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Abstract

Global Climate Models (GCMs) are the primary tool to sim-
ulate climate evolution and assess the impacts of climate
change. However, they often operate at a coarse spatial res-
olution that limits their accuracy in reproducing local-scale
phenomena. Statistical downscaling methods leveraging deep
learning offer a solution to this problem by approximating
local-scale climate fields from coarse variables, thus enabling
regional GCM projections. Typically, climate fields of differ-
ent variables of interest are downscaled independently, result-
ing in violations of fundamental physical properties across
interconnected variables. This study investigates the scope of
this problem and, through an application on temperature, lays
the foundation for a framework introducing multi-variable
hard constraints that guarantees physical relationships be-
tween groups of downscaled climate variables.

Introduction
Global Climate Models (GCMs) are physics-based models
employed to simulate the spatio-temporal evolution of cli-
mate and to obtain future climate projections under differ-
ent climate change scenarios. The resulting projections are
crucial to develop adaptation and mitigation plans in many
sectors. However, due to computational and physical limita-
tions, the resolution of these models is coarse, which hinders
their use in regional-to-local applications.

Statistical Downscaling (SD) techniques attempt to over-
come this limitation by learning a relationship between
large-scale (low-resolution) data and local-scale (high-
resolution) variables of interest. The so-called Perfect Prog-
nosis approach (PP-SD) (Maraun and Widmann 2018) aims
at learning a relationship between large-scale predictors
and local-scale predictand time-matched pairs from obser-
vational data. The set of predictors describes the state of the
atmosphere, whereas the predictand corresponds to a surface
variable of interest such as temperature or precipitation.

Deep Learning (DL) has recently emerged as a promising
SD method, with great potential given its ability to handle
spatio-temporal data and model non-linear relationships. DL
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models developed using historical and future GCM projec-
tions can produce actionable local-scale downscaled predic-
tions for climate change studies (Baño-Medina et al. 2022).

Climate is a highly complex system and the variables in-
volved in climate models are closely related to each other by
physical links imposed by the constitutive equations, which
take into account the interactions and feedback among them.
However, most previous works in SD have proposed meth-
ods that downscale variables independently, ignoring poten-
tial relationships. This can result in inconsistencies and vi-
olations of basic physical properties between related groups
of variables. Such violations raise important concerns about
the reliability and adoption of DL-based downscaling mod-
els in climate change applications.

In this work, we first examine the violations of basic phys-
ical properties introduced by DL models for the PP-SD of
temperature. Our analysis reveals that physical constraints
are largely violated when variables are downscaled inde-
pendently (univariate downscaling), which is especially pro-
nounced in the attempt to generalize from present conditions
to future climate scenarios. To address this limitation, we
investigate the potential benefits of using a shared model
to simultaneously downscale a group of variables. Going
further, we establish the groundwork of a novel framework
to incorporate multi-variable, physical, hard constraints in
neural networks. Through our experimental setup with two
architectures and evaluations in GCM projections of future
climate, we demonstrate that our framework guarantees the
physical constraints for the downscaling of temperature and
can be flexibly adapted to other architectures. Our proposed
multi-variable model strengthens the reliability of DL-based
downscaling and hence facilitates its adoption by the climate
science community for practical applications.

Background
DL Methods for Univariate Downscaling
Many works have explored the use of DL models for down-
scaling individual variables, most using the so-called super-
resolution approach (Vandal et al. 2017; Stengel et al. 2020;
Wang et al. 2021; Kumar et al. 2021; Passarella et al. 2022;
Sharma and Mitra 2022). Inspired by super-resolution meth-
ods in computer vision (Wang, Chen, and Hoi 2020), these
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techniques use a low-resolution version of the target vari-
able as a predictor (in contrast to PP, where the input and
output represent different physical quantities). However, this
approach is less suitable for downscaling GCMs, as the sur-
face variables used as input are unreliable predictors due to
the coarse resolution at which GCMs operate.

Deep learning approaches for univariate PP-SD have
been proposed by Pan et al. (2019); Baño-Medina, Man-
zanas, and Gutiérrez (2020); Sun and Lan (2021); Quesada-
Chacón, Barfus, and Bernhofer (2022); Rampal et al. (2022).
These models rely on large-scale atmospheric variables as
predictors, which are better reproduced by GCMs since
these do not depend on local-scale dynamics. These mod-
els show promising results in projecting plausible future
climate change scenarios over Europe based on differ-
ent GCMs (Baño-Medina, Manzanas, and Gutiérrez 2021;
Baño-Medina et al. 2022). In order to expand the current
set of validation tools and better address the concept of as-
surance (Batarseh, Freeman, and Huang 2021), recent work
by González-Abad, Baño-Medina, and Gutiérrez (2023) has
explored the development of diagnostics based on eXplain-
able Artificial Intelligence (XAI) techniques for SD mod-
els, uncovering physical inconsistencies in the relationships
learned by the models for certain regions.

Approaches for Multivariate Downscaling
Non-DL-based SD models operating on multiple interre-
lated variables have been extensively explored in the lit-
erature. Typically, multivariate downscaling enhances mul-
tivariate properties such as cross-correlation (Jeong et al.
2012; Khalili, Van Nguyen, and Gachon 2013; Eum, Gupta,
and Dibike 2020), although individual variables may be neg-
atively impacted (Bhowmik et al. 2017). Multivariate DL-
based SD approaches, by contrast, have not yet been well
developed. Wang and Tian (2022) trained a multivariate DL
model for downscaling minimum and maximum temper-
atures, but found that some predicted minimum tempera-
tures were higher than the corresponding maximum tem-
peratures, thus violating basic physical properties. More re-
cently, Quesada-Chacón et al. (2023) trained a multivari-
ate model to simultaneously downscale several surface vari-
ables. While this model exhibited reasonable performance
with observational data, individual models achieved supe-
rior results, leading to its exclusion from GCM downscaling.
No previous work has specifically addressed basic physical
inconsistencies.

Constrained DL in Climate Modeling
Several works have attempted to enforce physical con-
straints in DL models for climate and weather, through both
soft and hard constraints. Soft constraints are introduced by
adding additional loss terms to the model (Esmaeilzadeh
et al. 2020; Beucler et al. 2021; Harder et al. 2022a). Hard
constraints are implemented by introducing modifications
in the neural network architecture (Geiss and Hardin 2020;
Harder et al. 2022a; Hess et al. 2022), ensuring that the con-
straints are satisfied during learning and inference. In Harder
et al. (2022b); Geiss, Silva, and Hardin (2022), hard con-
straints are applied to DL models for super-resolution SD,

enforcing physical relationships between the high-resolution
predictand and its low-resolution predictor.

Experimental Framework
Region of Study and Data
Our experimental framework is based on the PP approach.
Following previous work (Baño-Medina, Manzanas, and
Gutiérrez 2020), in order to represent the atmospheric state,
we choose five large-scale variables (geopotential height,
zonal and meridional wind, air temperature, and specific hu-
midity) at four different vertical levels (1000, 850, 700 and
500 hPa) as predictors. As predictand, we focus on three
variables, namely, minimum, mean, and maximum near-
surface air temperature. The predictor variables are obtained
from the ERA-Interim reanalysis data set (Dee et al. 2011) at
a 2◦ spatial resolution, while the predictand variables are ex-
tracted from the W5E5 observational data set (Lange 2019)
at a 0.5◦ resolution, both at a daily timescale. We choose
the European continent as the spatial domain to conduct our
experiments.

We select the EC-Earth model run r12i1p1 (Doblas Reyes
et al. 2018) as the GCM to downscale. We focus on the pe-
riod of 2006-2100 of the Representative Concentration Path-
way 8.5 scenario (RCP8.5) (Schwalm, Glendon, and Duffy
2020). This scenario is selected as it represents the strongest
climate change signal among those developed in the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5, Tay-
lor, Stouffer, and Meehl (2012)).

Deep Learning Downscaling Models
We train two different DL models: UNet (Ronneberger, Fis-
cher, and Brox 2015) and DeepESD (Baño-Medina et al.
2022). UNet is a fully-convolutional model inspired by an
architecture widely used in image segmentation, which has
also demonstrated outstanding performance in climate appli-
cations, including statistical downscaling (Quesada-Chacón,
Barfus, and Bernhofer 2022; Wang and Tian 2022; Doury
et al. 2023). DeepESD is a model developed for the PP-SD
of temperature and precipitation over Europe. It is composed
of a set of convolutional layers and a final fully-connected
layer. This model has been validated for the downscaling
of various GCMs under future climate scenarios (Baño-
Medina, Manzanas, and Gutiérrez 2021; Baño-Medina et al.
2022). We choose these two distinct models as reflecting the
current state-of-the-art DL models for downscaling.

The models are trained using the ERA-Interim and W5E5
data sets as predictor and predictand fields, respectively. Pre-
dictors are standardized to conform to a standard normal dis-
tribution, while predictands are normalized to take on values
within the interval [0, 1]. We divide the observational data
into a training (1980-2000) and a test set (2001-2005). Mod-
els are trained to minimize the Mean Squared Error (MSE)
using the Adam optimizer with a standard learning rate of
10−5 and batch size of 64, using early stopping to prevent
overfitting. Prior to passing GCM predictors to DL mod-
els for downscaling future scenarios, we perform a signal-
preserving adjustment of the monthly mean and variance of
the GCM, as suggested by Baño-Medina et al. (2022). This
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Figure 1: Schematic view of the proposed additive and multiplicative modules. The general architectural layout is depicted in
the main area, while the specific operations and activation functions of the modules are indicated on the right side.

improves the extrapolation capabilities of the models by al-
lowing for better similarity in the distributions of the GCM
and the reanalysis data.

Multi-Variable Hard Physical Constraints
In this work, we introduce methods for enforcing hard phys-
ical constraints between interrelated variables in SD, in the
form of simple modules that can be appended onto DL
downscaling architectures.

The predictands used in our study are the near-surface
minimum, mean, and maximum temperature. For these vari-
ables, the following constraints obviously hold:

Tmin ≤ Tmean ≤ Tmax (1)

where Tmin, Tmean, and Tmax represent the minimum,
mean, and maximum temperature. Any violation of these
constraints would diminish not merely the average accuracy
of an SD method but also its plausibility, significantly reduc-
ing the likelihood that the method would be used in practice.
While prior work (Wang and Tian 2022) predicted Tmin and
Tmax jointly, they still suffered from significant constraint
violation. We propose two different options for predicting
these three variables together while enforcing physical con-
straints. Figure 1 presents a schematic illustration of our pro-
posed additive and multiplicative modules.

In the additive approach, we predict Tmin and Tmean −
Tmin and add these values to obtain Tmean, likewise com-
puting Tmax by predicting Tmax − Tmean and adding it
to the previously estimate for Tmean. This method ensures
that all constraints are met by using ReLUs to enforce the
nonnegativity of the predicted Tmin, Tmean − Tmin, and
Tmax − Tmean. In the multiplicative approach, a similar
method is applied, but instead, we predict Tmin using ReLU
activation and the values Tmean/Tmin and Tmax/Tmean

using the activation function 1 + ReLU. Multiplying these
predicted values gives the desired quantities while ensuring
constraint satisfaction.

In order to assess the efficacy of the proposed modules, we
conducted four experiments. In accordance with established
methodologies, the first experiment (referred to as single)
entails the independent modeling of each variable through
a distinct DL model for each one. The second experiment

(referred to as shared) involves training a shared model for
the three variables in a multivariate approach. In the case of
the shared UNet, the sole discrepancy from the single model
is the last convolutional layer, which now features three
output channels rather than one. In the DeepESD model,
the shared approach entails the utilization of three parallel
fully-connected layers instead of one. In the third (additive)
and fourth (multiplicative) experiments, multi-variable hard-
constrained models are trained with the two approaches pre-
sented above.

Results
Figure 2 shows the Root Mean Squared Error (RMSE) val-
ues on the test set obtained for the two DL models trained,
namely UNet and DeepESD, for the different experiments
(single, shared, additive and multiplicative). For Tmin and
Tmax all combinations of models and experiments display a
higher error than for Tmean. The underlying cause for this is
the extreme values associated with Tmin and Tmax, which
make modelling them harder (Kjellström et al. 2007).

The UNet model exhibits comparable RMSE values
across all experiments. However, for the DeepESD model, a
notable improvement in RMSE performance occurs for both
the additive and multiplicative hard-constrained models as
compared to the single and shared versions. This improve-
ment may be attributed to the presence of fully-connected
layers in the architecture of DeepESD, which give rise to
the phenomenon known as dying ReLUs (Lu et al. 2019),
thereby resulting in a degradation of the model’s predictive
performance. In the hard-constrained modules, the ReLU
activation outputs are incorporated into Tmin and Tmean

through addition or multiplication, thereby mitigating the
possible adverse effects of this phenomenon.

Figure 3 presents the annual percentage of violations of
the constraints introduced in Section for the downscaled
variables obtained from the UNet and DeepESD models.
For each of these, the figure displays the results for the sin-
gle and shared experiments (solid and dashed lines, respec-
tively), along with the 95% confidence interval computed by
applying bootstrapping to 10 independent executions. Viola-
tions for the additive and multiplicative experiments are not
shown since, by construction, they are zero.
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Figure 2: RMSE on the test set for the four experiments (sin-
gle, shared, additive and multiplicative) of the two different
models (UNet and DeepESD) trained to downscale mini-
mum (Tmin), mean (Tmean) and maximum (Tmax) temper-
ature. The values for 10 independent executions and their
means are shown.

In the single experiments, both architectures show a sim-
ilar trend in the amount of violations for the training pe-
riod (1980-2000), maintaining a relatively low and constant
amount of violations. However, during the test period (2001-
2005), the models must extrapolate to out-of-distribution
data, resulting in a sudden spike in the percentage of vio-
lations. As the models are applied to the GCM predictors
(2006-2100), this issue becomes more pronounced, particu-
larly as we move forward in time, reflecting the difficulties
encountered while dealing with the extreme climate condi-
tions associated with the RCP8.5 scenario. The confidence
interval of the DeepESD model remains stable over time;
however, UNet variability increases, thus being more sus-
ceptible to these extreme conditions.

In the shared experiment, UNet demonstrates a marked
reduction in the percentage of violations, whereas Deep-
ESD continues to exhibit a significant amount. This dispar-
ity is attributed to the architectural composition of Deep-
ESD, which allocates a substantial portion of its parameters
in the final fully-connected layer. Consequently, the shared
model replicates this layer across the downscaled variables,
with each variable retaining a considerable amount of pa-
rameters dedicated solely to itself, thus not being too differ-
ent from the single version. Unlike DeepESD, UNet consists
entirely of convolutional layers; therefore, in its shared ver-
sion, each variable’s allocation of parameters remains mini-
mal. Despite the evident decline in violations in the shared
experiments, they do not completely disappear, and more
importantly, there are no guarantees regarding the behavior
of these models under diverse future scenarios and various
GCMs. What is more, as in the single experiment, the vari-
ability in the number of violations of the UNet model in-
creases with time. Only the multi-variable hard physically
constrained models can assure no violations in any scenario.

Conclusions
In this work, we have analyzed the violations of physical
constraints commited by DL models for the PP-SD of tem-
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Figure 3: Annual percentage of violations of the physi-
cal constraints for the two different DL models intercom-
pared (UNet and DeepESD), for the single and shared ex-
periments. For each series, the 95% confidence interval is
shown.

perature. Our results reveal that current approaches result in
a large number of violations, particularly in the GCM do-
main. To address this, we have proposed a shared model for
the desired variables as a partial solution. However, to ensure
multi-variable physical constraints, we have introduced a
simple and flexible framework that satisfies hard constraints
and achieves the same performance or better than standard
approaches.

Preserving fundamental physical properties of GCMs in
DL models is crucial for their reliability and hence the adop-
tion by the climate science community. For instance, in the
Sixth IPCC Assessment Report, certain indices relying on
daily minimum, mean and maximum temperature are em-
ployed to asses the impact of climate change in energy
demand (Gutiérrez et al. 2021). In this study, we set the
groundwork for a novel framework that enables DL mod-
els to mimic some underlying physics properties of GCMs,
enhancing the reliability of PP-SD models. This work repre-
sents a significant effort in integrating DL and GCM models.

As multivariable aspects may be necessary for accurately
simulating and downscaling GCMs, in future research, we
plan to expand our approach to include new variables such
as temperature and precipitation, which may exhibit more
complex covariation patterns (Maraun and Widmann 2018).
To enhance the reliability of these models, in addition to em-
ploying multivariable evaluation metrics, we aim to explore
XAI-based diagnostics. These diagnostics allow us to assess
the physical consistency of DL models, particularly in chal-
lenging scenarios, such as the downscaling of surface vari-
ables at higher resolutions, where more complex DL models
like transformers (Vaswani et al. 2017) may be required.
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