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Abstract

The melting of ice sheets significantly contributes to sea level
rise, highlighting the crucial need to comprehend ice struc-
ture for climate benefits. The stratigraphy of ice sheets re-
vealed through ice layer radargrams gives us a window into
historical depth-age correlations and accumulation rates. Har-
nessing this knowledge is not only crucial for interpreting
both past and present ice dynamics, especially concerning the
Greenland ice sheet, but also for making informed decisions
to mitigate the impacts of climate change. Ice layer tracing
is prevalently conducted using manual or semi-automatic ap-
proaches, requiring significant time and expertise. This study
aims to address the need for efficient and precise tracing
methods in a two-step process. This is achieved by utilizing
an unsupervised annotation method (i.e., ARESELP) to train
deep learning models, thereby reducing the need for extensive
and time-consuming manual annotations. We benchmarked
the popular U-Net segmentation model and its variants, such
as U-Net with VGG19, U-Net with Attention mechanism,
and U-Net with Inception. Additionally, various threshold-
ing methods such as binary, Otsu, and CLAHE have been
explored to achieve optimal enhancement for the true label
annotation images. Our preliminary experiments indicate that
the combination of attention U-Net with specific processing
techniques yields the best performance in terms of the binary
IoU metric.

Introduction
Global sea levels are rising due to climate change and ice
sheet melting. Researching the causes of melting is a priority
for agencies such as the National Science Foundation (NSF).
Scientists could calculate historical accumulation rates and
ice layer age-depth connections using radargrams. The re-
construction of historical ice sheet dynamics, such as those
observed in Greenland, plays a crucial role in elucidating the
sea-level fluctuations. It is imperative to conduct a compre-
hensive analysis of these ice layers and employ automated
approaches as a means to mitigate the adverse effects of ris-
ing sea levels. The utilization of automated approaches has
the potential to expedite this process and offer insights that
can enhance our comprehension of global climate dynamics.
The elucidation of the correlation between ice sheet stratig-
raphy and the phenomenon of sea level rise holds promise
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for enhancing our ability to effectively mitigate and antici-
pate prevailing challenges. The presence of noise in radar-
grams poses challenges to detecting ice layers. Here, most
previous works have relied on manual or semi-automatic ap-
proaches. Despite their effectiveness, these approaches are
characterized by their labor-intensive nature and demand a
high level of expertise (Dong et al. 2021; Liu-Schiaffini et al.
2022). This study examines the potential of artificial intelli-
gence (AI) to automate the recognition of ice layers. The
use of AI not only enhances our understanding of ice sheet
dynamics but also holds the promise of aiding policymak-
ers and stakeholders in making more informed decisions re-
garding climate action. We employ semi-supervised learn-
ing as an alternative to manual annotations. An unsuper-
vised method, e.g. ARESELP (Xiong, Muller, and Carretero
2017) is employed to generate mask label images, while
the original radargram images are obtained from the Cen-
ter for Remote Sensing of Ice Sheets (CReSIS). Our study
encompasses several deep learning techniques for a segmen-
tation task, such as U-Net (Ronneberger, Fischer, and Brox
2015), U-Net+VGG19 (Simonyan and Zisserman 2014), U-
Net+Inception (Delibasoglu and Cetin 2020), and Attention
U-Net (Oktay et al. 2018). In addition, we evaluate various
pixel thresholding techniques, including binary, Otsu, and
CLAHE, with a specific emphasis on enhancing the quality
of binary mask labels. Our study serves as a fundamental
study, highlighting the need to consider the availability and
quality of data while choosing approaches. Our primary mo-
tivation is not only to demonstrate the effectiveness of our
approach but also to overcome the labor-intensive procedure
of human annotation.

Related Work
Previous study has examined the utilization of AI methods
for identifying ice layers in radar imagery. The study done
by (Varshney et al. 2020) utilized a dataset consisting of
2,621 radar images and corresponding ground truth images.
The study limits its analysis to well-annotated layers for ice
layers and converts discontinued ice layers into background
pixels. The networks were trained on 28 classes of ice lay-
ers, and the model’s performance was evaluated on the top
10 ice layers of test set images. Subsequently, a different
study by (Yari et al. 2019) employs a multi-scale deep learn-
ing model (e.g., HED) to identify internal ice layers and uses
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synthetic data; however, the outcomes are unsatisfactory. A
recent study conducted by (Varshney et al. 2021) highlights
the importance of utilizing cropped radargram images and
their corresponding masks instead of generating predictions
for full-size radargram images. This approach is chosen due
to the presence of only a restricted number of ice layers
in the radargram images, which are accompanied by accu-
rately annotated ground truth data. In a separate, (Dong et al.
2021) uses synthetic radargram images to train a deep learn-
ing model (e.g., U-Net). Our current work, however, adopts a
unique approach by incorporating an unsupervised method’s
annotations into a supervised deep learning model, aiming to
automate detecting ice layers in radar images. In contrast to
previous studies, we utilize the complete radargram images
without any cropping or eliminating ice layers, along with
their generated ground truth obtained from an unsupervised
method (e.g., ARESELP). This work is an extension of our
previous study (Jebeli et al. 2023) that developed a two-step
annotation method for bedrock and top surface detection.

Methods
In our study, we leverage the U-Net model and its variants,
a widely recognized deep learning approach for semantic
image segmentation tasks (Ronneberger, Fischer, and Brox
2015). Fundamentally, U-Net employs an encoder to ex-
tract features and a decoder for image reconstruction. These
two components are connected by unique skip connections,
which are distinct and specific to the U-Net model. To am-
plify segmentation performance, we integrate U-Net archi-
tecture with two prominent pre-trained models. Firstly, the
U-Net+VGG19 leverages the VGG19 model for high-level
feature extraction (Simonyan and Zisserman 2014). Sec-
ondly, the U-Net+Inception can be described as a fusion
of the U-Net with Inception blocks (Delibasoglu and Cetin
2020). The use of parallel in these blocks enhances fea-
ture extraction, resulting in improved computational perfor-
mance and reduced network size. Furthermore, we also ex-
plore the Attention U-Net architecture, which incorporates
attention gates to guide the model’s focus during segmenta-
tion. The Attention U-Net model improves segmentation ac-
curacy by enabling the network to focus on specific regions
of interest. This refinement is beneficial in complex scenar-
ios where differentiating between the target and background
is difficult. The utilization of this attention-driven improve-
ment has played a crucial role in our work, resulting in a
substantial improvement in segmentation accuracy (Oktay
et al. 2018).

Material and Experimental Setting
Radargram Data Preprocessing
The CReSIS serves as a prominent provider of radargrams,
considered primary sources in the field. This study in-
volves 300 radargram imagery, each processing dimension
of 1408 × 1024 pixels and 3 color channels. Furthermore,
due to the unavailability of public ground truth images,
we employed an unsupervised model, specifically ARE-
SELP (Xiong, Muller, and Carretero 2017), to generate
a collection of ground truth annotations. To measure the

quality of an unsupervised model annotation, we use vari-
ous metrics such as layer breakpoints and local layer den-
sity (Tack et al. 2023). Table 1 compares the example of
ice layer annotation between ARESELP and manual ap-
proaches conducted by a domain expert1. In addition, we
explore various techniques to produce a binary ground truth
tailored to the requirements of binary semantic segmentation
deep learning models. This process entails the application
of binary thresholding, the Otsu method, and the Contrast
Limited Adaptive Histogram Equalization (CLAHE) tech-
nique to transform the original ground truth images, which
have varying pixel values, into an appropriate binary format.
These strategies aim to address the intricacies inherent in
this task and further the advancements in binary semantic
segmentation. We briefly discuss these three techniques as
follows: (i) Binary thresholding is done by setting a thresh-
old value. We can consider the value below the threshold
as background pixels, whereas above are subject of inter-
est pixels. We test different threshold levels to find the best
points for binarizing our unsupervised annotations, and the
test shows that 127 is the appropriate threshold for differenti-
ating background and ice layers. (ii) Otsu’s thresholding au-
tomatically identifies the optimal threshold for grayscale im-
ages by maximizing inter-class variance, minimizing intra-
class variance, and efficiently separating foreground and
background pixels. It is computationally economical, ver-
satile, effective for binary semantic segmentation, and re-
quires no user input. (iii) CLAHE is an advanced contrast
enhancement approach that overcomes traditional histogram
equalization. As opposed to global contrast transformation,
CLAHE transforms local image regions. This makes the en-
hancement adaptable, preserving smaller features without
over-amplifying noise. CLAHE excels at improving feature
differentiation, which can significantly benefit binary thresh-
olding for segmentation tasks.

Experimental Setting

Given the limited size of the available dataset, we apply two
augmentation techniques—horizontal flip and noise addi-
tion—to boost model performance, yielding a total of 900
images. The dataset is split 80/20 for the training/testing
sets. A 5-fold cross-validation (5CV ) strategy and early
stopping are used on the training subset to ensure model gen-
eralizability and avoid overfitting. The test subset is used to
evaluate the model on unseen data. Each model iteration has
300 epochs with a batch size of 8. We resize the input size
image to 512 × 512, while two metrics, such as Binary In-
tersection over Union (binary IoU) and dice coefficient, are
used as evaluation metrics. Binary IoU is the ratio of the area
overlap between the predicted segmentation and the true la-
bel to the area of union between the predicted segmentation
and the true label. On the other hand, the dice coefficient
is computed as twice the intersection of the predicted seg-
mentation and the ground truth, divided by the sum of the
pixel counts of both the predicted and ground truth labels.

1We acknowledge that expert label annotations are provided by
Nicholas D. Holschuh at Amherst College, MA, United States
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Table 1: A comparison between manual and automatic (e.g., ARESELP (Xiong, Muller, and Carretero 2017)) annotations for a
radargram sample.

We have open-sourced our work at github2.

Result and Discussion

Figure 1: Performance average the test subset of various seg-
mentation models over 5CV w.r.t. binary IoU (top) and dice
coefficient (bottom).

In Figure 1, we present the mean performance of each seg-
mentation model on the test subset with various binarizing
ground truth strategies with regard to binary IoU and dice
coefficient, respectively. Our results highlight the superior
performance of the Attention U-Net, particularly when em-
ploying the CLAHE approach. Note that Attention U-Net
has not been considered in the previous studies, and the su-
periority of Attention U-Net lies in its attention mechanism,
which can effectively capture the fine-grained details (e.g.,
ice layers) information from a broader area around each
pixel in the input radargram images. In the second place,
the original U-Net still performs better than other variants.
Previous work (Dong et al. 2021) also highlights the su-
periority of the U-Net for ice layer detection on synthetic

2https://github.com/iharp-institute/Tracing-Englacial-Layers-
in-Radargram-via-Semi-Supervised-Method

datasets. However, the lack of accessibility to the dataset and
the absence of the publicly available code pose challenges
when attempting to do an in-depth evaluation of this as-
pect. Furthermore, it is important to highlight that the perfor-
mance variance of all segmentation models across the three
thresholding methods is not significant. Therefore, this indi-
cates that all segmentation models are robust to thresholding
strategies. All models can generalize well across different
thresholds and still produce reasonably good segmentations.

In Table 2 we assess the quality prediction of four seg-
mentation approaches. Here, we include three different
radargram frames. The results clearly demonstrate that At-
tention U-Net produces remarkably more englacial layers
than other baselines. In addition, the quality of ice layer an-
notation generated by Attention U-Net is more consistent
and continuous, with fewer discontinuous layers. Neverthe-
less, it is imperative to acknowledge that our findings remain
preliminary and necessitate more verification from experts
in the field such as glaciologists.

Conclusion and Future Work
This study introduces a two-step approach for automating
the annotation of ice layers in radargrams. Initially, we uti-
lized the ARESELP unsupervised method to generate ice
layer annotations. However, due to the method’s limited ap-
plicability — constrained to specific years of radargrams —
we transitioned to a deep learning-based segmentation tech-
nique. This approach allows the model, once trained on the
generated annotations, to swiftly predict ice layers on radar-
grams from a wider range of years. Our preliminary investi-
gation assessed four well-known deep learning models, such
as U-Net, U-Net+VGG19, U-Net+Inception, and Attention
U-Net. In addition to this, we explored various pixel thresh-
olding techniques to enhance the quality of our ground truth
images. Given the preliminary stage of this research, our im-
mediate focus lies in refining the unsupervised annotations,
devising automated metrics for their evaluation, and working
closely with domain experts to get better evaluations. Future
studies may delve deeper, potentially introducing advanced
segmentation models, such as transformer architectures.
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Original radargram Mask label Prediction
U-Net U-Net + VGG19 U-Net + Inception U-Net + Attention

Table 2: Example of predicted image for four segmentation models with CLAHE + Otsu’s thresholding strategy.
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