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Abstract

Defining and measuring trust in dynamic, multiagent teams is
important in a range of contexts, particularly in defense and
security domains. Team members should be trusted to work
towards agreed goals and in accordance with shared values.
In this paper, our concern is with the definition of goals and
values such that it is possible to define ‘trust’ in a way that is
interpretable, and hence usable, by both humans and robots.
We argue that the outcome of team activity can be consid-
ered in terms of ‘goal’, ‘individual/team values’, and ‘legal
principles’. We question whether alignment is possible at the
level of ‘individual/team values’, or only at the ‘goal’ and ‘le-
gal principles’ levels. We argue for a set of metrics to define
trust in human-robot teams that are interpretable by human or
robot team members, and consider an experiment that could
demonstrate the notion of ‘satisficing trust’ over the course of
a simulated mission.

Introduction
Defining the interpersonal and technical factors that relate
to trust in human-AI/robot teaming is an open problem in
the research community (Huang et al. 2021). In particular
a key problem is the definition of ‘trust’ in these scenarios.
We expect trust to vary according to the developing situation
faced by each teammate. Thus, obtaining a trust level suffi-
cient for a given situation will always involve satisficing, i.e.
obtaining a minimally acceptable level to progress a team’s
mission. We use the metaphor of a Ladder of Trust, whereby
teammates may ‘climb’ down or up the ladder to satisfice
situation-dependent requirements (Baber et al. 2023).

To study trust in human-robot teams, it is necessary to de-
fine the concept of trust in a manner which is meaningful
for both humans and robots. Previously, trust has been seen
as a multi-dimensional concept that focuses on human per-
ceptions (McAllister 1995; Mayer, Davis, and Schoorman
1995), e.g., through self-report questionnaires for the hu-
man team members (Jian, Bisantz, and Drury 2000; Schae-
fer 2016; Malle and Ullman 2021), but this assumes cogni-
tive and cultural capabilities beyond those of robots. While
humanlike robots can be perceived to be capable of mak-
ing ‘moral’ decisions (Malle and Ullman 2021), in general,
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people do not accept the idea of machines making moral de-
cisions (Bigman and Gray 2018). We believe that there has
been less attention given to trust held by robots of their hu-
man team mates. In our project, we seek metrics appropriate
for both humans and robots to quantify, and hence regulate,
their trust in their teammates.

Principles, Values and Goals
We see a hierarchy of principles, values and goals (Fig. 1).
For human-robot teams, trust requires team members to be-
have consistently with the team’s goals, team values and le-
gal principles to a standard of performance agreed by the
team (Baber et al. 2023). Goals are pre-defined ends, aims
or objectives for humans or robots in a team. A team goal,
for example, could be to defuse a bomb. Values, on the other
hand, have a sense of purpose. They are ‘those ends deemed
worth pursuing’ (Williams 2009, p.559). Values define de-
sirable outputs: what motivates us, what is worth striving
for. As such, they can be individual, team, and social. So-
cial values, such as liberty, freedom, justice, democracy, and
respect for fundamental rights, are accepted by society and
are aspirational. Legal principles are ‘norms laying down es-
sential elements of a legal order’ (van Bogdandy, cited in
Williams 2009, p.559). Following Habermas, we consider
legal principles to be general propositions from which norms
arise, ‘certain standards that might be based in law or prac-
tice, which contribute to forming a framework for decision-
making and action’ (Williams 2009, p.559). Acting accord-
ing to legal principles, in our example, could be to defuse
the bomb without a loss of human life. Legal principles have
a sense of obligation attached to them; they set the bounds
or constraints within which activities are permitted. Values
could fill the gap where legal principles fail to provide guid-
ance. For example, acting according to social values would
be to defuse a bomb even if that means a loss of human life,
where such action saves the lives of many others. Acting
according to team values would be defusing a bomb with
a loss of human life, but with preservation of the capabil-
ity of the human-robot team to continue its mission. Values
are moral in character. They are what is the best for the in-
dividual, the team, or society. Principles command; values
recommend; goals direct. Principles are binary (valid or in-
valid), values are not. As such, values can be considered in
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Figure 1: Alignment of goals and principles between hu-
mans and robots is possible; expressing ‘values’ in contextu-
alized goal priorities remains the province of human actors.

terms of a trade-off in which individual, team and societal
values influence the choice of goal and definition of accept-
able outcome in a specific situation.

Values in Human-Robot Teams
To speak of ‘values’ in a human-robot team might imply
that these can be defined with sufficient clarity that they can
be quantified. Indeed, the Artificial Intelligence (AI) litera-
ture has discussed ‘value alignment’ (Gabriel and Ghazavi
2021), through which the ‘values’ that an AI system pursues
match those of the human stakeholders affected by the sys-
tem (Moor 2006). An early example of explicit ethics in AI
systems can be seen in the ‘ethical governor’ (Arkin, Ulam,
and Duncan 2009). This was proposed for a weapons tar-
geting system in which selection of target could be over-
ruled if there were rules which the decision violated. In this
instance, the ‘rules’ could be defined in a similar manner
to our notion of legal principles. We might be able to cod-
ify legal principles, as legal norms setting the essential el-
ements of the legal order. But ‘values’ are, as Habermas
(cited in Williams 2009) suggests, intersubjectively shared
preferences. The concepts of ‘value alignment’ and ‘explicit
ethics’ in AI seem to rest on an assumption that it is possible
to codify ‘social values’ with sufficient clarity that an action
might be evaluated. We are skeptical that this might be pos-
sible. We believe that alignment of goals and principles (be-
tween humans and robots in a system) is possible, but that
‘social values’ must remain the province of the human actors
who are either directly participating in the system or acting
as overseers, regulators, or other stakeholders. Our empha-
sis on context could make such an assumption difficult to ar-
ticulate (because the ‘values’ might vary with context). We
note that approaches that use, for example, an ‘ethical conse-
quence engine’ (Winfield, Blum, and Liu 2014), might deal
with context through the simulation of the outcome of an ac-
tion. However, this still implies the codification of ‘values’
within a normative moral framework. Nonetheless, while
our position is that ‘values’ remain in the human domain,

we accept that it might be possible for engineered systems
to seek ‘goal alignment’ (i.e. between humans and robots).

The interpretation of a goal (in terms of the desirabil-
ity of its outcome) will depend on the context in which it
is performed. From this perspective, we might define the
problem as one of inferring goals from the activity of other
teammates as a problem of Inverse Reinforcement Learn-
ing (Ng and Russell 2000). In a recent study, the tension
between selfish and social choices (as a basic version of
moral problems in social dilemma games) was explored us-
ing Reinforcement Learning (Tennant, Hailes, and Musolesi
2023). In this study, Reinforcement Learning agents are pro-
vided with intrinsic rewards that reflect different views of
ethics (i.e., utilitarian, deontological, consequentialist) and
play a variety of iterated social dilemma games (i.e., Pris-
oner’s Dilemma, Volunteer’s Dilemma, Stag Hunt). Within
a game, an agent seeks to respond to the state of the game by
performing an action that will maximize both the game re-
ward and an intrinsic moral reward. Pitching agents with dif-
ferent moral stances against each other revealed systematic
differences in strategy, particularly in terms of cooperative
or exploitative activity. Alternative strategies or stances can
be considered in terms of counterfactual analysis, which is a
fundamental element of causality analysis (Pearl 2009; Pearl
and Mackenzie 2018), and can be used to understand which
changes to a particular data model would change the model
decision. Counterfactual analysis in a multi-agent reinforce-
ment learning environment (Forney, Pearl, and Bareinboim
2017) could support performance in mission-critical envi-
ronments through the ability to review alternative courses
of action. We regard goals as explicit statements of intent
that team members can choose to pursue, and also recognize
their pursual by others. Thus, if an actor (human or robot)
sees a teammate performing a sequence of tasks, it might be
reasonable for it to assume that this sequence is directed to-
ward achieving a specific goal, and that an alternative goal
might be more desirable (to achieve particular team or social
values) in that context. This area has been of great interest
for the community in the recent years (Jaques et al. 2019;
Conitzer and Oesterheld 2023).

Trust Specification
To define ‘trust’, we follow Lewis and Marsh (2022) in
claiming that a minimal specification of trust involves:
1. Capability, i.e., is the teammate most appropriate for a

given task in that situation?
2. Predictability, i.e., is the teammate acting in a way that

fits the team goals and set principles, and is appropriate
to its situation?

3. Integrity, i.e., is the teammate acting to support the team
and the set principles?

In order to define metrics for the three-element view of
trust outlined above, we consider what could be sensed or
perceived when humans and robots interact in a collabora-
tive task. The literature on trust generally refers to dyadic
relationships between a ‘trustor’ and ‘trustee’ (e.g. Hurley
2006; Kim, Dirks, and Cooper 2009) and this can be rep-
resented as a network of directed edges, where each edge
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represents one of the three elements (Figure 2). We do not
suppose that the three elements can be measured with equal
certainty (some aspects might need to be inferred rather than
perceived), but each agent will track the relative increase or
decrease of these elements over time to adjust their ‘trust’ in
a teammate.

Recent work has introduced the terms system-wide trust
and component-level trust (Walliser, de Visser, and Shaw
2023). These map well to our view of distributed, dynamic
team trust, where we would clarify component-level trust as
comprising the three elements of estimated capability, pre-
dictability and integrity, as contextualized by the agents’ sit-
uation. As Huang et al. (2021) note, it is important to under-
stand the context in which human-AI-robot teaming occurs
“including the tasks, environment, the stakeholders, and ar-
tificial agents involved. . . [as well as]. . . the kinds of inter-
actions that are available between the entities involved in
a situation context, where transitive properties of trust take
place.” (Huang et al., p.307). From this, Huang et al. (2021)
propose a 4-step process that involves identification of con-
text and stakeholders and defining and measuring trust re-
lationships in the trust network. In our approach, we de-
fine a mission using Cognitive Work Analysis (CWA) (Ras-
mussen, Pejtersen, and Goodstein (1994); Vicente (1999);
Jenkins, Stanton, and Walker (2009)).

From the Work Domain Analysis phase of CWA, a mis-
sion can be decomposed into an Abstraction Hierarchy that
(reading from top-to-bottom) describes the purpose of the
system and (reading from bottom-to-top) describes the ac-
tivity of the system. The claim is that any system is intended
to achieve an outcome (or set of outcomes) that can be evalu-
ated in terms of desirable consequences. Such consequences
reflect the values of the stakeholders working with and af-
fected/impacted by the system and can serve as constraints
on the goals that the system is seeking to achieve. Goals
could be defined by more than one ‘value’, and the values
might conflict. Where there is conflict, this either requires
negotiation between teammates or intervention by a higher
authority. Legal principles could, to some extent, define the
constraints within which a mission is performed, but these
will need to be filtered through values appropriate to the sit-
uation.

With our metaphor of a ‘ladder of trust’ (Baber et al.
2023), it is these sub-component-level trust metrics (e.g.
C12, P12, I12, indicating Agent 1’s estimation of capabil-
ity, predictability, integrity of Agent 2 in Fig. 2) that will
change as more information is gathered from their interac-
tions. To satisfice trust, then, means for the necessary combi-
nation of component (agent) level trust estimates, each com-
prising these three elements, to reach a certain threshold be-
fore a mission can proceed effectively. In practical terms,
this might mean Agent 1 improving its estimate of Agent
2’s integrity (I12, an element of T12) before it believes that
Agent 2 will carry out a certain task within the mission in
an acceptable manner. As a working hypothesis, we assume
that system-wide trust is limited by its weakest component.
In cases where an action only requires a subset of team mem-
bers to be carried out, deficiencies in system-wide trust need
not hold back progress, but instead the demand is to satisfice
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Figure 2: Agent 1’s trust in Agent 2, T12, depends on its
running estimates of Agent 2’s capability, predictability and
integrity; these are contextualized by the local situation.

Figure 3: A ‘Leo Rover’ robot equipped with 2D LiDAR and
built-in front facing camera, which can scan ARTags.

the relevant combination of component-level trust between
the situated team members.

Motivating Use-Case
We have designed an environment in which the concept de-
veloped in this paper can be experimented upon. Human
participants work with wheeled rover robots (Figure 3) to
collaborate on search tasks in an environment. In the envi-
ronment, Augmented Reality (AR) Tags are positioned at
approximately 1 m height, for the human to scan, and also
at approximately 20 cm height, for the robots to scan (Fig-
ure 3). The tags provide information about the environment
(whether an area is safe or hazardous to the human) and sta-
tus of objects in the environment (e.g., whether these are
operational, risky, or require repair). For instance, the tags
could indicate whether a location has low or high levels of
radiation or could indicate whether there is a suspect pack-
age that needs to be investigated. The team might comprise
two robots and one human in the field and one human work-
ing as a coordinator (remotely). Together, the robots and hu-
mans need to coordinate a search mission in an experimental
environment. As the mission is performed, data can be col-
lected from the human (using a computer tablet interface) or
from sensors on the robot. The data from human and robot
actors follow the same structure, e.g., {agent ID, time, lo-
cation, object, action. . . }. All the data and communication
between team members (robot(s) and human(s)) are relayed
through a Django server and recorded in a database. For in-
stance, the mobile application (‘app’) used as an interface
for communicating to the robot is connected to the server so
that any commands from a human to a robot will be recorded
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along with other relevant information like time. The robot
messages to human teammates also goes through the server
before appearing on the app. The location of all team mem-
bers are also being published on the server to record the
tracking data before being passed to the interface.

Defining Metrics for Trust
In order to interpret a sequence of tasks and their relation to
a goal, it is necessary to define metrics through which ob-
servation of tasks and inference of goals can be performed
by team members. Table 1 indicates the variables that we
seek to capture and whether these can be directly measured
or inferred. In Table 1, entries that are in plain text can be di-
rectly obtained from the agents, their activity, or the database
recorded during the experiment; entries in italic text can be
inferred from the mission plan, i.e., there will be goals that
are achieved by performing combinations of tasks. Finally,
the ‘why’ will be derived from the competing values of in-
dividuals, the team and society.

Having outlined a set of metrics (Table 1), we can relate
these to the three-element model as follows:

• Capability (of an Agent) is a function of WHAT (task,
object) and WHO (goals). We assume that a given agent
will perceive the affordances of the environment in terms
of their own and others’ ability to perform a task on an
object in pursuit of a goal.

• Predictability (of an Action) is a function of Capability
and Context (i.e., WHERE and WHEN). We assume that
an agent will perceive a teammate in a context and infer
the likelihood of success of an agent (with a perceived
capability) achieving an outcome.

• Integrity (of an Action) is a function of Predictability
and WHY. For robot actors, an action is interpreted by
a robot and any onlooking robot teammates in terms of
the likelihood of success relative to the individual/team
goal priorities and compliance with codified principles.
For human actors, an action is also interpreted by the hu-
man and any onlooking human teammates in relation to
fulfilling relevant goal priorities in compliance with le-
gal principles; and also performance criteria, constraints,
and determinants of acceptable outcomes, as influenced
by individual, team and social values.

Agents will begin a mission with initial teammate-specific
estimates for each of these elements, which could be based
on factors such as prior experiences with the teammates over
the longer-term (e.g. de Visser et al., 2020), or proxies for
trustworthiness (e.g. Lewis and Marsh, 2022).

Notice that we are claiming that integrity dynamics are
linked to each distinct, situated action rather than an agent’s
identity. This is a very different perspective to conventional
definitions of integrity; in our view, this allows us to attribute
changes in integrity without requiring a theory of mind (as
in e.g. de Visser et al.; Mou et al., 2020). Our argument is
two-fold. First, integrity arises from the action performed in
a context (which we capture in the predictability function)
and the individual and team values, as well as set principles
by which the action can be judged. For example, assume that

some actions can benefit the agent (‘selfish’) and others ben-
efit the team. In a context in which no other teammate will be
affected, a ‘selfish’ action might be judged neutrally, but in
a context where the action might be chosen in preference to
one which could aid a teammate, the judgment might be neg-
ative. Or, in a context where some actions benefit the agent
and the team, but are clashing with set principles (‘do not
break the law by X’), the judgment will be negative. Second,
each agent will have a reputation which reflects the history
of these instances of integrity. As other teammates learn the
history of the actions performed by an agent, so the repu-
tation of that agent will be formed. Given an understanding
of a teammate’s reputation, one can define an expectation of
the action that they might perform. This can be modeled as a
reinforcement learning problem (Anastassacos, Hailes, and
Musolesi 2020; Anastassacos et al. 2021).

Integrity, Reputation and Values
In our definition of trust, each member of a team will form
estimates of their teammates’ capability, predictability and
integrity as task performance is observed. Observation might
be of the actual performance of the task or an outcome of this
performance (either the result of the task or a report of from
another agent). As information is accumulated, an agent will
infer the reputation of its teammates. Reputation is a quan-
tifiable factor, and (as we noted above) is based on the his-
tory of performing tasks in pursuit of goals relative to the
individual and team values. However, rather than the expec-
tation of prosocial behavior being fixed solely by reputation,
we assume that this will be moderated by context. For ex-
ample, a teammate might have a reputation for performing
‘selfish’ actions, i.e., seeking to gain rewards for themselves
at the expense of their teammate. However, in a given sit-
uation, there might not be an option to assist a teammate
or the outcome of the action might not be detrimental to the
team. In this case, the severity of the outcome of a selfish ac-
tion might be minimal. When there is sufficient information
about a task being performed, the integrity of this task can
be defined in terms of selfish or team values. When there is
insufficient information, knowing the relationship between
task and goal, and the context in which the task is performed,
can enable the prediction of the most likely goal being pur-
sued. We describe this by updating a Bayesian Belief Net-
work that is held by each agent (Figure 4). Note, here we
tend to think of reputation as being a short-term, mission-
bounded metric, but we also recognize that this metric could
interact with other factors, e.g. long-term trust weightings
such as relationship equity (de Visser et al. 2020), or short-
term weightings such as robot appearance (which may have
a proxy trust effect; Lewis and Marsh, 2022); such weight-
ings could be added into the BBN.

Trust and Distributed Situation Awareness
We assume agents have a partial view of the context. This
view consists of their perception of the environment, their
inference of which goal is appropriate to perform in the con-
text, their belief in the reputation of their teammates, and the
goal that they expect their teammates to be pursuing. Situ-
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Category Variable Derivation
Time at which an action is performed Clock reading for logged data

WHEN Prediction of future action to be performed Inferred from mission plan
History of previous actions Store of logged data

WHERE Fixed location Location of, e.g., AR Tag
Path Waypoints recorded from, e.g., ultrasonic tracking

WHAT Object Identification of object used
Task Action performed on an object
Agent Agent ID

WHO Goal Inferred from mission plan
Reputation Store of integrity from prior actions
Robots: Compatibility of own and other’s goal Inferred individual/team goal priorities

WHY priorities and compliance with codified principles
Humans: As above, plus judged performance criteria, Inferred from individual, team and social values
constraints, and determinants of acceptable outcomes

Table 1: Initial set of metrics to be measured or inferred. Similarly applicable to humans and robots, except for ‘Why’.

ation awareness in a team is likely to be distributed (Stan-
ton et al. 2006) and we have previously demonstrated that
Distributed Situation Awareness can be formally described
using a Bayesian Belief Network (BBN) model (Yusuf and
Baber 2022).

In a BBN, the system can be modeled using a graph
G(N,E) where N is a set of nodes connected by a causal
directional edges E. Each node represents an element of
component-level trust with a defined number of states (i.e.,
selected situations as illustrated in Figure 4). States are de-
fined as probabilities, i.e., between 0%-100% to reflect the
assumption that these are estimates formed by an agent.
These probabilities can be updated based on mission infor-
mation (e.g., Equation 1), or learned over time (Yusuf and
Baber 2022). As such, the trust elements (e.g., goals, tasks,
reputation etc.) can be modeled using BBN nodes with as-
signed probabilities and causal relationships based on the
operating mission context. For example, assume a scenario
where an agent has two goals (GA and GB), e.g., GA: to
mark the locations of hazards in an environment by scanning
AR Tags, and GB : to construct the map of the environment
using Simultaneous Localization and Mapping algorithms
(SLAM). Each of these goals can be achieved by complet-
ing a number of tasks αi, ∀i ∈ [1, N ]; and these tasks can
be spread across goals (e.g., the SLAM task to search for a
hazard is the same as the one for a mapping task) i.e., GA →
ai×aj , such that, αi∩αj ̸= {}, ∀αi, αj ∈ GA∩GB , i, j ∈
[1, N ] or mapped singly to a goal Gi → αi, ∀i ∈ [1, N ] as
illustrated in Figure 4. From Figure 4, an agent is capable or
incapable of achieving a goal, and the goal achievement de-
pends on the assigned task(s) and context (defined by time,
location, and opportunity). Thus, each task achieved will in-
crease the goal’s probability of success, i.e., a task with a
90% ‘achieved’ state has a higher contribution to the goal
achievement than the one with 50% (though this depends on
the criticality of the task towards the goal achievement Yusuf
and Baber (2022)). Equation 1 is an example of a protocol-
based mode of updating a probability of each state of the
BBN after every mission event (e.g., sensor sampling by the
agent):

P (Ri) = P (Ri−1) + f(wc) (1)

where P (Ri) is the updated prior of the state (e.g., after the

event occurrence), P (Ri−1) is the previous prior of the state,
f(wc) is the probability decrement/increment weight func-
tion (to be assigning values based on subject matter expert
(SME) judgments of the context c, e.g., information from
a reliable sensor weights a complement of 100%), c is the
mission context (e.g., as defined by time, location, and op-
portunity in Figure 4), and i is the event number, such that,
i ∈ [1, N ]. For example, if a goal has two tasks with a
weight ratio of 9:1 (e.g., as assigned by f(wc) of Equation
1) towards goal achievement, accomplishing task A con-
tributes to 90%, i.e., 0% (as the current probability value
of the ’achieved’ goal state, i.e., assuming no prior progress
on task B) +90% = 90% for the designated goal achieved
state. Note that, f(wc) reduces the prior P (Ri) for the non-
occuring states and sum up the states probabilities to 100%.

The probability of a parent node can be defined by the
child(ren) node(s) states using the conditional probability ta-
ble (CPT), i.e., a table mapping parent node states probabili-
ties with the joint child(ren) states. One of the advantages of
modeling the system concepts using a BBN is the ability to
predict states using conditional probabilities (Equation 2):

P (A) = P (A ∩B)/P (A|B) (2)

where P (A) is the expected probability of the querying state
A, P (A|B) is the conditional probability of state A given
B, and P (A ∩ B) is the joint probability of A and B. As
such, based on the previous reputation of an agent, its ca-
pability on a particular task can be predicted. Expectation
maximization algorithms can be used to improve the pre-
diction accuracy, i.e., by checking the agent’s performance
history (Yusuf and Baber 2022).

Illustrating a Ladder of Trust in the
Experimental Environment

Having defined trust and proposed how it might be measured
and captured in a BBN, we now explain how this frame-
work can be tested in our experimental environment. From
the motivating use-case, scanning the AR tags to define the
safety of an area could be defined as a ‘team’ goal, in that it
will benefit other team members. This goal could be further
emphasized by giving the robot a competing ‘selfish’ goal:
each scan could involve a cost to the robot (e.g., each scan

22



Figure 4: A teammate’s Bayesian Belief Network (BBN) based on their observation of Agent 1’s choice of action in a context.

requires energy and the robot will need to leave the environ-
ment to recharge when energy level are below a threshold)
and the robot could be rewarded for minimizing cost (e.g.,
by staying as long as possible in the environment). The hu-
man could be rewarded for scanning all AR Tags within a
time limit, but there could be a cost to entering unsafe ar-
eas. Scanning an AR Tag in an unsafe area could also rep-
resent a cost to robots, who would need to enter that area
to help the human (e.g., by guiding the human to safety).
Defining the potential for conflict between team members
allows us to manipulate selfish and team goals, and hence
to manipulate the ‘values’ of the team performance. Each
team member will be asked, at set intervals, to rate what
their teammates are doing (in terms of expectation of the ac-
tions between selfish or team goals). It is possible that the
task is at the limits of the agent’s ability or demands signif-
icant resources. In this case, the expectation of a trustor is
that the teammate (trustee) is exerting themself to achieve
the outcome. For a ‘selfish’ goal this could be interpreted as
the agent recklessly pursuing a reward at personal cost (lead-
ing to an increase in distrust); for a ‘team’ goal this could be
interpreted as the agent risking themself for their teammates
(leading to an increase in trust across trustors). As well as
expectations about capability, the task will be interpreted in
terms of predictability of outcome, i.e., is the outcome likely
to be completely successful? As with the previous example,
one might expect the reputation assigned to a teammate to
be affected by the success of the outcome. Successful out-
come(s) will increase perceptions of that teammate’s capa-
bility (Grillo et al. 2022); though if not calibrated could lead
to overtrust (Ullrich, Butz, and Diefenbach 2021). The final
element, integrity, relates to the interpretation of the goal
against the goal priorities (robots and humans) and values
(humans only) that the individual or team applies.

Discussion
Distributed, Dynamic Team Trust (Huang et al. 2021) re-
quires metrics that reflect the activity and interactions of
members of a team. In this paper we share our definition of
such metrics and illustrate how these can be applied to the
conduct of a mission. We contribute to the debate on trust in

human-robot teams in the following ways. First, we propose
that trust arises from a hierarchy of principles, values and
goals. Second, we argue that ‘integrity’ (as a component of
trust) should be judged in terms of the observed choice of
task in a given context; this can lead to an inference regard-
ing the choice of goal in that context. Where the goal might
be considered selfish and where this might have negative
consequences for teammates, this will lead to a lower per-
ception of the integrity of the action. Over a history of obser-
vations of such choices made by a specific actor, the ‘reputa-
tion’ of that actor will be formed. It is likely that such a repu-
tation will (a) reflect the observations of specific agents and,
thus, might differ between agents, but (b) could be shared
between agents. In contexts where there is no history to draw
upon and hence, no evidence on which to define a ‘repu-
tation’, this will either have to be assumed by the observ-
ing agent (e.g. ‘proxy trust’), or communicated by the other
agent. For example, a robot might be programmed to assume
that its human teammates will behave in a prosocial manner.
This would lead it to ascribe a positive reputation to its hu-
man teammate – until it collected sufficient evidence (from
observation or from other reports) to the contrary. Third, we
argue that ‘trust’ is dynamic and context-dependent. In this,
we are in agreement with Huang et al. (2021). Our approach
has been to define the metrics for which each member of a
team is able to acquire information. We aim to define these
metrics in a way that allow humans or robots to perceive
sufficient data to update similar Bayesian Belief Networks
(BBN). This is not to assume that human reasoning is re-
ducible to a BBN but allows the human to infer the robots’
choices (from a BBN that represents the robots’ behavior)
and the robot to infer human choices. Fourth, the concept
of a ladder of trust (on which perceptions of teammates can
move up and down) provides a metaphor for the ways in
which trust changes during a mission.

We intend to develop these concepts in a concrete way by
carrying out a form of the experiment described in this pa-
per, to observe whether our operationalization of trust met-
rics obtains plausible dynamics and supports our notion of
‘satisficing trust’ on a ‘ladder of trust’ (Baber et al. 2023).
We hope to obtain insights that can guide both human and
robot actors in dynamic trust building.
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