarity with a language
model for word sense disambiguation and fact classifica-
tion. This work makes excellent strides toward automatic
knowledge extraction using several independent modules as
a system to extract new knowledge. The authors design an
analogical reasoning task to train their system and rely on
heavy supervision through ontologies that are not always
well-defined for certain concepts, including novel concepts.
In Section 4, we introduce our solution that: 1) avoids train-
ing an intermediate task to extract knowledge from readily
available documents by leveraging a large language model
(LLM) to extract triples from unstructured text, and 2) is de-
signed to operate in real-time and maintain a high degree of
cognitive plausibility.

4 Proposed Solutions
Given a collection of documents, D = {d1, d2, ... , dn},

we aim to extract a collection of triples, T = {t1, t2, ... , tm}
and a set of entities, E = {e1, e2, ... , el} for each docu-
ment dn. The set of triples, T , and entities, E, are generated
as inputs to the SME. SME requires a “.dgr” file to parse,
and the file contains two sections: entities and expressions.
The generated entities, el, are formatted as (defentity el)
and serve as a declaration (beginning of the .dgr file) of the
parameters which will later be used in the expressions de-
scribing the relations between entities in the remainder of
the .dgr file. The generated triples, tm, are the knowledge
chunks or the expressions required by SME and are struc-
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Sport # of Generated
Triples

# of Filtered
Triples By Entities

# of Filtered
Triples By Entities

& Entity Type

% of Triples
Selected based on

Entities

% of Triples
Selected based on
Entities & Type

Archery 220 28 18 0.127 0.082
Badminton 259 125 93 0.483 0.359
Baseball 1073 766 145 0.714 0.135
Basketball 989 251 97 0.254 0.098
Cheerleading 406 132 35 0.325 0.086
Cricket 705 296 159 0.420 0.226
Dance 305 40 23 0.131 0.075
Dodgeball 73 45 16 0.616 0.219
Field Hockey 357 187 131 0.524 0.367
Hockey 183 66 33 0.361 0.180
Ice Hockey 658 285 113 0.433 0.172
Kickball 95 39 25 0.411 0.263
Pickleball 233 107 59 0.459 0.253
Powerlifting 505 147 93 0.291 0.184
Skateboarding 329 55 11 0.167 0.033
Soccer 541 296 136 0.547 0.251
Swimming 181 41 30 0.227 0.166
Table Tennis 252 140 62 0.556 0.246
Tennis 608 336 132 0.553 0.217
Volleyball 450 220 144 0.489 0.320
Water Polo 143 79 43 0.552 0.301
Wrestling 200 63 46 0.315 0.230
Average 398 170 75 0.407 0.203

Table 1: Generated Triple Statistics

tured as (relation object subject).
We extract entities and knowledge triples from related

Wikipedia articles for each sport. We first extract entities
from all Wikipedia articles by parsing each sentence in each
dn, using Spacy’s en core web sm1 and extract all nouns as
entities to create entity chunks, E. Not only are these entity
chunks used as input to the SME but they are also used to
filter relevant triples.

We use the following approach to generate chunks for a
specific sport (outline in Algorithm 1). First, we identify the
relevant Wikipedia page for each sport to extract informa-
tion about that sport. Next, we rely on a ChatGPT (GPT-
3.5-turbo-16k) based model2 to extract a triple from each
sentence. The model returns a triple, tm, in the form of
(subject, relation, object), a sentiment score, and a con-
fidence score for each source sentence. The collected triples
from each sentence in dn form the set of triples, T for each
dn.

Given the content available on a Wikipedia page, not all
extracted triples in T are relevant to describe a sport. There-
fore, we rely on filtering and ranking triples to improve
the quality of generated chunks. We first filter out triples
that do not contain an entity, el, in either the subject or
object part of the triple. Next, we filter out triples using
the Spacy’s en core web sm3 to identify subjects or objects
that are named entities (i.e., “ORG”, “GPE”, “PERSON”,

1https://spacy.io/models
2https://huggingface.co/spaces/jingwang/triple extraction
3https://spacy.io/models

“DATE”, and “EVENT”). To use the generated and filtered
triples with the demo model from Figure 1, the triples are
encoded as relations linked to this specific sport in ACT-R
(one chunk per relation containing slots for the system (i.e.,
the sport), the type of relation, and associated parameters of
this relation).

Once the triples have been imported into the model’s
declarative memory:
1. The model retrieves all elements for the current sport

(i.e., base or target) one at a time (see Figure 1), and re-
lations are defined and encoded in the .dgr file necessary
for the SME

2. Once all elements for both the base and target sports
have been retrieved and encoded, the model (see Fig-
ure 1) calls the structure mapping engine to create map-
pings and compute similarities which are then assigned
to ACT-R chunks.

In our future work, we aim to: 1) filter triples using
the extracted relations and relations in existing ontologies
or knowledge graphs (i.e., ConceptNet (Speer, Chin, and
Havasi 2017)) and 2) develop a ranking model to rank more
relevant triples with a higher score to improve the run-time
of analogical reasoning with ACT-R by improving the qual-
ity of the knowledge chunks available in the DM and reduc-
ing the number of non-relevant chunks.

5 Early Results
This section presents our results for triple generation and the
analogical reasoning task using ACT-R.
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Sport Generated Triples

Badminton (shuttlecock, not allowed, bounce)
(BWF World Championships, Held in, 1977)

Baseball (player, reaches, base)
(Chico Carrasquel, Became, Hispanic All-Star)

Cricket (non-players, position, umpire)
(Cricket World Cup, is, International competitions)

Ice Hockey (score, tied, shootout)
(IIHF Women’s World Championship, Held, 1990)

Powerlifting (lifter, lower, bar)
(British Championship, Held, 1966)

Squash (winner, receives, point)
(Egypt, Rank, top fifty)

Table Tennis (player, hits, ball)
(Li Xiaoxia, Winner, World Cup)

Volleyball (player, serves, point)
(Asian Club Championship, Event, women)

Water Polo (team, receives, points)
(1904 Olympics, Had, 40 wrestlers)

Wrestling (attacker, uses, arm)
(Greece, Participant, World Junior Championships 2004)

Table 2: Examples of Generate and Filtered Out Triples (italicized) (before SME formatting)

5.1 Results for Triple Generation

We extract triples for 22 sports using their respective
Wikipedia Articles: archery, badminton, baseball, basket-
ball, cheerleading, cricket, dance, field hockey, hockey,
ice hockey, kickball, pickleball, powerlifting, skateboard-
ing, soccer, swimming, table tennis, tennis, volleyball, wa-
ter polo, and wrestling. Table 1 contains statistics about
the generated triples for each sport and the number of fil-
tered triples. On average, we extract about 398 triples from
Wikipedia articles. Next, using the list of entities, E, we can
reduce the list of generated triples by about 41%. Finally,
by filtering the subject and objects by their types, approxi-
mately 20% of the generated triples remain. Table 2 contains
examples of generated triples and triples filtered (in italics)
out by the pipeline.

5.2 Results for Analogical Reasoning

Table 3 shows the correspondence identified by the model
between badminton and volleyball. For example, the sen-
tences “The server hits the shuttlecock” and “A player stands
behind the inline and serves the ball, in an attempt to drive it
into the opponent’s court” lead to correspondences between
shuttlecock and ball, and server and player. The model was
able to compute meaningful similarity scores (i.e., ACT-
R similarity score of 0.08 between cricket and volleyball
and 0.25 between badminton and volleyball) and correspon-
dences. However, the model sometimes missed expressions
that included several words (e.g., ends when one player
wins 4 points ...) or different verb tenses (e.g., hit and hits).
From the initial set of results, we see that the language of
Wikipedia articles results in a set of relations with high vari-
ations, which causes a challenge for the SME. Transforma-
tions such as lemmatization on the triples pre-processing im-

Badminton Volleyball
shuttlecock ball
bounce net
(NOT ALLOWED shuttlecock bounce) (NOT ALLOWED ball net)
tennis newcomb ball
ends when one player wins 4 points or wins two
consecutive points at deuce points volleyball

(GAME volleyball) (GAME newcomb ball)
server player
(HIT server shuttlecock) (HIT player ball)

Table 3: Sample Results from Analogical Reasoning within ACT-R/SME
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proved our results, and we believe further transformations
could increase the correspondences identified.

5.3 Discussion
Our current approach relies on large language models and
their ability to function as parsers for information extraction
needs. An alternative to this approach is to prompt the large
language models to generate chunks for the task. As an ini-
tial attempt, we prompt ChatGPT with the following prompt
to extract information about different sports:

Can you generate knowledge triples about sport X in
the following format: (entity, relation, entity)?
Here are some examples:
(player, kicks, ball)
(player, scores, point)

Here are example outputs for soccer:

• (goalkeeper, blocks, shot)
• (midfielder, passes, ball)
• (defender, clears, ball)
• (coach, trains, players)

An initial analysis of prompting the model for knowledge
facts about sports shows that the generated triples are use-
ful for our task. Additionally, the triples are less noisy as
compared to the ones extracted from the Wikipedia articles.
However, there are generated triples that are not relevant to
the task. Here are example irrelevant triples for soccer:

• (fans, support, their team)
• (injury time, added to, match)
• (injury prevention, includes, warm-up)

Overall, prompting the model for knowledge about sports
also works well for our task.

In summary, we explored both prompting large language
models for knowledge and using them as a parser to ex-
tract knowledge from unstructured text. We find that these
two methods are well-suited for the task. However, it might
be beneficial to select one approach over another. For par-
ticular domains, using a large language model to parse the
domain-specific text might be a better option as the large lan-
guage model might not contain enough specific knowledge
about the domain. For more common domains (i.e., sports),
prompting these models for structured knowledge might be
promising as the generated triples are less noisy.

6 Conclusion and Future Directions
Knowledge engineering is an important task that remains
a bottleneck for creating and maintaining knowledge bases
for cognitive architectures. We define a solution to automat-
ically generate knowledge chunks for an analogical reason-
ing task in a version of ACT-R augmented with an SME
module. Analogical reasoning is a crucial aspect of human
cognition that facilitates learning, problem-solving, creative
thinking, and generalizability. It is also used to benchmark
the development of artificial intelligence, particularly in ar-
eas such as machine learning and natural language process-
ing and understanding. Our proposed solution uses natural

language processing to extract entities, relationships, and at-
tributes to automatically generate chunks encoded as triples
or chunks from unstructured text. As a demonstration, we
provide automatically generated chunks to an analogical
reasoning model implemented in ACT-R and show that it
can use these chunks to determine correspondences between
sports through mapping. Our results show a promising first
step that reduces the manual effort needed to create knowl-
edge chunks and addresses the tailorability issue to increase
generality.

In future work, we aim to: 1) prune the Wikipedia ar-
ticles to only parse relevant sentences for triples, 2) filter
triples based on relations by comparing the relations to ex-
isting ontologies and knowledge graphs can also reduce ir-
relevant triples, 3) train a custom ranking model to select
more relevant triples, 4) rely on ACT-R’s memory mecha-
nism to prune and query the information source according
to the entities of interest to the ACT-R model in the current
context (e.g., learn about how volleyball is played but leave
out historical information as the model is attempting to start
a game), and 5) improve analogical mapping performance
within ACT-R by leveraging word embeddings to provide
word meaning/similarity to facilitate matching between the
source and target domains.
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Drozdov, A.; Schärli, N.; Akyürek, E.; Scales, N.; Song, X.;
Chen, X.; Bousquet, O.; and Zhou, D. 2022. Compositional
semantic parsing with large language models. arXiv preprint
arXiv:2209.15003.
Falkenhainer, B. 1990. A unified approach to explanation
and theory formation, 157–196. Morgan Kaufmann.
Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989. The
structure-mapping engine: Algorithm and examples. Artifi-
cial intelligence, 41(1): 1–63.
Forbus, K. D.; Ferguson, R. W.; Lovett, A.; and Gentner,
D. 2017. Extending SME to handle large-scale cognitive
modeling. Cognitive Science, 41(5): 1152–1201.
Forbus, K. D.; and Hinrich, T. 2017. Analogy and relational
representations in the companion cognitive architecture. AI
Magazine, 38(4): 34–42.
Gentner, D. 1983. Structure-mapping: A theoretical frame-
work for analogy. Cognitive science, 7(2): 155–170.
Gentner, D.; and Forbus, K. D. 2011. Computational models
of analogy. Wiley interdisciplinary reviews: cognitive sci-
ence, 2(3): 266–276.
Gentner, D.; and Smith, L. 2013. Analogical Learning and
Reasoning. Oxford Library of Psychology. Oxford Univer-
sity Press. ISBN 9780195376746.
Han, X.; Liu, Z.; and Sun, M. 2018. Neural knowledge ac-
quisition via mutual attention between knowledge graph and
text. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32.
Hope, T.; Chan, J.; Kittur, A.; and Shahaf, D. 2017. Ac-
celerating innovation through analogy mining. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 235–243.
Hough, A. R.; Laure, O.; Myers, C.; and Leung, O. 2023.
Integrated Cognitive Model Framework for Analogical Rea-
soning. International Conference on Cognitive Modeling.
Kirk, J. R.; Wray, R. E.; Lindes, P.; and Laird, J. E.
2022. Improving language model prompting in sup-
port of semi-autonomous task learning. arXiv preprint
arXiv:2209.07636.
Lieto, A.; Lebiere, C.; and Oltramari, A. 2018. The knowl-
edge level in cognitive architectures: Current limitations and
possible developments. Cognitive Systems Research, 48:
39–55.
Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009. Dis-
tant supervision for relation extraction without labeled data.
In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Confer-
ence on Natural Language Processing of the AFNLP, 1003–
1011.

Oltramari, A.; and Lebiere, C. 2011. Extending cognitive
architectures with semantic resources. In Artificial Gen-
eral Intelligence: 4th International Conference, AGI 2011,
Mountain View, CA, USA, August 3-6, 2011. Proceedings 4,
222–231. Springer.
Oltramari, A.; and Lebiere, C. 2012. Pursuing artificial gen-
eral intelligence by leveraging the knowledge capabilities of
act-r. In International Conference on Artificial General In-
telligence, 199–208. Springer.
Ribeiro, D. N.; and Forbus, K. 2021. Combining analogy
with language models for knowledge extraction. In 3rd Con-
ference on Automated Knowledge Base Construction.
Salvucci, D. 2014. Endowing a cognitive architecture with
world knowledge. In Proceedings of the Annual Meeting of
the Cognitive Science Society, volume 36.
Salvucci, D. D.; and Anderson, J. R. 2001. Integrating
analogical mapping and general problem solving: the path-
mapping theory. Cognitive Science, 25(1): 67–110.
Speer, R.; Chin, J.; and Havasi, C. 2017. Conceptnet 5.5:
An open multilingual graph of general knowledge. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 31.
Tomai, E.; and Forbus, K. D. 2009. EA NLU: Practical Lan-
guage Understanding for Cognitive Modeling. In FLAIRS
Conference.
Wang, X.; Gao, T.; Zhu, Z.; Zhang, Z.; Liu, Z.; Li, J.; and
Tang, J. 2021. KEPLER: A unified model for knowledge
embedding and pre-trained language representation. Trans-
actions of the Association for Computational Linguistics, 9:
176–194.

252


