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Abstract

Better forecasting of atmospheric composition is a critical as-
pect of environmental and climate monitoring. Among cli-
mate and weather numeric modeling, often ensembles are
used to improve the forecasting power and to quantify the un-
certainty of the model. However, the numerical simulation of
atmospheric chemistry, critical for composition simulations,
is computationally too expensive to generate numerical com-
position ensembles. One way to address this problem is to
use deep learning to emulate the slow physical model. In this
work we study the feasibility of two different deep learning
methods and show how an emulator could be used to realisti-
cally estimate uncertainties of atmospheric composition fore-
casts, bypassing the need to run costly numerical ensemble
simulations. One of the methods builds upon Fourier neural
operators and the NVIDIA FourCastNet architecture and the
second method builds on conditional Generative Adversarial
Networks. We design the models to respond to perturbations
to the most important drivers of air pollution, including mete-
orology and pollutant emissions. We apply this framework to
the NASA GEOS Composition Forecast System (GEOS-CF),
which produces daily global composition forecasts at approx-
imately 25 km2 horizontal resolution. Due to computational
constraints, GEOS-CF currently has limited capability to pro-
duce probabilistic estimates or to optimally assimilate trace
gas observations. We show how a deep learning emulator has
the potential to improve composition forecasts produced by
GEOS-CF or other, similar types of applications. These meth-
ods could be applied to other types of ensemble-based mod-
els, potentially providing a large speed-up in overall modeling
time.

Introduction
Poor air quality has strong implications on human health
and can exacerbate the impact of a changing climate (Fuller
et al. 2022). In turn, warming of the atmosphere could in-
crease extreme air quality events (Shukla et al. 2019). Un-
derstanding the role of anthropogenic emissions and its ef-
fects on the atmosphere and the climate involves understand-
ing the atmospheric chemistry. Atmospheric chemistry mod-
els are a central tool to understand, predict, and mitigate en-
vironmental problems such as air quality degradation, strato-
spheric ozone loss, and ecosystem damage. Chemistry mod-
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els are computationally very expensive as they need to cap-
ture the distribution of hundreds of stiffly coupled chemi-
cal species, along with the physical dynamics of the atmo-
sphere. Because of this, chemistry models are orders of mag-
nitude slower than weather models that do not include chem-
istry. The high computational cost of atmospheric chemistry
makes it challenging to simulate atmospheric composition in
near real-time. Due to this high computational cost, ensem-
bles are difficult to run and therefore uncertainty estimation
is in many cases unobtainable.

Deep learning could potentially overcome this computa-
tional burden by providing a way to emulate atmospheric
chemistry models. In this study, we asked the question, can
we build a deep learning model that can learn to forecast at-
mospheric chemistry concentrations up to ten days into the
future, using just a few timesteps of information from a set
of initialized ensemble members. If we could achieve this
goal, without a significant loss in forecast skill, the perfor-
mance savings could be immense.

However, there are still many unanswered questions re-
lated to building a deep learning model that could learn to
forecast days into the future for a set of ensemble members
(given only a few timesteps of input). Specifically, we need
to better understand the role of emissions and meteorology
on the forecast skill of atmospheric chemical concentrations.

In this paper, we begin to answer these questions using
two different deep learning models that are based on well-
researched methods for weather forecasting. We emulate the
NASA GEOS Composition Forecast System (GEOS-CF) as
a use case atmospheric chemistry modeling system.

Background
The NASA GEOS Composition Forecast System (GEOS-
CF) combines the NASA GEOS Earth System Model with
the GEOS-Chem chemistry module to produce daily anal-
yses and 5-day forecast of atmospheric composition at ap-
proximately 25x25 km2 (Keller, Knowland et al. 2021).
GEOS-CF predicts the spatiotemporal evolution of more
than 200 chemical species, including all major air pollu-
tants such as ozone, nitrogen dioxide, and fine particulate
matter (Keller, Knowland et al. 2021). The GEOS-CF sys-
tem is much slower than a comparable weather forecasting
model and takes 6 − 8 hours to complete one full compute
cycle, consisting of a one-day analysis (constrained by me-
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teorological and composition observations) and a 5-day pre-
diction initialized from the one-day analysis. Because of the
high compute requirements, the GEOS-CF system currently
does not include ensemble predictions or state-of-the art data
assimilation methodologies, as commonly used for weather
prediction.

Related Work
Early work by Debry et al. (Debry and Mallet 2014) used
machine learning for learning an ensemble for the Prev’Air
operational platform using weighting and a ridge regression
approach. This was geared towards an operational environ-
ment which includes the incorporation of observational in-
formation.

In work by Bihlo et al. (Bihlo 2021), a conditional Gen-
erative Adversarial Network (cGAN) architecture was used,
described as a vid2vid model which was built based on the
pix2pix architecture (Isola, Zhu et al. 2017). The Genera-
tor was described as a U-Net architecture with a bottleneck
of Long Short-Term Memory (LSTM) networks. ERA5 Re-
analysis data was used to train the model and a Monte Carlo
dropout approach was used after the cGAN was trained to
simulate an ensemble. The ensemble was used to forecast
different weather variables and showed promising results on
variable prediction tasks except for total precipitation. They
ran an ensemble of 100 realizations of the trained model for
atmospheric parameters that corresponded to the ERA5 vari-
ables - 500 hPa geopotential height, two-meter temperature
and total precipitation. They computed the ensemble mean
and standard deviation for the ensemble for each variable.

The cGAN method was extended by Brecht and Bihlo
(Brecht and Bihlo 2022) using a similar architecture from
Bihlo’s previous work, except in this work they explored
training the model using ECMWF IFS operational ensem-
ble data with a spatial resolution 0.5 x 0.5. They trained the
deep learning method to learn the statistical properties of the
ensemble and the spread given the control forecast.

FourCastNet (Pathak, Subramanian et al. 2022) is a deep
neural network that learns to forecast 2D atmospheric vari-
ables globally. It uses a Fourier Neural Operator (FNO)
combined with a vision transformer architecture and claims
strong performance for modeling complex PDE systems.
FourCastNet was trained to forecast weather variables using
the ERA5 Reanalysis data. Ensembling was done by ran-
domly initializing conditions.

In these later methods, ensembling was performed by a
random process. However, the initial conditions for the en-
semble members of many models are defined based a sig-
nificant amount of scientific rigor, and domain knowledge.
Randomness may not sufficiently represent this knowledge
and rigor.

Emulating Ensembles Using Deep Learning
We define an ensemble as M and an ensemble member as
m where m0..n ∈ M and n represents the number of total
members in the ensemble. Each m is an atmospheric chem-
istry model and initialized according to domain knowledge,
with both emissions and meteorology present in the initial

conditions. A subset of m, the training members is defined
by tm and a non-overlapping subset, the unseen held-out
members, is defined by um. When emulating M , a deep
learning method will be trained on tm0..n−j , where j rep-
resents the total number of unseen held-out members. Af-
ter the model is trained it will be applied to umn−j+1..n.
Given t timesteps of information, the trained model will be
used to forecast d days of concentrations for a set of de-
fined species. In this work we used the following species due
to the relevance to air quality: Carbon Monoxide (CO), Ni-
tric Oxide (NO), Nitrogen Dioxide (NO2), and Tropospheric
Ozone (O3).

Creating the GEOS-CF Ensemble Dataset
We produced a comprehensive set of retrospective model
output, including ensemble simulations, to serve as the train-
ing data for the deep learning models. To make the problem
computationally feasible, these simulations were conducted
at a horizontal resolution of approximately 100x100 km2.
The training data consists of a one-year (2021) simulation
of a GEOS-CF like system, plus 32 ensemble simulations
over the same time period that were designed to capture the
model sensitivity to the main drivers of atmospheric com-
position, namely pollutant emissions and meteorology. The
32meteorological ensembles were produced by constrain-
ing the meteorological fields to the 32 ensembles produced
by the GEOS Forward Processing (GEOS-FP) system. For
the 32 emission ensembles, we randomly perturbed the an-
thropogenic emissions of nitrogen oxide (NO) and carbon
monoxide (CO) using Gaussian kernels with an approximate
length scale of 250 km.

Methods
We explored adapting two methods for learning to forecast
ensemble mean and to estimate the ensemble uncertainty.
We modified both the Bihlo cGAN model and the FourCast-
Net model to provide flexibility in choice of model architec-
ture and input features. Both models are considered state of
the art in terms of their forecast skill for weather variables.

FourCastNet (Pathak, Subramanian et al. 2022) uses an
autoregressive approach, meaning it predicts one timestep
out and feeds that prediction back into the model for the next
timestep. We continued using the autoregressive approach.
We however did not use its built-in ensembling for this work,
as our goal was to work with the ensemble data itself from
GEOS-CF.

The cGAN model based on Bihlo (Bihlo 2021) is trained
using eight timesteps of input and forecasts eight timesteps
into the future. We kept this time stepping and used the
vid2vid architecture, modified for our dataset.

The novelty we introduce in this work (to both networks)
is adapting them for forecasting atmospheric chemistry vari-
ables, which is essential for air quality forecasting. In order
to better understand features that could be useful in this type
of forecast, we performed a set of sensitivity experiments.
We then setup experiments where we train each model to
learn to forecast the ensemble mean and standard deviation.
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Experimental Results
It is important to understand the effects of emissions and me-
teorology on concentrations. Therefore, this study includes
experiments that address understanding how including emis-
sions information with concentrations will affect the overall
forecast skill. In addition, we explore how including emis-
sions and meteorology for future timesteps influences the
forecast skill. Finally, the third experiment examines the
forecast skill of both cGAN and FourCastNet for a held-out
set of ensemble members using a small set of timesteps of
initialization. In this experiment we forecast up to 10 days
with both methods.

Metrics
We measure performance in terms of Mean Absolute Error
(MAE) and Root Mean Squared Error(RMSE).

MAE =
1

n

n∑
j=1

|yj − ŷj | (1)

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (2)

Including Emissions Information
In the first set of experiments, we compared the forecast skill
when emissions is included vs. not included. Emission data
is readily available in the GEOS model. We measured per-
formance in terms of the average RMSE. Early experiments
show a smaller average RMSE when emissions are included
with concentrations as input for FourCastNet. We saw a sim-
ilar trend in forecast skill using the cGAN model. For the
cGAN model we plotted the set of ensemble members, rep-
resented as different trends. In Figure 1, we show, consistent
with the FourCastNet model, the cGAN forecast skill does
improve with emissions information included. Overall, it ap-
pears that including emissions as a feature in addition to the
concentration values, improves the forecast skill.

Including Emissions and Meteorological
Information
In the following set of sensitivity experiments we tested how
well cGAN performs when meteorological information is in-
cluded with emissions for a given forecast and we compared
this with also having some knowledge of future emissions
and meteorological information (as the GEOS model does
have this information available). In Figure 2, we show the
results of CO and in Figure 3, we show the results of NO2.
For each chemical species, the MAE is lower when knowl-
edge of future emissions and meteorological information is
included.

From these results, having insight into future meteorology
and emissions did improve the forecast skill of concentra-
tions for all forecasted species. We did not conduct this ex-
periment using FourCastNet due to the complexities of the
network.

Figure 1: Early experiments show a smaller average RMSE
when emissions are included with concentrations as input
for cGAN.

Figure 2: Comparing cGAN forecast skill for CO when cur-
rent meteorology and emissions is known with current and
future projected meteorology and emissions.

Figure 3: Comparing cGAN forecast skill for NO2 when
current meteorology and emissions is known with current
and future projected meteorology and emissions.

150



Figure 4: Comparing FourCastNet and cGAN ten day fore-
cast for CO by comparing RMSE scores for mean (solid)
and spread (dotted).

Figure 5: Comparing FourCastNet and cGAN ten day fore-
cast for NO2 by comparing RMSE scores for mean (solid)
and spread (dotted).

Learning Ensemble Mean and Estimating
Uncertainty

In this experiment we study how FourCastNet and cGAN
could be used to forecast ten days of the ensemble with a few
timesteps of information from a set of ensemble members.

For this setup, both FourCastNet and cGAN were trained
on two months of GEOS-CF data for 12 of the ensemble
members and the test set contained two months of data for
five of the ensemble members. Results were based on me-
teorological and emissions data present and an evaluation
was setup to measure performance of concentrations for CO,
NO, NO2, O3.

We compare the forecast of up to ten days for FourCast-
Net and cGAN trained with emissions and meteorological
information. We show the results for CO in Figure 4 and
NO2 in Figure 5. Included in each plot is the RMSE for both
the mean and the spread.

Interesting results across all species shows cGAN tends to
out-perform FourCastNet. We also see that FourCastNet has
oscillatory behavior. These results could be due to known
instabilities in FourCastNet, or could be due to the smaller
data set size. FourCastNet could be overfit in this experi-
ment. Loss plots do indicate validation loss is slightly worse
than training loss. However when we examine the concen-
tration distributions we also see similar cyclical patterns in
concentrations. It could be that FourCastNet is more sensi-
tive to these patterns.

Conclusions and Future Work
We explored the potential of two deep learning models,
cGAN and FourCastNet, to produce ensemble predictions of
atmospheric composition. Both methods show promise pre-
dicting the spatiotemporal evolution of key air pollutants up
to 10 days into the future.

We demonstrated that the inclusion of emissions appears
to improve the forecast skill of species concentrations when
using both a cGAN and FourCastNet.

We demonstrated using a cGAN trained on a set of en-
semble member data, where emission data and meteorolog-
ical data was given for the current timestep and future pro-
jections, the cGAN was able to make significantly more ac-
curate forecasts of ensemble mean and spread when future
projections were included (predictions were made for a 24-
hour period).

We also demonstrated that FourCastNet, for the first time,
could be applied to forecasting trace gases. This model was
also trained on ensemble member data. We showed that we
could make a 10-day forecast given unseen ensemble mem-
ber data using just seven timesteps of information (21 hours)
for FourCastNet and eight timesteps for the cGAN. We are
working towards three timesteps (nine hours). The error that
accumulated over those 10 days was minimal.

Surprisingly, cGAN out-performed FourCastNet for all
species. Given that the cGAN was trained using a single
GPU and for approximately two days and FourCastNet was
trained on four GPUs for more than two days, these results
are compelling. However, given the size of the dataset, more
experiments with larger datasets would be required to con-
firm these findings. Future work will include experiments
with a larger number of ensemble members.

The cGAN and the FourCastNet model could be com-
bined with a numerical composition forecasting system to
produce invaluable ensemble information at a computation-
ally feasible cost. Future work includes testing such a hybrid
application with the GEOS-CF model, with the goal to im-
prove its data assimilation architecture and to provide uncer-
tainty estimates along with the main composition forecast.

Our methodology could be applied to other ensemble-
based modeling systems and provides a way to significantly
reduce the time to run the ensemble, with minimal loss in
overall performance. This could enable larger ensembles,
providing an opportunity to conduct experiments that would
otherwise be computationally infeasible to run. Future work
will include exploring this idea of applying our methodology
to other types of modeling systems.
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