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Abstract

We explore the implementation of deep learning techniques
for precise building damage assessment in the context of nat-
ural hazards, utilizing remote sensing data. The xBD dataset,
comprising diverse disaster events from across the globe,
serves as the primary focus, facilitating the evaluation of deep
learning models. We tackle the challenges of generalization to
novel disasters and regions while accounting for the influence
of low-quality and noisy labels inherent in natural hazard
data. Furthermore, our investigation quantitatively establishes
that the minimum satellite imagery resolution essential for ef-
fective building damage detection is 3 meters and below 1
meter for classification using symmetric and asymmetric res-
olution perturbation analyses. To achieve robust and accurate
evaluations of building damage detection and classification,
we evaluated different deep learning models with residual,
squeeze and excitation, and dual path network backbones, as
well as ensemble techniques. Overall, the U-Net Siamese net-
work ensemble with F-1 score of 0.812 performed the best
against the xView2 challenge benchmark. Additionally, we
evaluate a Universal model trained on all hazards against a
flood expert model and investigate generalization gaps across
events, and out of distribution from field data in the Ahr Val-
ley. Our research findings showcase the potential and limita-
tions of advanced AI solutions in enhancing the impact as-
sessment of climate change-induced extreme weather events,
such as floods and hurricanes. These insights have implica-
tions for disaster impact assessment in the face of escalating
climate challenges.

Introduction
One of the leading causes of fatalities during a natural hazard
is the collapsing of buildings (Rashidian et al. 2021). Thus,
the rapid assessment of damage to residential buildings and
other facilities during or right after a disaster is crucial.

Until today, building damage has been assessed via the
manual inspection of aerial images or extensive field sur-
veys (Rashidian et al. 2021; Dong and Shan 2013). Recent
advancements in remote sensing have made it easy to ac-
quire enormous volumes of data about nearly every region of
the Earth’s surface within a few days. Computer vision and
deep learning advances further accelerate the trend towards
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a real-time AI-based assessment of natural hazard-induced
building damage.

Since the publication of the xBD dataset (Gupta et al.
2019), many deep learning architectures tackling the chal-
lenge of building damage detection were released (Da, Ji,
and Zhou 2022; Weber and Kané 2020; Wu et al. 2021; Tilon
et al. 2020). This made xBD the leading benchmark for all
subsequent satellite building damage detection techniques in
research. While literature does evaluate the models’ general-
ization to hold-out images during training, their analyses do
not mimic a real-world application, which requires the hold-
out of entire events or they do not provide convincing quan-
titative statistical analyses about the ability of the model to
generalize to unseen events. In this paper, we will improve
previous work and address its shortcomings.

Mono-temporal architectures have been evaluated in
(Abdi, Esfandiari, and Jabari 2021) for generalization, train-
ing ResNet34 classifiers on the Haiti earthquake (2010) and
testing the model’s performance on the Woolsey fire (2018).
However, since they fine-tuned the model on 20% of sam-
ples provided for the Woolsey event, the model has already
adapted to the test event. The performance on two unknown
disasters: the Beirut explosion (2020) and Hurricane Laura
(2020) were analysed in (Wu et al. 2021) to verify the trans-
ferability of their proposed model. Like xBD, the data orig-
inates from the Maxar Open Data Program and has to be
labeled manually by the authors. As the satellite imagery
stems from the same source, we consider the evaluation of
the model’s generalization as an in-distribution test, which
does not benchmark the transferability to other remote sens-
ing sources. Furthermore, they only visually inspect the
model’s segmentation output for one image per individual
disaster. Thus, their analysis lacked a quantitative evalua-
tion based on a statistically significant amount of images.
The current benchmarks in the literature show great poten-
tial for deep learning architectures to rapidly assess building
damage (Abdi, Esfandiari, and Jabari 2021; Weber and Kané
2020; Tilon et al. 2020).

The main contributions of our work are three-fold: i)
we systematically assess the minimum resolution of remote
sensing imagery required for computer vision models to
work in the real world; ii) we quantitatively evaluate the in-
distribution generalization on a statistically significant num-
ber of images, lacking in prior work, by performing cross-
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validation on three subsets of the xBD data set where we
leave out several events for robustness of testing in the real
world; iii) we finally test our models’ transferability to an
out-of-distribution event, namely the Ahr Valley flood 2021
in Germany, with a statistically significant number of images
being evaluated.

We tested our models on public datasets from Ger-
man Aerospace Center for Ahr Valley 2018 https://www.
geoportal.rlp.de and xBD from https://xview2.org/dataset.

Methodology
Our model architecture is split into two stages: localization
and classification of building damage. We first train a U-
Net (Ronneberger, Fischer, and Brox 2015) to output a build-
ing localization mask based on the pre-event image only.
This initial training scheme sensitizes the model to detect
buildings without wasting costly damage labels. In the sec-
ond and last stage of our training scheme, the localization U-
Net of the first stage is adopted to a Siamese Network (Koch
et al. 2015) with shared weights between the pre- and post-
event input. The outputs resulting from the two forward
passes through the U-Net are concatenated and fused by a
convolutional layer. The final output of the Siamese network
is of size 1024 ∗ 1024 ∗ 5 (width ∗ height ∗ channels), where
the first channel of the last axis corresponds to the general
building detection and the remaining channels to the four
ordinal damage levels of the xBD data set: no damage, mi-
nor, major damage, and destroyed. The final damage class is
determined via the weighted average along the channel axis
being above a given threshold.

To improve the generalization and general perfor-
mance of the proposed architecture, we do heavy model
ensembling with backbones of different sizes and ar-
chitecture principles, e.g. residual learning (He et al.,
2016). Overall, we implement four different backbones
which all share the same aforementioned architecture.
The four pre-trained backbones comprise a ResNet (He
et al. 2016) (ResNet34), a Squeeze-and-Excitation Network
(SENet154), a ResNeXt (Xie et al. 2017) that employs
Squeeze-and-Excitation blocks (Hu, Shen, and Sun 2018)
(SE-ResNeXt-50), and a Dual Path Network (Chen et al.
2017) (DPN92). We train for each backbone, three models
with differently initialized seeds. All backbones’ weights are
pre-trained on the large-scale ImageNet data set (Deng et al.
2009).

Besides model ensembling, we augment the image pairs
to improve model robustness with regards to different day
time satellite passings of the affected regions, different
sources of remote sensing data, and view angles of the satel-
lites. The image augmentation techniques comprise classi-
cal image flipping, rotation, shifting, cropping, and change
of hue. Moreover, we add Gaussian noise, blur and change
saturation, brightness, as well as contrast. As an optimizer,
we choose the adaptive gradient algorithm Adam (Kingma
and Ba 2017) with L2 regularization and weight decay regu-
larization (AdamW) as proposed by Loshchilov and Hutter.
The loss between model output pi and target map gi for pixel
i is defined as the weighted combination of the Dice LDice

(Sudre et al. 2017) and Focal loss LFocal (Lin et al. 2020)

with γ = 2. The focal loss adopts the standard cross en-
tropy criterion such that for γ > 0 it puts an emphasis on
relatively hard-to-classify examples by reducing the loss of
properly classified examples.
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LFocal(ri) = − (1− ri)
γ
log (ri)

ri = (1− gi) · (1− pi) + gi · pi
The xBD data set suffers a great class imbalance since the

three damage classes minor, major damage, and destroyed
only account for one-fourth of the overall buildings labeled.
Thus, we oversample all image pairs with damaged build-
ings. Additionally, we oversample the classes ’minor’ and
’major damage’ since these are particularly difficult to dis-
tinguish. The models are initially trained and evaluated fol-
lowing the split of the xBD data set. The model architecture
is implemented in Python and the deep learning library Py-
Torch (Paszke et al. 2019). We train all models on two GPUs
of type NVIDIA Tesla V100 SXM2 32 GB.

Results
First, we evaluate the performance of our model and the var-
ious enhancement techniques on the xBD test set. Addition-
ally, we investigate model behavior and performance for a
few of the individual disaster types. The model’s behavior
is further explored in the subsequent analysis of resolution
where we determine the minimal spatial resolution required
for localizing and classifying building damage at different
levels of detail. Finally, we present the outcomes of our gen-
eralization study which is split into two parts: the analysis
of the in-distribution (re-splitting of the xBD data set) and
out-of-distribution (real-world application for the Ahr Val-
ley event) generalization gap of the proposed model.

Table 1 shows the performance of our model and the
different backbones along the evaluation metrics defined
in the Methodology. The ensemble of models achieves an
overall challenge score of 0.8119 with a localization F1-
score of 0.8624 and classification macro-average F1-score
of 0.7897. According to the classification F1-scores for the
individual damage levels, minor (F1EC2

= 0.6444) and ma-
jor (F1EC3

= 0.7859) damaged buildings are significantly
more difficult to classify and harder to separate from the
other classes. In contrast, the classification of extreme cases,
where buildings are left unaffected (F1EC1

= 0.9234) or en-
tirely destroyed (F1EC4

= 0.8640), are easily detected and
well segmented by the model. The single ResNet34 U-Net
has the same relations of performance measures but per-
forms generally worse than the ensemble. But the heavy en-
sembling of the four model architectures especially causes a
great improvement for the two difficult-to-classify classes:
minor and major damage, as the F1-scores increased by
0.0520 and 0.0208, respectively. The building footprints
are equally well segmented by the single ResNet34 model
(∆F1loc = F1Eloc − F1Res34

loc = 0.0037). Examples of the
segmentation results of the ensemble of models are depicted
in Figure 1.

To further understand the errors of our model, we eval-
uated confusion matrices for the xBD test set and the in-
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Localization Damage Classification Score
No damage Minor Major Destroyed Binary Macro-avg Overall

xBD F1 0.8635 0.9234 0.6444 0.7859 0.8640 - 0.7898 0.8119
Siamese F1 0.8624 0.9234 0.6444 0.7859 0.8640 0.8816 0.7897 0.8119
U-Nets Precision 0.7983 0.9682 0.5925 0.7811 0.9304 0.8642
Ensemble Recall 0.9377 0.8918 0.6330 0.7805 0.8273 0.8997
ResNet34 F1 0.8587 0.9212 0.5924 0.7651 0.8657 0.8712 0.7640 0.7924

Precision 0.7981 0.9641 0.5860 0.7618 0.9286 0.8566
Recall 0.9293 0.8821 0.5990 0.7684 0.8108 0.8862

SENet154 F1 0.8595 0.9256 0.5673 0.7664 0.8702 0.8707 0.7551 0.7865
Precision 0.7930 0.9610 0.5481 0.7967 0.9136 0.8651
Recall 0.9383 0.8928 0.5878 0.7383 0.8307 0.8763

SE-Res F1 0.8579 0.9606 0.6096 0.7784 0.8882 0.8723 0.7856 0.8072
NeXt-50 Precision 0.8346 0.9641 0.5757 0.7847 0.9174 0.8622

Recall 0.8876 0.9571 0.6479 0.7722 0.8608 0.8827
DPN92 F1 0.8538 0.9575 0.6116 0.7814 0.8873 0.8664 0.7865 0.8066

Precision 0.8475 0.9679 0.5622 0.7614 0.9323 0.8381
Recall 0.8832 0.9473 0.6705 0.8026 0.8465 0.8966

Table 1: Performance overview of model architectures with different backbones. The best-performing F1-scores of our mod-
els implemented are underlined. The xBD benchmark is the best-performing model on the leader-board of the xView2 chal-
lenge (Defense Innovation Unit 2019) which is the first place solution we used.

dividual natural hazard types, which demonstrated that the
model can distinguish between damage grades while class
confusion primarily occurs between adjacent classes. More-
over, we had lower F1-scores for minor and major damage
as the most confusion originated from classifying minor as
no damage (23.53%) and major as minor damage (20.76%).
The model is not robustly calibrated to correctly classify mi-
nor flood damage and additionally confuses destroyed build-
ings with unaffected ones. We conclude that flood damage
grades are harder to classify and distinguish. This finding
is supported by the visual inspection for hurricanes, for in-
stance, which heavily impact the roof of a building, whereas
water-related natural hazards flood the construction and a
major part of the damage is caused inside, leaving the roof’s
appearance unaffected. Therefore, flood damage seems to be
harder to detect in nadir remote sensing data.

Based on the previous finding that building damage
can vary depending on the natural hazard type, we tested
whether disaster type-specific models outperform the model
trained on all kinds of events. We refer to the models which
are designated for one of the six disaster types as expert
models. We denote the model trained on all events as the uni-
versal model. Table 2 shows the performance of both models
being tested on all flooding events in the test set. This also
applies to hurricanes that resulted in flooding, such as Hur-
ricane Michael (2018).

Overall, the results indicate differences in performance
between the two models. First, buildings are localized with
higher accuracy by the universal model as their general ap-
pearance does not deviate between disaster types. The same
finding holds true for the classification of buildings that are
not damaged. However, the results indicate that differenti-
ating between the three levels of damage is better captured
by the hazard expert model as it outperforms the universal
model for all three levels of damage (Cl, l ∈ {2, 3, 4}). This

also leads to the improved overall classification of flood-
induced building damage.

Image Resolution Analysis
There are various sources of remote sensing data that are free
of charge and have a high revisit time. But these data sources
often suffer a low spatial resolution while very-high resolu-
tion data is still expensive and not publicly available (Théau
2022). Thus, we aim to find the minimum image resolution
at which building damage can still be confidently assessed.

To determine the minimum required satellite image reso-
lution, we gradually downsample the input images and run
inference of the model on the entire test set of xBD. For this
investigation, we only derive the performance considering
the ResNet34 model, due to its similar performance com-
pared to the ensemble of models (see Table 1).

Symmetric resolution perturbation We first decrease
resolution r of both pre- and post-event images simulta-
neously and track the performance of building localiza-
tion F1loc (r), binary damage F1Cb

(r), and macro-average
damage F1-scores F1cls (r) in Figure 2. We plot the de-
crease along the schedule of 0.5 (original image resolution),
1.0, 2.0, 3.0, 4.0, 5.0, and 10.0 meters resolution.

Notably, the model’s ability to localize building footprints
prevails until an image resolution of 10 meters—and de-
creases much slower than the damage classification curves.
However, localization performance is only acceptable until
a resolution of 5 meters with an F1-score of 0.55.

In contrast to the localization performance, the damage
classification curves are much steeper. Here every meter of
resolution improvement matters. Both the binary and macro-
average damage classification F1-scores are almost zero for
resolutions below 4 meters. The performance drop espe-
cially takes place for the resolution perturbation within 2.0
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Model F1loc C1 C2 C3 C4 Cb F1cls
Universal 0.8530 0.8344 0.5415 0.7308 0.4619 0.8475 0.6080
Flood expert 0.8489 0.7985 0.5634 0.7906 0.5022 0.8279 0.6366

Table 2: Performance of the universal vs flood expert ResNet34 for the flooding events in the test set of xBD. The universal
model was trained on all types of natural hazards. The flood expert was fine-tuned on flooding events only. The performance
measures are the localization F1loc and macro-average classification F1-score F1cls. The best-performing variation is un-
derlined. Classification F1-score F1Cl

with l ∈ {1, 2, 3, 4, b}, where 1: No damage, 2: Minor damage, 3: Major damage, 4:
Destroyed, b: Binary damage

and 4.0 meters. When we compare the binary damage F1-
score with the one averaged over all four damage classes,
we observe a similar curve progression of the classification
performance drop. But the binary damage F1-score is con-
stantly higher than the macro-average damage classification.
As a result, we can follow that for the general detection of
building damage an image resolution of at least 2 meters is
required (F1Cb

(2m) = 0.73).
For the rating of damage at higher detail as in the joint

damage scale of xBD, however, information at 1-meter res-
olution or higher is needed to still confidently distinguish
between the four damage levels (F1C1

(1m) = 0.90 and
F1C4

(1m) = 0.84). Since minor and major damage was al-
ready difficult to differentiate in the test set of original qual-
ity (F1C2(0.5m) = 0.52, F1C3(0.5m) = 0.71), a higher
resolution should be preferred for these damage levels.

Asymmetric resolution perturbation Besides the gen-
eral resolution requirements for satellite data, we are inter-
ested in the interplay of the pre- and post-event images in
order to explore the underlying model behavior. Similarly
to our previous symmetric resolution analysis, we gradually
scale down both of the original xBD image pairs of 0.5-
meter resolution up to a maximum of 10 meters. However,
we perturb the images individually by tracking performance
decrease above every combination of resolutions within the
range of r ∈ {0.5, 1, 2, 3, 4, 5, 10} meters. Consequently, we
end up with 49 combinations of input image resolutions to
test the model’s performance. The performance frontiers of
binary F1Cb

(rpre, rpost), and macro-average damage clas-
sification F1cls(rpre, rpost), as well as building localization
F1loc(rpre, rpost) are shown in Figure 3. Note that the diag-
onal of the asymmetric resolution performance frontier cor-
responds to the performance of our previous symmetric res-
olution perturbation, as pre- and post-event resolution is the
same. Interestingly, the binary damage detection does not
heavily depend on the pre-event imagery as the performance
frontier in Figure 3 is rather constant along the pre-event im-
age resolution axis. However, Figure 3 shows that the com-
parison between pre- and post-event imagery is necessary
to assess building damage at a more detailed scale, e.g., the
joint damage scale defined in the xBD data set. While per-
formance depends primarily on the post-event resolution, it
also drops along the decreasing pre-event resolution. We fur-
ther investigated the interplay of the co-registered images
for individual damage levels. The performance surface of
the three damage classes ’minor damage’, ’major damage’,
and ’destroyed’ follow our previous findings that minor and

major damage is harder to classify than destroyed buildings
and the classification relies on the comparison of both in-
put images at high resolution. However, the classification
performance of not damaged buildings prevails even for a
post-event resolution of 10 meters.

The performance frontier shown in Figure 3 of building
localization reflects our training scheme since performance
only drops when the pre-event imagery is decreased in reso-
lution. This indicates the model’s robustness since the local-
ization of buildings is also based on damage classification
which in turn heavily depends on the post-event image, as
outlined above.

Generalization Analysis
Finally, we tested the model’s generalization with regard to
events never seen during training. We split the analysis into
two parts: the in-distribution and out-of-distribution testing.
The in-distribution testing is evaluating the generalization
for unknown events but from the same data set and, there-
fore, the same distribution. The out-of-distribution analysis
is, besides the unknown event, also testing for the general-
ization to other remote sensing sources.

Event Cross-Validation For the in-distribution testing of
generalization, we perform cross-validation on the event
level in xBD i.e., we leave out events from the training
and afterwards evaluate the model’s performance on these
events. But as the xBD data set comprises 19 natural dis-
asters, performing full-blown leave-one-out cross-validation
would be too computationally expensive. Thus, we follow
the data split of (Benson and Ecker 2020) and create the fol-
lowing three folds to test generalization:

1. Fold: Pinery bushfire, Joplin tornado, and Sunda tsunami
2. Fold: Moore tornado and Portugal wildfire
3. Fold: Lower Puna volcano, Tuscaloosa tornado, and

Woolsey fire

We train and validate the ResNet34 model on all disaster
types but the ones in the corresponding fold. Afterward, we
evaluate the newly trained model on the unseen events in the
fold and report the performance measures in Table 3.

Robust evaluation in the wild (Ahr Valley Flood case)
After we observed only a minor generalization gap for the
damage localization and classification for the in-distribution
setting, we test for generalization out-of-distribution. Thus,
we initially run an inference of the model trained on disas-
ters in xBD for half of the Ahr Valley data. While the xBD
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Fig. 10: Examples for the ensemble model segmentation results alongside the pre

and post imagery as well as ground truth (GT) of xBD samples from the test

set: (a) Mexico earthquake (2017), (b) Palu tsunami (2018), (c) Midwest flooding

(2019), (d) Guatemala volcano (2018), (e) Socal fire (2017), (f) Hurricane Michael

(2018). The color of the building footprints and prediction output corresponds to

the assigned damage level: unclassified, no damage, minor damage, major

damage, destroyed.

Figure 1: Examples for the ensemble model segmentation
results alongside the pre- and post-imagery as well as ground
truth (GT) of xBD samples from the test set: (a) Mex-
ico earthquake (2017), (b) Palu tsunami (2018), (c) Mid-
west flooding (2019), (d) Guatemala volcano (2018), (e) So-
cal fire (2017), (f) Hurricane Michael (2018). The color of
the building footprints and prediction output corresponds to
the assigned damage level: unclassified (blue), no damage
(grey), minor damage (green), major damage (orange), and
destroyed (red).

data set is recorded from the Maxar remote sensing satel-
lite at 0.5 meters resolution, the Ahr Valley data stems from
high-resolution airborne remote imagery, and was down-
sampled to the same coarser resolution.

As the Ahr Valley data has no visual overlap between the
image pairs, we can randomly split the data into training
and test sets without inducing data leakage. According to
the evaluation metrics shown in Table 4, the model is able
to localize and classify undamaged buildings in the Ahr Val-
ley (F1loc = 0.5462 and F1C1 = 0.7321). However, when
it comes to the classification of damaged or even destroyed
buildings, the model’s performance drops significantly to al-
most zero (F1C2/3

= 0.0142 and F1C4
= 0.0308). Con-

sequently, the overall macro-avg. classification of building
damage as the harmonic mean across F1-scores is almost
zero as well (F1cls = 0.0107). We focus on the binary clas-
sification of damage in the Ahr Valley. In view of this, the

Figure 2: Symmetric resolution analysis: Building damage
estimation for the simultaneous perturbation of satellite pre-
and post-images.
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Figure 3: Building damage for different asymmetric resolu-
tions: perturb resolution of the pre & post satellite imagery
individually

model has an F1-score of F1Cb
= 0.2521. Besides the quan-

titative evaluation, Figure 4 depicts a series of exemplary
predictions of the ResNet34 for the Ahr Valley event.

P r e Po s t G ' T P r ed i c t i o n

(a )

(b )

(c)

(d )

Figure 4: Examples of segmentation results alongside the
pre- and post-event imagery (Landesamt für Vermessung
Geobasisinformationen Rheinland-Pfalz (LVG), 2021) as
well as the ground truth (GT) of the Ahr Valley: (a) exem-
plary segmentation for all damage levels available, (b) good
segmentation, (c) destroyed buildings misclassified as ’dam-
aged’, and (d) silos misclassified as buildings. The color of
the building footprint corresponds to the assigned damage
level: unclassified (blue), possibly damaged (grey), damaged
(orange), or destroyed (red).

In the second step, we aim for tracking the adaptation of
the model to the new data over the number of training sam-
ples provided. Therefore, we define the adaptation A(s) of
our model being trained on a share s ∈ [0, 0.5] of the Ahr
Valley data as the following:

Aloc(s) = F1loc(s)− F1loc(s = 0)
Acls(s) = F1cls(s)− F1cls(s = 0)
ACl

(s) = F1Cl
(s)− F1Cl

(s = 0)
We start by fine-tuning the model on the maximum of

available training data i.e., half of the Ahr Valley data (s =
0.5) which was not used for testing in the previous step.
The performance of the model fine-tuned on the Ahr Val-
ley event is depicted in the last row (ResNet34 s=0.5) of
Table 4. The results indicate that the model only adapts to
a limited extent. While the classification of buildings la-
beled as ’damaged’ adapts considerably with AC2/3

(0.5) =
0.1980, the overall ability to differentiate between damaged
and intact buildings remains unchanged as the adaptation is
ACb

(0.5) = 0.0138.

Discussion
In our research, we analyzed the performance and general-
ization of our model in various settings. We initially find that
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Model F1loc
1C1 C2 C3 C4 Cb F1cls

xBD test 0.8635 0.9234 0.6444 0.7859 0.8640 0.8816 0.7897
1st fold2 0.8778 0.9264 0.6733 0.5970 0.8600 0.8985 0.7404
2nd fold3 0.8984 0.9479 0.5409 0.4959 0.8107 0.8234 0.6500
3rd fold4 0.8711 0.9191 0.6840 0.4336 0.8395 0.8621 0.6614
Fold avg. 0.8824 0.9311 0.6327 0.5088 0.8367 0.8613 0.6839

Table 3: Comparison of the ResNet34 segmentation performance between the original xBD test set and the three folds for cross-
validation. We test the ResNet34 model on the three folds after training it on the remaining events. The last row is the average
performance across the folds. 1Classification F1-score F1Cl

with l ∈ {1, 2, 3, 4, b}, where 1: No damage, 2: Minor damage,
3: Major damage, 4: Destroyed, b: Binary damage 2Pinery bushfire, Joplin tornado, and Sunda tsunami. 3Moore tornado and
Portugal wildfire. 4Lower Puna volcano, Tuscaloosa tornado, and Woolsey fire.

Localization Damage classification1

Model Metric C1 C2/3 C4 Cb F1cls
ResNet34 F1 0.5462 0.7321 0.0142 0.0308 0.2521 0.0107
s = 0 Precision 0.4355 0.8093 0.2150 0.0307 0.3854

Recall 0.7325 0.6683 0.0074 0.0308 0.1873
ResNet34 F1 0.5378 0.7348 0.2122 0.0036 0.2659 0.0288
s = 0.5 Precision 0.4274 0.8173 0.5068 0.0030 0.3965

Recall 0.7252 0.6675 0.1342 0.0048 0.2000

Table 4: Comparison of the ResNet34 segmentation performance on the Ahr Valley flooding 2021 in Germany. The first block
of rows is the performance of the model which was trained on the xBD training set only and was not fine-tuned on a share
s ∈ [0, 0.5] of the Ahr Valley data (s = 0). The last block shows the evaluation of the ResNet34 which was trained on the
xBD training set and additionally fine-tuned on half of the Ahr Valley data (s = 0.5). 1Classification Cl for damage level with
l ∈ {1, 2, 3, 4, b}, where 1: Possibly damaged, 2/3: Damaged, 4: Destroyed, b: Binary damage

the model performs well for the classification of damage on
different levels of detail for the xBD test set. But the per-
formance metrics and confusion matrices indicated that the
model is challenged to differentiate between partially dam-
aged buildings and to separate them from the extreme cases
where buildings are destroyed or left unaffected.

Furthermore, we started to investigate whether natural
hazard-induced building damage varies for the different
types of disasters. Owing to the previous finding that ’minor’
and ’major damage’ is difficult to differentiate, we primarily
built our investigation on the performance of our model for
these damage levels. We find that the visual appearance of
damage might vary as our model confuses different pairs of
damage levels for the two hazard types: fire and flood. It’s
particularly intriguing that the model classifies buildings de-
stroyed by a flood as unaffected. However, the model’s con-
fusion captures the fact that floods often do not damage the
roof of a building but rather the interior. This finding chal-
lenges the model used in this work as convolutional oper-
ations only extract local information, while attention-based
architectures consider the global context, such as the sur-
rounding water of a flood (Hao et al. 2020). In addition, data
sources beyond nadir images might be more important for a
comprehensive understanding of the scene (Bommasani and
Hudson 2022).

To tie in with the aforementioned findings, we uncover
a demand for expert models specifically trained for a given
type of natural hazard in our studies. While a universal (i.e.
hazard type agnostic) model is sufficient for the detection of

damage of any severity, expert models might lead towards an
accurate damage assessment at a more granular level. How-
ever, this finding is for the time being limited to our ablation
studies on floods.

In the first question, we ask for the minimum resolution of
remote sensing imagery required to confidently assess build-
ing damage. We answer this question in a bifurcated manner
since the minimum resolution depends on the level of de-
tail damage being assessed. If the objective is to classify a
building as either damaged or not damaged, our model re-
quires an image resolution higher than 3 meters per pixel.
Interestingly, we find in our asymmetric resolution analysis
that this spatial resolution criterion only applies to the post-
event imagery. Our analysis indicates that the detection of
damage in a binary decision setup is independent of the pre-
event imagery. This finding supports current research efforts
which concentrate on mono-temporal techniques whenever
building damage is not further split into different levels of
damage (Abdi, Esfandiari, and Jabari 2021). This finding
is very relevant, as pre-event images are typically available
from satellites only. However, for major natural disasters,
detailed airborne post-event analysis can be expected.

On the other hand, when it comes to the classification of
damage on a scale of different grades, our model requires an
even higher image resolution of 1 meter or below. This re-
quirement for the remote sensing data is in line with our pre-
vious finding that the detection of partially-damaged build-
ings is the most challenging for our model. While the reso-
lution limit primarily applies to the post-event imagery, our

121



asymmetric analysis implies a strong dependence between
the resolutions of the two input images. Thus, for the estima-
tion of damage into different levels the comparison of pre-
and post-event imagery appears to be requisite. This finding
complements the increasing rise of multi-temporal architec-
tures in literature and other research (Dong and Shan 2013).

Moreover, the damage might not only be specific to the
type of disaster itself, as we have pointed out above, but also
varies on the individual event level. Since the xView2 chal-
lenge splits the imagery of a disaster across the different sub-
sets for training and testing, any model could have already
adapted to the visual appearance of damage for a specific
event.

In our second question, we aim for evaluating the abil-
ity of models to generalize to unknown events and regions.
Thus, we split the data along disasters and test for in-
distribution generalization of our model. We find the gen-
eralization gap of our model for detecting building damage
to be smaller than what is found for similar architectures in
literature (Benson and Ecker 2020). The data suggest that for
the binary classification of building damage, there is no gen-
eralization gap as performance only drops by 2%. Whereas
binary detection prevails across the three folds, the detection
of major damage drops significantly. This result argues for
the visual representation of partial damage to be even spe-
cific to an individual disaster. But further analysis is required
to reach a final decision on this matter.

In addition, we analyzed the generalization to an out-of-
distribution setting where the region of the disaster, as well
as the source of the remote sensing data, is different. The
ResNet34 model pre-trained on xBD signals a large gener-
alization gap for the Ahr Valley event 2021 in Germany. But
the model does not even adapt to the disaster when trained
on half of the data. We attribute the poor results to the qual-
ity of the labels provided by Copernicus Emergency Man-
agement Service (CEMS). This finding stems from the fact
that there is no class that explicitly labels buildings as un-
affected by the flood. Moreover, following a visual inspec-
tion of the data buildings are either not annotated at all or
labeled in batches. In terms of the out-of-distribution gener-
alization, we can, therefore, not conclude any result. How-
ever, the noisy CEMS labels indicate the current limitations
of impact assessments and the need for model advances as
presented here.

Overall the model shows the ability to generalize for nat-
ural hazard events and regions never seen during training.
However, the model’s generalization to unknown events and
its robustness against the image resolution is primarily lim-
ited by the level of detail at which building damage has to
be assessed.

Conclusion and Outlook
In this work, we assess the robustness of current deep learn-
ing for the detection and classification of natural hazard-
induced building damage in remote sensing data. For this
purpose, we implement the first-place solution of the well-
known xView2 challenge. To test robustness, we perturb the
input images and track the model’s performance over differ-
ent spatial resolutions. We further contribute to both theory

and practice by evaluating the ability of the model to gener-
alize for natural hazard events never seen during its training
phase.

As a result of the resolution analysis, we find that our im-
plemented model is able to differentiate between damaged
and unaffected buildings for post-event images higher than
3 meters in resolution and does not consider the pre-event
imagery. However, for the classification of damage into dif-
ferent grades, the comparison of pre- and post-event images
at resolutions below 1 meter per pixel seems to be needed.
Therefore, the decision towards a mono- or multi-temporal
approach should depend on the level of detail building dam-
age needs to be extracted. The extracted range of spatial res-
olution for our deep learning model might guide future re-
search to focus on remote sensing sources which meet these
requirements.

The generalization analysis initially builds on the repar-
titioning of the xBD data set at the disaster level and eval-
uates the model on events not used during training. We ob-
serve only a negligibly small generalization gap for the three
test folds. Moreover, we create our own data set for the Ahr
Valley Flood 2021 in Germany and apply our model to this
event. While the first insights indicate a large generalization
gap for this disaster, we cannot finally conclude any result
due to the low quality and granularity of the labels provided
by current post-disaster assessments. Furthermore, our stud-
ies indicate that the visual expression of different building
damage levels is at least hazard type specific but may also
be unique for the individual disasters as suspected by (Tilon
et al. 2020). This preliminary comparison between a hazard-
type agnostic model and an expert model specifically trained
for floods supports the recent rise of large foundation mod-
els which are designated to be fine-tuned for specific down-
stream tasks and domains (Bommasani and Hudson 2022).

Finally, the remote sensing-based classification of build-
ing damage into different grades aims toward the rapid and
accurate estimation of direct and tangible losses. Thus, fu-
ture research should focus on the translation of the physi-
cal damage extracted by deep learning models into financial
projections. A promising field of research lies ahead.
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