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Abstract

Flood events have the potential to impact every aspect of life,
economic loss and casualties can quickly be coupled with
damages to agricultural land, infrastructure, and water qual-
ity. Creating flood susceptibility maps is an effective man-
ner that equips communities with valuable information to
help them prepare for and cope with the impacts of potential
floods. Flood indexing and forecasting are nonetheless com-
plex because multiple external parameters influence flood-
ing. Accordingly, this study explores the potential of utiliz-
ing artificial intelligence (AI) techniques, including cluster-
ing and neural networks, to develop a flooding susceptibility
index (namely, NeuralFlood) that considers multiple factors
that are not generally considered otherwise. By comparing
four different sub-indices, we aim to create a comprehen-
sive index that captures unique characteristics not found in
existing methods. The use of clustering algorithms, model
tuning, and multiple neural layers produced insightful out-
comes for county-level data. Overall, the four sub-indices’
models yielded accurate results for lower classes (accuracy
of 0.87), but higher classes had reduced true positive rates
(overall average accuracy of 0.68 for all classes). Our find-
ings aid decision-makers in effectively allocating resources
and identifying high-risk areas for mitigation.

Introduction & Motivation

The dangers of flooding are widespread and can leave com-
munities vulnerable within a few hours of occurrence (Na-
tional Centers for Environmental Information (NCEI) 2023).
In the United States alone, $177.9 billion has been lost to
inland flooding events that exceed $1 billion in cost from
1980 to 2022 (National Centers for Environmental Informa-
tion (NCEI) 2023). These statistics disregard the costs of less
severe floods that can still cause harm to human health and
infrastructure (Environmental Protection Agency 2022). Ev-
ery aspect of a community’s lifestyle is at risk during flood-
ing events. On agricultural land, flooding can cause the loss
of crops, equipment, and valuable soil quality (Warner et al.
2017). In urban settings, household items, electrical utili-
ties, and public transportation services can be damaged or
destroyed (Micu 2021). The sediment, bacteria, and pesti-
cides captured inside cities can be transported to neighbor-
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ing water-bodies and ecosystems, potentially carrying pollu-
tion to water with both anthropogenic and natural uses. On a
societal level, besides causing fatalities, flooding can intro-
duce high-stress levels among individuals that continue after
the disaster (Stanke et al. 2012). Relationships and welfare
suffer even after the water recedes. In recent years, flood
events have experienced changes in frequency and severity.
In the United States, river and stream flooding have grown
in magnitude in the Northeast and Midwest regions (Mal-
lakpour and Villarini 2015). Similarly, the Northeast, Pa-
cific Northwest, and Northern Great Plains have experienced
more frequent large floods. Other regions, such as the West,
southern Appalachia, and northern Michigan, have had less
flooding frequencies, thus further bolstering the coincidence
of floods fluctuations with changes in heavy rainfall events.
Overall, flooding disasters have increased by 134% since
2000 compared to the two previous decades (World Me-
teorological Organization 2021). The dangers of climate
change are evident—flood risks are predicted to increase with
each degree of global warming (Intergovernmental Panel on
Climate Change 2021). If these trends continue, communi-
ties will require novel strategies for preparing for flooding
disasters. Flood susceptibility maps can be invaluable tools
for understanding an individual’s possibility of experiencing
a flood event based on their geographic location. Most flood
maps (i.e., indices) that are readily available to the public
will show “risk” zones and indicate that risk from “low”
to “high,” such as the National Risk Index (NRI) from the
Federal Emergency Management Agency (FEMA) (Federal
Emergency Management Agency 2023). Some maps con-
sider the effects of climate change on disaster events, like
the First Street Foundation Flood Model (Bates et al. 2020).
However, the issue stands that these maps can take monu-
mental effort, time, and funding. As the public searches for
accurate (and data-driven) flood risk maps, confusion can
grow about which source presents the most accurate results.
Each published mapping system utilizes different qualities
and quantities of data, as well as different modeling strate-
gies. Maps can utilize only hydrological data, including Dig-
ital Elevation Models (DEMs), river hydrology networks,
and land cover, or they can also include community data,
like population density and wealth factors.



The Need for AI

The power of artificial intelligence (AI) has proven invalu-
able as the technology has advanced (Batarseh and Freeman
2022). As emphasized by Batarseh and Kulkarni, integrating
explainable Al into the water sector is crucial. In contrast
to other models, Al models can (1) use increasing amounts
of data (i.e., big data) and (2) identify patterns and correla-
tions between data where humans cannot. Many researchers
have agreed and even experienced the difficulties of using
Al for the geo-sciences. Mainly, data collection and validity
limitations create obstacles (Batarseh and Freeman 2022).
Nevertheless, as data improve and grow, the discovery of
geo-science data relationships using Al technologies could
have significant results. Al has already begun to establish
a foothold in designing flood susceptibility maps (Tien Bui
et al. 2016; Rahman et al. 2019; Priscillia, Schillaci, and
Lipani 2021). The Literature Review section discusses pre-
vious studies and models. This study applies an Artificial
Neural Network (ANN) to three hydrologically independent
states in the United States: Kansas, Nevada, and Virginia;
to produce a flood susceptibility index map. By considering
locations with three different geographies, land uses, hydrol-
ogy networks, and population densities, the model is tested
for its ability to transfer classification accurately. In previ-
ous literature, Al was mainly applied to case studies, gener-
ally a watershed or sub-watershed. In doing so, the data col-
lected must be more detailed and, thus, generally more time-
consuming to collect and clean. In contrast, the data col-
lected for this study are on a county-level scale to expedite
the data collection rate and examine how coarser data will
affect the output susceptibility map results. Although pre-
cise susceptibility maps ideally require data and information
obtained at spatial resolutions finer than that of counties, our
model operates based on data availability (public sources).
Given the accessibility of county-level data, the model is de-
signed to leverage this information for its data-driven ap-
proach. Given the input boundaries, the outputs were deter-
mined within counties. The output flood susceptibility map
was then presented as an index using the historical flood
events. During validation, the results were analyzed against
the NRI riverine flooding risk indices due to FEMA’s quality
of methodology and ability to reach the public.

Literature Review

This section reviews existing flooding indices and Al models
applied to support decision-making in this domain.

Flood Indices

In the past decades, the introduction of remote sensing (RS),
GIS, and data-driven tools technology have created an irre-
placeable set of tools in analyzing flood susceptibility and
modeling (Hapuarachchi, Wang, and Pagano 2011). Using
open-source data, researchers have used RS and GIS to study
natural disasters. According to Duan et al., studies of flood
susceptibility assessments experienced an upward trend be-
ginning in 2007. Many of the same variables used in this
study were included in these models, such as land use, pre-
cipitation, and slope. Nevertheless, difficulties arose in the
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validity of the data and the appropriate statistical model to
use for accurate results (Collier 2007). As RS capabilities
have improved with machine learning (ML) assistance and
aerospace technology advancement, various statistical meth-
ods for producing flood susceptibility maps have emerged
(Wu et al. 2019). After discussing the literature that utilizes
statistical probability strategies, models that use Al are pre-
sented. A wide range of statistical models have been devel-
oped to produce flood susceptibility maps. In 2016, Rah-
mati, Zeinivand, and Besharat proposed a flood hazard zon-
ing technique that used multi-criteria decision analysis. A
case study of a river basin was again used, but only four pa-
rameters were included—distance to channels, land use, el-
evation, and slope. Hydrologists reclassified and weighted
the four factors, producing a normalized rate based on the
sum of rates. This normalized rate resulted in a flood haz-
ard map. Additionally, the Hydrologic Engineering Center
River Analysis System (HEC-RAS) was used with the DEM
to produce 50- and 100-year floods. Thus, validation was
performed by visually overlaying the flood hazard map with
the flood inundation maps from HEC-RAS. The results from
validation indicated a similarity between the flood hazard
map and the inundation maps, indicating that the four fac-
tors included in the model hold significance. However, both
the constraints of a case study and the absence of numerical
validation are to be considered.

In contrast to case studying, Sampson et al. produced a
global flood hazard model. Using globally available data at
90-kilometer spatial resolution, a near-automated model us-
ing regression-based GIS functions was used to merge the
results from the hydraulic engine to create a flood hazard
map. The results were validated using performance metrics
of Hit Rate, False Alarm Ratio, and Critical Success In-
dex. Given the flood extents from benchmark Canada and
United Kingdom (UK) datasets, the model captured 66-75%
of the area at risk. Also, as data resolution increased, the
success rates increased significantly. Given the success rates
of the study, factors such as land cover, hydrology networks,
and community factors (i.e., population density) were estab-
lished as critical variables in considering flood susceptibility.
Nonetheless, the processing time for a 100 x 100 grid was
estimated to reach 2,000 hours if using a conventional CPU
processor (not a GPU). Other concerns include the coarse-
ness of data used and the validation techniques that only con-
sidered climates within Canada and the UK.

Cao et al. introduced a flood susceptibility mapping ap-
proach using frequency ratio (FR) and statistical index (SI)
methods in 2016 that similarly used geographic data in a
case study. However, additional factors such as stream power
index (SPI), topographic wetness index (TWI), and heavy
rain events were included in the parameters. FR and SI used
70% of the flooding locations in the study area for train-
ing, while the other 30% was used for validation. Based
on the validation techniques, the FR model was more ap-
propriate for the study area, presumably because the FR
method better reflected the geographic anomalies of the area.
Since the classification of each parameter was used, as in the
previously mentioned literature, the researchers considered
the benefits of each classification method, concluding that



the natural break method reduced variance within classes
and between classes. In 2018, the Chicago Metropolitan
Agency for Planning (CMAP) developed a regional flood-
ing susceptibility index to evaluate urban and river flood-
ing in Illinois. After carefully evaluating various methodolo-
gies, CMAP chose the frequency ratio approach as the most
suitable statistical model (Chicago Metropolitan Agency for
Planning 2018). This approach allows for examining rela-
tionships between the distribution of flooding sites and rel-
evant factors contributing to flooding. Once the index was
formulated, CMAP conducted tests using a random sam-
ple of reported flood locations. The results demonstrated
a strong correlation between the highest index levels and
the actual occurrence of flooding in those locations, indi-
cating the potential effectiveness of the developed index. In
2020, a publicly available flood susceptibility map was re-
leased by Bates et al. Bates et al. The First Street Foun-
dation Flood Model (FSF-FM) resulted from a combined
model of fluvial, pluvial, and coastal flood risks, considering
the present and future climate changes. The FSF-FM’s ar-
rival was coupled with multiple flood modeling innovations.
First, researchers used the flood frequency analysis method
rather than rainfall-driven hydrological models. In doing so,
it was possible to use regionalization methods to predict the
characteristics of un-gauged locations. Second, the modifi-
cations of flooding events caused by anthropogenic infras-
tructure were modeled through “grey” and “green” infras-
tructure. The “grey” infrastructure simulated levees, dams,
ditches, etc., while the “green” infrastructure simulated con-
structed wetlands, living shorelines, etc. The categorization
of flood adaptation infrastructure allowed for more accurate
infiltration and flow rates. Finally, the FSF-FM used cumu-
lative statistics that combined the fluvial and pluvial hazard
layers with weights unique to each basin based on historical
analysis. Given the amount of incoming data and computa-
tional layers in the study, not every hazard layer could be
specifically calculated. Thus, a non-linear logarithmic rela-
tionship was applied to the given data. Although the FSF-
FM yielded Critical Success Index values of 0.69-0.82 when
compared to other high-quality models, the project again re-
quired a large team of experts, without considering multiple
geographical areas (such as the difference between coasts,
cities, and rural towns).

Using Al for Flood Indices - A Brief Review

The potential benefits of applying Al to the water sector have
grown immensely (Batarseh and Kulkarni 2023). In 2016, an
Al algorithm based on a neural fuzzy inference system and
metaheuristic optimization was designed for flood suscep-
tibility modeling (Tien Bui et al. 2016). In the case study,
Tien Bui et al. examined the Tuong Duong district of Viet-
nam, an area with a consistent tropical cyclone season. Ten
variables were chosen as data inputs which were all com-
piled in a GIS database, including slope, elevation, rainfall,
and other hydrologic factors. The model consisted of a five-
layered feed-forward neural fuzzy network. Evolutionary
Genetic optimization and Particle Swarm optimization were
then used to search for the best values of antecedent and
consequent parameters in the network. The Pearson correla-
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tion with a 10-fold cross-validation process was also used to
analyze the predictive power of the ten variables, resulting
in elevation producing the highest predictive power and cur-
vature producing the lowest predictive power. By combin-
ing the neural fuzzy network and the two optimization al-
gorithms, a relatively accurate flood susceptibility map was
constructed with high statistical success. Nonetheless, the
drawbacks of the case study are evident and the validation
techniques did not include a comparison against other flood
maps, and the method only considers one data source. A dif-
ferent technique using ML and multi-criteria decision anal-
ysis was proposed by Rahman et al. in 2019. The flood-
independent variables—DEM, soil tract map, and land use
map-were collected for the country of Bangladesh. Unlike
the previously mentioned model, flood-dependent variables
were included by calculating flood inundation maps using
RS data. The study compared the application of an ANN, an-
alytical hierarchy process (AHP), logistic regression (LR),
and frequency ratio (FR). Since weak points have been ob-
served in individual models, an integrated model was also
designed based on the validation results of the prior meth-
ods. Overall, the LR model produced the highest prediction
rate, followed by the FR model. Eleven integrated model
maps were created and generally presented better predic-
tions. As in Tien Bui et al.’s research, the value of integrated
models is emphasized. Further testing using the highest-
performing model in different locations could identify any
need for optimization.

Though the power of integrated models was demonstrated

by Rahman et al., the efficacy of an individual ANN model
in flood susceptibility assessments was later exhibited by
Priscillia, Schillaci, and Lipani. The study compares three
models: ANN, k-Nearest Neighbors (k-NN), and Support
Vector Machines (SVM). As in previous works, hydrologic
inputs such as elevation, slope, land cover, soil type, and
precipitation are used. After training the models, the valida-
tion process involved using environmental factors alongside
satellite imagery to back-predict historical flood events. The
Synthetic Minority Oversampling Technique (SMOTE) bal-
anced both flooded and non-flooded conditions due to the
infrequency of flooded events (Chawla et al. 2002). Valida-
tion was evaluated through classifiers using Precision, Re-
call, and the F1-score to account for the shortage of flood
instances.
Based on the validation techniques, the ANN model per-
formed the highest. Despite the ANN model performing the
best, the imbalanced dataset produced poor results. Since the
researchers were basing success on the ability of the suscep-
tibility assessment to predict which villages would be af-
fected by a flood event in the next month, factors such as
position in the monsoon cycle may have affected the results.
Overall, the study emphasized the importance of rebalanc-
ing the dataset but failed to consider multiple geographical
locations or include multiple external factors, as we present
in the models built into the NeuralFlood index.

Research Questions

In this study, the following research questions are formu-
lated:



* RQ#1: How do multiple factors of flooding events con-
tribute to an Al-based flooding susceptibility index?

¢ RQ#2: Will Neural Network models have accurate flood
indexing results when applied between three hydrologi-
cal unique study areas (i.e., geographical contexts)?

Those two questions are answered via the NeuralFlood
workflow; the experimental design and data used for eval-
uation are introduced next.

Experimental Setup

This section presents the empirical process that we used to
evaluate NeuralFlood.

Data Sources and Descriptions

The data collected for the AI model resulted in 11 variables
used as inputs (independent variables). All data are pub-
licly available (i.e., open access) in the United States. Data
used in this study were collected from the National Oceanic
and Atmospheric Administration (NOAA), the United States
Geological Survey (USGS), and the United States Depart-
ment of Agriculture (USDA). Although most of the inputs
were geographic data, some factors, including population
density, were societal data. For data that are not time-bound,
such as elevation, slope degree, and so on, the most recent
available source was used. The earliest data are from 2019.
For time-bound data, collections ranged from 2010 to 2022.
Each impact factor includes monthly data, average (1), stan-
dard deviation (std), range, 90th percentile (Pct90), total
(sum), anomalies (anomaly), and county ranking (rank),
density and area. Table 1 illustrates the factors inputted into
the model, the description, the source, and the data format.
Regarding the data format, spatial and non-spatial data dis-
tinguish between data derived from a raster or GIS file ver-
sus a flat, 2-dimensional source.

Since spatial data were provided in a format intended for
GIS use, all spatial data were first processed using ArcGIS
Pro and its respective functions. After processing in ArcGIS
Pro, spatial data were converted into a tabular CSV for-
mat with county-level numeric values to be later fed to the
model.

Data Preprocessing

All data are normalized using standardization before feeding
to the ANN model. Standardization assists in removing the
effects of different data scales. When features in a dataset
have different scales, the model may give more weight to
features with larger values. This can cause biased predic-
tions and inaccurate results. Standardizing the data ensures
that each feature has equal importance when feeding the
model (as shown in Figure 1).

1U.S. Geological Survey
>NCEI

SNOAA

*U.S. Census Bureau
SUSDA

Factor Description Data

Elevation! The height above a refer- p, o, min,

[m] ence datum. Lower areas maz, range,
are more prone to flood-  sum, Pct90
ing.

Slope The Ist derivative of the u, o, min,

degree ! [°] terrain model. Controls maz,range,
the flow velocity. sum, Pct90

Curvature! The 2nd derivative of the  p, o, min,

[rad/m] terrain model. Geomor- max,range,
phic qualities, including sum, Pct90
flat, concave, and convex.

Flow The accumulated weight u, o, min,

accumulation! of all land flows downs- maz, range,
lope. Controls where wa-  sum, Pct90
ter flows.

Precipitation®:> Monthly  precipitation ~PCP, rank,

[inches]

Temperature?>

[°F]

Population
density*
[persons/km?]

Drought
intensity?®:>

Land area®
[km?]
Water area
[km?]

4

Housing
density*
(house
unit/km?)
Historical
flooding?
(model out-
pur)

record from 2010 to
2022. Increased pre-
cipitation can lead to
increased flooding.

Monthly temperature
record from 2010 to
2022. Temperature

changes can alter precip-
itation and soil moisture
levels.

The total number of per-
sons in an area divided
by the land area in km?2.
Higher density is prone to
more flood risk.

Categorical percent area
from DO to D4 (least
to most dry periods) and
DSCI (Drought Severity
and Coverage Index).

The total area of land in
km? within a jurisdiction
The total water area in
km? within a jurisdic-
tion.

More housing, higher
flood risk, increased
impervious cover.

The  recorded mea-
surements of flooding
concerning duration,

frequency, and location.

anomaly,
(from 1901-
2000)

T(min, maz,
w), rank
(min, maz,
), anomaly
(min, max,
14)

density

DO (0-100%)
D1 (0-100%)
D2 (0-100%)
D3 (0-100%)
D4 (0-100%)
DSCI (0-500)

area

area

density

FTD,
FFTD,
FOoc,
FFOC

Table 1. NeuralFlood variables (used for modeling) with cor-
responding descriptions.



Data Preprocessing
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Figure 1: Procedural Pipeline for NeuralFlood

Pearson correlation In this analysis, the p-value is em-
ployed to assess the significance of the relationship between
variables, particularly in the context of flood vulnerability.
Utilizing a significance level of 0.05, the p-value helps de-
termine whether the link between factors like topography,
soil type, land use, precipitation, and flood susceptibility is
statistically significant. By calculating the Pearson correla-
tion coefficient and examining the associated p-value for
each factor, the analysis gauges the strength of these rela-
tionships.

Imbalanced datasets Imbalanced datasets can pose a
challenge for machine learning models since they tend to
favor the majority class, leading to poor performance in pre-
dicting the minority class. In the case of flooding, a model
may be effective at classifying non-flood events (class 0) but
not as effective at classifying flood events (class 1). A flood-
ing index should be developed in a manner that can identify
all ranges and variations of floods. To address this issue, we
use both oversampling and undersampling techniques to bal-
ance the dataset, recognizing that larger-scale floods are rel-
atively infrequent compared to smaller ones (Chawla et al.
2002). We consider this aspect in our experimental design.

Methodology: NeuralFlood

The diagram in Figure 1 illustrates the high-level procedu-
ral overview of the methodology. NeuralFlood consists of
three main pillars: data-driven indexing, using clustering for
labeling, and deep learning. NeuralFlood consists of 4 sub-
indices, two for regular and flash flood time durations (FTD
and FFTD), and two for regular and flash flood occurrence
counts (FOC and FFOC). We adopt the definitions the Na-
tional Weather Service (i.e., by NOAA) described: floods
last longer than flash floods. Flooding can go on for days
or even weeks. On the other hand, a flash flood occurs when
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there is a high volume of heavy rain in a short span, usually
less than 6 hours (NOAA).

Flood Susceptibility Indexing

The flood history, often referred to as the disaster experi-
ence, suggests that areas with a significant flood history pos-
sess a certain level of adaptation capacity. As a result, these
areas also exhibit a higher probability of experiencing fu-
ture flood events (Zong and Tooley 2003; Chang and Chen
2016). In this study, the number of flood occurrences and
total duration in minutes within a month are used to label
flood susceptibility using K-means clustering. The Experi-
mental Results section describes the range of indices identi-
fied based on the optimal number of clusters employed.

Previous research in the study areas exclusively employed
binary variables (Bui et al. 2018; Darabi et al. 2019) to de-
termine the presence or absence of floods as dependent vari-
ables. In contrast, our study deviates from this approach by
employing the number of flooding occurrences and the to-
tal duration of flooding to determine the flood susceptibility
index.

K-Means Clustering

The K-means clustering method is advantageous in identify-
ing regions with similar flood patterns and duration (Zhang
2022). By pinpointing these areas, we can prioritize flood
prevention measures and allocate resources to the most vul-
nerable regions. Once the k-means clustering has been per-
formed, we can us e the resulting clusters (as labels) to create
a Flood Susceptibility Index. An effective method could in-
clude assigning each cluster a score based on the frequency
or severity of flood occurrences in that cluster.

ANN for Flood Indices

ANNS are a type of deep learning algorithm that are well-
suited for modeling complex, nonlinear relationships be-
tween variables, such as the case at hand (Mijwel 2018). In
the context of flooding, in our study, ANN is used to create
a flood index by predicting the likelihood of flooding based
on the listed 12 factors. Additionally, ANN can be trained
on large datasets and can incorporate new data or features
as they become available, allowing for continuous improve-
ment of the flooding index over time.

To use ANN for finding a flooding index, we first need
to gather data on the variables that affect flood occurrences.
These data are used to train the ANN, which involves feed-
ing the algorithm a set of input data along with the corre-
sponding output, the flood susceptibility index.

Experimental Results

This section presents the outcomes of our NeuralFlood
study. Each index demonstrates distinct and strong correla-
tions with specific factors, leading to the inclusion or exclu-
sion of different sets of factors in each index.

Before performing k-means clustering on the number of
occurrences and total flood duration, we used an elbow di-
agram to determine the suitable number of clusters for the
dataset. In the elbow diagram, the inertia represents the sum



of squared distances of samples to their closest cluster cen-
ter. It is a measure of how compact the clusters are. A lower
inertia indicates better clustering. We used a logarithmic
scale instead of a normal scale for the elbow diagram to bet-
ter visualize the differences in inertia scores. The results of
the elbow diagrams indicated that having 7 clusters achieved
the best score for the flooding susceptibility index using the
occurrence count, while having 5 clusters yielded the best
score for the flooding susceptibility index using the total
flood duration. The k-means algorithm silhouette scores are
as follows: 0.7667 for FTD, 0.7991 for FFTD, 0.9426 FOC,
and 0.9 for FFOC. To further analyze the results, we created
tables that define the range of the number of occurrences
and total flood duration falling into each flooding suscepti-
bility index. Table 2 provides a clear understanding of how
the different indices are categorized.

Occurrence counts for FOC and FFOC indices (values 1 -
7 respectively) are as follows for FOC: 0, 1, 2, 3-4, 5-7, 8-
12, 14-20; and as follows for FFOC: 0, 1, 2-3, 4-6, 7-10,
11-18, 20-31. The four index models vary in architecture
performance. FTD model utilized five layers with varying
units (416, 160, 96, 192, and 320) alongside a rectified lin-
ear unit (relu) activation function and a learning rate of 0.01.
FOC model, with five layers and units distributed as (192,
256, 352, 320, and 64), also employed a relu activation func-
tion and a learning rate of 0.01. FFTD Model, comprising
three layers with units (256, 32, and 32), utilized a relu func-
tion and a lower learning rate of 0.001. Lastly, FFOC model
featured five layers with units (288, 32, 512, 416, and 128)
while using a relu function and a learning rate of 0.001. Fur-
thermore, we evaluated the performance of the four flooding
susceptibility indices using metrics such as accuracy, pre-
cision, recall, and F1 score. It was observed that the index
utilizing the number of occurrences for flash floods outper-
formed others in terms of precision & recall (See Table 3).

The ROC graph in Figure 2 was plotted to assess the per-
formance of the flood susceptibility indices. For FTD, it per-
forms moderately well for indices 1, 2, and 3, with AUC
values around 0.67 to 0.78. However, for index 4, the AUC
value is not generated (nan), so it is not possible to inter-
pret the performance. Index 5 has a relatively lower AUC
value of 0.56936, indicating weaker discrimination ability
compared to the other indices.

For FFTD, it performs quite well for all indices, with
AUC values ranging from 0.73 to 0.96. All indices exhibit
good discrimination ability with AUC values. Specifically,
indices 4 and 5 stand out with a very high AUC values of
0.95 and 0.96, indicating excellent performance in classifi-
cation.

For FOC, it shows variable performance across different
indices. Indices 1, 5 and 7 demonstrate relatively higher
AUC values, ranging from 0.78 to 0.96, indicating good
discrimination ability. However, indices 2, 3, 4 and 6 have
AUC values around 0.66, suggesting relatively weaker per-
formance in classification tasks.

For FFOC, it exhibits varying performance across differ-
ent indices. Indices 1, 5, 6, and 7 demonstrate relatively
higher AUC values, ranging from 0.76 to 0.90, indicating
good discrimination ability.
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FTD Total Duration | FFTD | Total Duration
(minutes) (minutes)

1 0-1170 1 0-1650

2 1186 - 3972 2 1665 - 6000

3 4320 - 12770 3 6214 - 15280

4 17535 - 27359 4 23039 - 29009

5 43119 - 45419 5 43199 - 54718

Table 2. Flood and flash flood susceptibility Index based on
total duration (FTD, FFTD).

Index | Accuracy Precision Recall F1 Score
FID | 0.7914 0.3656 0.3256  0.3249
FFTD | 0.8697 0.3112 0.3003 0.3052
FOC | 0.5079 0.3039 0.3163  0.3049
FFOC | 0.5348 0.3542 0.3127 0.3216

Table 3. NeuralFlood ANN model results

In the context of the flood susceptibility index, the confu-
sion matrix would display the distribution of true positives
(TP), true negatives (TN), false positives (FP), and false neg-
atives (FN) for each of the five classes. According to Figure
3, the first two classes appear to have a good number of true
positives, while the remaining classes show relatively lower
true positive rates.

It is important to note that the goal of NeuralFlood is
not to predict floods, rather to be able to classify flooding
maps/indices in a more accurate manner. In consideration of
multiple contextual factors (pointing back to RQ#1), deep
learning can provide a viable solution. The occurrence of
a flood, or a high susceptibility score, is considered to be
an outlier since floods are not statistically common, even in
commonly flooding regions. Additionally, if one observes
the performance of the ANN across different sub-indices,
the variety is a strong indicator that not all flood indices
should be created equal, especially when applied across
varying climates, hydrologic settings, and land uses (point-
ing back to RQ#2).

Overall, the results of the NeuralFlood experiment pro-
vide useful insights into the flood susceptibility index. The
research highlights the effectiveness of certain variables and
clustering techniques in assessing flood-prone areas in a
data-driven manner.

Discussions

In this study, we explored the potential use of Al methods
in developing a flooding susceptibility index. We employed
various techniques, including clustering and deep learning,
and provided four different sub-indices. Our motivation for
using Al was rooted in the fact that it is a data-driven ap-
proach capable of extracting patterns and relationships from
large datasets. We present an index (NeuralFlood) that has
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Figure 2: Receiver Operating Characteristic Curves - Per In-
dex

distinct characteristics not present in existing indices. To im-
plement our approach, we increased the number of variables
and utilized clustering technique and multiple layers in ANN
while fine-tuning parameters through a trial-and-error pro-
cess. We also incorporated the total duration time and the
number of occurrences of flooding as key factors for creat-
ing the indices.

By selecting three U.S. states with different geographical
aspects (VA, KS, NV), we leveraged the high variability in
our deep learning model. This approach allowed us to cap-
ture the diverse factors contributing to flooding susceptibil-
ity in each state. While other indices are more geographi-
cally specific, our index is intended to provide more general
insights, making it a helpful tool for decision support at the
federal level, standardized across the country (Huang et al.
2021). Furthermore, we believe that our findings can be ex-
tended to other regions, such as the west and east coasts,
by considering their unique characteristics. For instance, we
can draw examples from the flooding challenges faced by
cities like Miami, FL, where rising sea levels pose a signifi-
cant threat. Nonetheless, the analysis of our study indicates
that the application of Al techniques in developing flooding
susceptibility indices still requires further improvement. For
instance, it seems the first two classes (Index values 1 and
2) in the four developed sub-indices (FTD, FFTD, FOC, and
FFOC) have a good number of true positives while the re-
maining classes (high susceptibility; 3 through 7) show rela-
tively lower true positive rates. Accordingly, collecting more
data from highly flood-prone areas is expected to improve
the quality of NeuralFlood. Furthermore, carefully validat-
ing the model on independent datasets and using techniques
such as regularization can mitigate overfitting or underfit-
ting. Additional sensors in different locations, alternative Al
models, and more variables can be also tested to increase the
overall robustness of Al-driven indexing.
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Figure 3: Confusion Matrix - Per Index

Future Work

As part of future work, exploring the variation in results
across different states would be valuable. Research advances
could involve a comprehensive analysis of how the outcomes
differed between states, potentially uncovering patterns or
trends that might not be evident at a broader level of anal-
ysis. Surveying relevant experts and operators might aid in
providing outcomes in a more translatable manner; addition-
ally, experimenting with other Al models and investigating
the impact of aggregating spatial data into county-level res-
olutions could provide further insights. Understanding the
implications of this aggregation could contribute to more
nuanced interpretations of the dataset and its overall sig-
nificance. Lastly, further experimentation with Al assurance
(Batarseh and Freeman 2022), such as building explainabil-
ity (i.e., XAI) measures could increase NeuralFlood’s user
adoption and overall trustworthiness.

Conclusion

In conclusion, our study showcased the effectiveness of em-
ploying Al techniques, including clustering and deep learn-
ing, to create a flooding susceptibility index. NeuralFlood
can assist in comprehending and mitigating flooding risks.
Additionally, our findings can be extended to other regions,
considering their unique geographical aspects. Rising sea
levels pose challenges not only to land-based infrastructure
but also to maritime assets, pointing to the importance of
incorporating such factors into comprehensive and univer-
sal Al-driven flooding susceptibility models. Flooding has
both immediate and long-term economic implications, as it
can disrupt infrastructure and property while also stimulat-
ing economic activity through reconstruction efforts. This
index enables first responders to identify vulnerable areas
and allocate resources more effectively, enhancing overall
readiness and resilience.
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