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Abstract

Language models have the potential to assess mental health
using social media data. By analyzing online posts and con-
versations, these models can detect patterns indicating men-
tal health conditions like depression, anxiety, or suicidal
thoughts. They examine keywords, language markers, and
sentiment to gain insights into an individual’s mental well-
being. This information is crucial for early detection, inter-
vention, and support, improving mental health care and pre-
vention strategies. However, using language models for men-
tal health assessments from social media has two limitations:
(1) They do not compare posts against clinicians’ diagnos-
tic processes, and (2) It’s challenging to explain language
model outputs using concepts that the clinician can under-
stand, i.e., clinician-friendly explanations. In this study, we
introduce Process Knowledge-infused Learning (PK-iL), a
new learning paradigm that layers clinical process knowledge
structures on language model outputs, enabling clinician-
friendly explanations of the underlying language model pre-
dictions. We rigorously test our methods on existing bench-
mark datasets, augmented with such clinical process knowl-
edge, and release a new dataset for assessing suicidality. PK-
iL performs competitively, achieving a 70% agreement with
users, while other XAI methods only achieve 47% agree-
ment (average inter-rater agreement of 0.72). Our evaluations
demonstrate that PK-iL effectively explains model predic-
tions to clinicians.

Introduction
A long-standing problem in adopting language models for
clinician assistance has been the lack of clinician-friendly
explanations for the model’s predictions 1. In practice, a
clinical guideline or process is often detailed by which the
clinician can assess or label patients. For example, to la-
bel patients for degrees of suicidal tendencies in a physical
clinical setting, a well-known scale, the Columbia Suicide
Severity Rating Scale (CSSRS) (Bjureberg et al. 2021), is
used to determine the right set of labels. The green part of
Figure 1 (b) shows the CSSRS scale, a process, which con-
sists of six conditions whose values determine four assess-
ment outcomes from the set {indication, ideation, behavior,
attempt}. Similarly, when patients are assessed for depres-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://globelynews.com/world/chatgpt-ai-ethics-healthcare/

sion, clinicians evaluate patient responses against a process
or guideline like the Patient Health Questionnaire-9 (PHQ-
9) and provide explanations for their assessment using the
same. The blue part of Figure 1 (b) shows the PHQ-9 assess-
ment process. Language models do not explicitly leverage
such process knowledge to derive their predictions. Further-
more, language model predictions are typically explained
using XAI methods, such as LIME and SHAP, which fits
a simpler interpretable surrogate model (Adadi and Berrada
2018; Ribeiro, Singh, and Guestrin 2016; Lundberg and Lee
2017). XAI models, however, provide explanations that ben-
efit computer scientists in debugging and improving lan-
guage models but are of limited utility to the clinician for
making decisions. Additionally, it is challenging to approxi-
mate very large and complex models, e.g., language models
(LMs) using simpler surrogate models (Vaswani et al. 2017).

We propose a novel learning framework Process Knowl-
edge infused Learning (PKiL) that leverages explicit repre-
sentations of publicly available knowledge of processes and
guidelines to augment language models to enable clinician-
friendly explanations. Crucially, PKiL incorporates process
knowledge structures to provide explanations for model pre-
dictions using concepts that are familiar to a clincian. Fig-
ure 1 shows the execution flow of a model trained using
PKiL. The PKiL learning framework achieves this through
a novel training method with the following salient features -
(1) PKiL leverages powerful language models with hundreds
of millions of parameters while requiring training of very
few additional parameters (equal to the number of process
knowledge conditions, e.g., conditions in Figure 1 (b)) to
obtain clinician-friendly explanations, (2) The optimization
objective is simple to understand, enabling globally optimal
solution discovery through various optimization procedures.

Problem Formulation, Resource Construction,
and Process Knowledge Infused Learning

Problem Formulation
Let XD denote a dataset of input texts and their labels in
a domain D. An example of an input post is shown in Fig-
ure 1 (a), and its suicidality assessment label is from the set
{indication, ideation, behavior, attempt} in the domain of
mental health. Let PkD denote the relevant process knowl-
edge available to us from established literature in domain
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Figure 1: Overview of PKiL inference for an input text. The model uses two arguments, the input text (a) and the process
knowledge (b). The process knowledge shows conditions that must be satisfied for a given label. The green part shows process
knowledge conditions for suicidality assessment, and the blue part shows the same for depression assessment. For example, for
the label attempt in the suicidality assessment process knowledge, all conditions 1-6 need to be satisfied. For the label indication,
only condition 1 needs to be satisfied. The model then annotates text fragments with clinician-friendly concepts from the process
knowledge, as shown in (d). The final assessment predictions are obtained through the relevant process knowledge conditions
that apply, as shown in (e).

D. For example, Figure 1(b) shows the process of obtaining
suicidality assessment labels. Let ΛD be a language model
available to us that is fine-tuned on domain specific data
(e.g., BERT fine-tuned on mental health posts from social
media). Process Knowledge infused Learning (PKiL) is a
training method that makes combined use of XD and PkD
to evaluate the conditions in the process knowledge to pre-
dict the final label. The evaluated conditions in the process
knowledge are familiar to clinicians and therefore enable
clinician-friendly explanations for predictions, as shown in
Figure 1.

Resource Construction - Construction of Process
Knowledge Augmented Datasets
Due to the recent push for explainable and trustworthy AI,
recent studies have published new datasets with knowledge
of established processes and guidelines used in a particu-
lar domain. For example, Gupta et al. constructed the PRI-
MATE dataset, which includes a series of depression-related
posts labeled by human annotators by checking against the
PHQ-9 depression assessment process knowledge (Gupta
et al. 2022). Roy et al. construct the ProKnow dataset that

consists of similar process knowledge for question genera-
tion (e.g., generate questions about symptoms before causes)
while eliciting mental health-related conversation for psy-
chometric test evaluations (Roy et al. 2023). We call such
datasets process knowledge augmented datasets (Sheth et al.
2022). Gaur et al. used the CSSRS, the suicidality assess-
ment process knowledge, to annotate suicidality labels for a
set of Reddit posts extracted from suicidality-related subred-
dits (Gaur et al. 2021). We will call this dataset CSSRS 1.0,
an example of XD in our problem formulation. Even though
their work labeled the posts using the process knowledge
contained in the CSSRS as annotation guidelines, the exact
process knowledge PkD used per data point was not stored.
Therefore, we first obtain the PkD using the following pro-
cedure:
1. First, we fine-tune the models Word2Vec, SBERT,

RoBERTa, T5, ERNIE, and Longformer on the CSSRS
1.0 dataset, i.e., the ΛD in our formulation (Mikolov et al.
2013; Reimers and Gurevych 2019; Liu et al. 2019; Raf-
fel et al. 2020; Zhang et al. 2019; Beltagy, Peters, and
Cohan 2020).

2. Second, we evaluate each post in the CSSRS 1.0 dataset
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against the CSSRS PkD conditions using cosine simi-
larity between the fine-tuned representations of the posts
and the conditions. Condition evaluation returns 1.0 if
the condition is satisfied, else 0.0. We set the similarity
threshold to 0.5. We do this for all the models and use the
max similarity that is greater than the threshold of 0.5.

3. Next, we obtain a label for each post in XD from the
set {indication, ideation, behavior, attempt} by compar-
ing the evaluated condition values against the PkD. For
example, if only condition 1, which is wish to be dead
evaluates to 1.0, the label is indication (see Figure 1 (b)).

4. Lastly, we provide our labels to three domain experts and
task them with either retaining the labels or editing the
labels by referring to the CSSRS PkD while recording
the inter-rater agreement.

The domain experts in the study checked through the la-
bels of 448 Reddit posts in XD. They edited 235/448 posts
and provided the relevant process knowledge conditions 1-6,
evaluated during the edit. A substantial inter-rater agreement
of 0.84 was recorded. Crucially, we augment the CSSRS 1.0
to include the specific process knowledge used for the edited
label. We call this new dataset CSSRS 2.0. Examples from
the dataset can be found at the link in the footnote2. We will
use XPk

D to denote process knowledge augmented datasets.
Note that |XPk

D | ≤ |XD|. For example, CSSRS 2.0 has 235
data points, whereas CSSRS 1.0 has 448 data points. Our
experiments use CSSRS 2.0 and PRIMATE.

Process Knowledge Infused Learning
Consider a single condition process knowledge PkD to pre-
dict a binary label L for an input x ∈ XPk

D :

if (C(x) = 1), L(x) = 1

else, L(x) = 0

Here C(x) is a condition evaluation function for the input x
that evaluates to 1.0 if the condition is satisfied and 0 if the
condition is not satisfied. PkD can be written algebraically
as:

L(x) = I(L(x) = 1)(C(x) = 1)

+ I(L(x) = 0)
(1)

Here I(L(x) = l) is the indicator function that evaluates to 1
or 0, indicating whether the value that the label L(x) takes is
equal to l. How do we mathematically formulate C(x) = 1?
We can parameterize C(x) = 1 as S(eΛD

x , eΛD
C ) ≥ θC ,

where S is a similarity function (e.g., cosine similarity) and
θC is the similarity threshold. The eΛD

x and eΛD
C are embed-

dings of the input and condition obtained using a domain-
specific fine-tuned language model ΛD. Thus, we can write
a parameterized approximation to (1) as:

L̂(x, θC) = I(L(x) = 1)S(eΛD
x , eΛD

C ) ≥ θC)

+ I(L(x) = 0)
(2)

Now we consider a slightly more complex process knowl-
edge PkD, a multilabel and multi-conditioned process

2https://anonymous.4open.science/r/
MenatalHealthAnoynomous-8CC3/cssrs\%202.0.csv

knowledge to predict label L ∈ {1, 2, 3}, given conditions
C1, C2, C3, for an input x ∈ XPk

D :

if (C1(x) = 1 ∧ C2(x) = 1), L(x) = 1

if (C1(x) = 1 ∧ C3(x) = 1), L(x) = 2

else, L(x) = 3

Similar to (1), we can write this PkD algebraically as:

L(x) = I(L(x) = 1)(C1(x) = 1)(C2(x) = 1)

+ I(L(x) = 2)(C1(x) = 1)(C3(x) = 1)

+ I(L(x) = 3)

(3)

Following a similar procedure as the one used to derive (2),
we obtain:

L̂(x, θC1, θC2) =

I(L(x) = 1)(S(eΛD
x , eΛD

C1 ) ≥ θC1))

(S(eΛD
x , eΛD

C2 ) ≥ θC2))

+ I(L(x) = 2)(S(eΛD
x , eΛD

C1 ) ≥ θC1)

(S(eΛD
x , eΛD

C3 ) ≥ θC3))

+ I(L(x) = 3)

(4)

Generally, given multi-condition process knowledge PkD
for multilabel prediction of the form

if ∧j (Cj(x) = 1), L(x) = l

we get its algebraic form as

L(x) = I(L(x) = l)
∏
j

(Cj(x) = 1) (5)

Denoting all the parameters as the set {θCj} we get the pa-
rameterization

L̂(x, {θCj
}) = I(L(x) = l)

∏
j

(S(eΛD
x , eΛD

Cj
) ≥ θCj

) (6)

For all x ∈ XPk
D , we get a system of equations like (6).

Sentiment Analysis The conditions in the process knowl-
edge help the model assess problem issues. However, a com-
plete mental health assessment usually also involves the
identification of signs of positivity. Therefore for each θCj ,
we also optimize for a γCj term, where the model predicts
positive sentiment in the input if S(eΛD

x , eΛD
Cj

) ≤ θCj
+γCj

.

Optimization Problem Formulation For a process
knowledge augmented dataset XPk

D , we know the ground
truths L(x) for all x ∈ XPk

D . We want to solve for the
unknown parameters θCj

that yields minimum error be-
tween the parameterized approximation L(x, {θCj}) and the
ground truth L(x) i.e.,∑

x∈XPk
D

E(L̂(x, {θCj
}), L(x))

Here E denotes the error function. The choice of similarity
functions S is a hyperparameter (We explore cosine similar-
ity and normalized Gaussian kernels in our experiments).
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Projected Newton’s method: When one of the {θCj} are
fixed, setting E(L̂(x, {θCj

}), L(x)) to be the cross entropy
loss reduces to a strongly convex objective that can be solved
by Newton’s method (with ε corrections for low determi-
nant Hessians). After each optimization step, we project the
θCj to the [−1, 1] range.

Grid Search: Since the number of parameters to optimize
is small (six for CSSRS 2.0 and nine for PRIMATE), we
can perform a grid search over a predefined set of grid val-
ues to find the values that yield minimum cross entropy loss.
For our choice of S, we choose cosine similarity and nor-
malized Gaussian kernel; therefore, grid search candidate
values are in the [−1, 1] range.

Optimizing for the γCj
: To find the optimal γCj

, we
first predict positive and negative sentiment labels using the
Stanford CoreNLP model for all the inputs. Next, we per-
form a grid search in the [−1, 1] range and set values for
the γCj that results in the maximum agreement between
S(eΛD

x , eΛD
Cj

) ≤ θCj
+γCj

and the Stanford CoreNLP model
labels (only the positive labels).

In our experiments, we try both Newton’s method and grid
search optimization strategies.

Experiments and Results
We demonstrate the effectiveness of PkiL training using
PRIMATE and CSSRS 2.0 combined with several state-of-
the-art language models. We also perform experiments with
prompting Text-Davinci-003 using the langchain library3.

Process Knowledge Augmented Datasets
For CSSRS 2.0, the process knowledge is shown in Figure 1
(b) (the green part). We input this process knowledge in the
form4:

if ((C1(x), C2(x), C3(x), C4(x), C5(x), C6(x)) = 1),

L(x) = attempt

if ((C1(x), C2(x), C3(x), C4(x), C5(x)) = 1),

L(x) = behavior

if ((C1(x), C2(x)) = 1), L(x) = ideation

if (C1(x) = 1), L(x) = indication

The conditions C1− C6 in the CSSRS are:

C1 : Wish to be dead

C2 : Non− Specific Active Suicidal Thoughts

C3 : Active Suicidal Ideation with Any Methods

(Not P lan) without Intent to Act

C4 : Active Suicidal Ideation with Some Intent to Act

without Specific P lan

C5 : ActiveSuicidal Ideation with Specific P lan and Intent

C6 : Aborted Attempt or Self − Interrupted Attempt

For PRIMATE, the process knowledge is a set of nine condi-
tions. If any of the conditions evaluate to yes, the depression

3https://langchain.readthedocs.io/en/latest/
4Examples can be found at the link: https://anonymous.4open.

science/r/MenatalHealthAnoynomous-8CC3/cssrs annotate.txt

assessment label is 1. This is a binary classification task. We
input this process knowledge in the form (we collapse con-
ditions C3− C8 for brevity):

if (C1(x) = 1), L(x) = 1

if (C2(x) = 1), L(x) = 1

. . .

if (C9(x) = 1), L(x) = 1

else, L(x) = 0

The conditions C1− C9 in the PHQ-9 are:

C1 : Little interest or pleasure in doing things

C2 : Feelingdown, depressed, or hopeless

C3 : Trouble falling or staying asleep,

or sleeping too much

C4 : Feeling tired or having little energy

C5 : Poor appetite or overeating

C6 : Feeling bad about yourself,

or that you are a failure,

or have let yourself or your family down

C7 : Trouble concentrating on things,

such as reading the newspaper or watching television

C8 : Moving or speaking so slowly that

other people could have noticed

Or so fidgety or restless that

you have been moving a lot more than usual

C9 : Thoughts that you would be better off dead

or thoughts of hurting yourself in some way?

Examples from the PRIMATE dataset can be found at the
link in the footnote 5.

Experimental and Hyperparameter Configurations
During Training
1. Embedding models for input post and questions:

We use the models Word2Vec, SBERT, RoBERTa, T5,
ERNIE, and Longformer fine-tuned on the training data.

2. Similarity function: We explore the cosine similarity
and the normalized Gaussian kernel (input vectors are
normalized to be unit length before plugging into the
Gaussian kernel). For the normalized Gaussian kernel,
we range the scale parameter between [−1, 1] in incre-
ments of 0.001.

3. Parameters for grid search: During grid search op-
timization, we explore parameters in the [−1, 1] range,
again in increments of 0.001.

4. No. of epochs for Newton’s optimization method: We
set max epochs of 100 and experiment with batch sizes
of 16 and 32 for Newton’s method. We train for only 100
epochs as we have far more equations than unknowns and
also perform early stopping if the total parameter differ-
ences are less than 0.001.

5https://github.com/primate-mh/Primate2022
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Text-Davinci-003 Experiment Details
We use the langchain library and write a prompt template
to obtain answers to the process knowledge questions from
Text-Davinci-003. For example, Figure 2 shows the prompt
template for the first condition C1 : Wish to be dead from
the CSSRS process knowledge. For sentiment analysis, we
set the question variable in Figure 2 to positive sentiment.
We will call this model Text-Davinci-003PK. Once we evalu-

Figure 2: Using the langchain library to prompt Text-
Davinci-003 for answers to questions from the process
knowledge.

ate all the conditions, we follow the process knowledge per-
taining to the evaluated condition values to determine the
label.

Quantitative Results and Discussion
Figure 3 shows the results of PKiL for various experiment
configurations for the CSSRS 2.0 and PRIMATE datasets.
The figure also shows results from the Text-Davinci-003PK
model.

Quantitative Results for CSSRS 2.0: First, excluding
the Text-Davinci-003PK from the analyses, we observe that
SBERT trained using PKiL with a normalized Gaussian
kernel performs the best in terms of accuracy, and the
Word2Vec model performs the best on AUC-ROC scores for
the CSSRS 2.0 dataset. In general, we see that PKiL leads to
large boosts in performance of up to 14% over the baseline.
Analysis of The Text-Davinci-003PK model performance re-
veals that it is the best performer among all the models for
the CSSRS 2.0 dataset. Our experiments show that large
language models can significantly increase suicidality as-
sessment performance when leveraging process knowledge
structures and process knowledge-augmented datasets.

Quantitative results for PRIMATE: Again, first exclud-
ing the Text-Davinci-003PK from the analyses, we observe
that RoBERTa trained using PKiL with a cosine similarity
function performs the best in terms of accuracy, and SBERT
and ERNIE perform the best on AUC-ROC scores for the
PRIMATE dataset. In general, we see that PKiL leads to
large boosts in performance of up to 23% over the baseline.
Analysis of The Text-Davinci-003PK model performance re-
veals that it is the best performer in terms of accuracy among
all the models for the PRIMATE dataset. Our experiments
show that large language models can also significantly in-
crease depression assessment performance when leveraging
process knowledge structures and process knowledge aug-
mented datasets.

Qualitative Results and Discussion
We evaluate PkiL model outputs qualitatively for the follow-
ing aspects:

• Mental health disturbance assessment: The final la-
bel predicted by the model, i.e., the label depression
for depression assessment), and a label from the set
{indication, ideation, behavior, attempt} for suicidality
assessment.

• PHQ-9 depression concepts identified: A list of con-
cepts resulting from evaluating conditions C1-C9 using
the learned thresholds θCj

. For the Text-Davinci-003PK
model, we prompt the model using code as shown in Fig-
ure 2.

• CSSRS suicidality concepts identified: A list of con-
cepts resulting from evaluating conditions C1-C6 using
the learned thresholds θCj

. Similar to the depression
case, for the Text-Davinci-003PK model, we prompt the
model using code as shown in Figure 2.

• Positive sentiment assessment: Using the learned θj and
γj to identify input post fragments that convey positive
sentiment.

Baseline Model Explanations: We use the bert-viz visu-
alization technique6 to interpret the contributions of the dif-
ferent input post fragments to the prediction outcome (the
CLS token). Figure 3(e) shows the output for SBERT. The
highlights convey meaningful information from the perspec-
tive of depression, which is the correct label. However, it
is unclear how the highlights map to clinician-friendly con-
cepts from process knowledge guidelines for depression as-
sessment. A manual post-processing layer for mapping to
clinician-friendly concepts is needed in order to verify the
prediction.

PKiL Model Explanations: We divide the input post into
contiguous fragments of max size 3 sentences for models
and infer the process knowledge condition values using the
PKiL trained models and the parameters θCj

and θγj
. We di-

vide for enhanced clinician-friendly explainability as simply
annotating the whole posts with concepts still requires addi-
tional post-processing by the human to glean out fragments
that correspond to problem issues and positive sentiments.
Figure 3(f) shows the output of the SBERT model trained us-
ing PKiL with the normalized Gaussian kernel. Figure 3(g)
shows the output of prompting the Text-Davinci-003PK as
shown in Figure 2. We can readily observe that the explana-
tions are more useful to the clinician as they directly explain
the outcome in terms of concepts used in everyday practice.
Finally, we provided PKiL explanations to the experts who
helped construct the CSSRS 2.0 dataset and asked them to
provide the percentage of times they found the explanations
beneficial. We also provided baseline explanations for com-
parison. In order to control for bias, we tell them that humans
generate PKiL explanations, and language models generate
the baseline explanations. PKiL explanations scored 70% vs
47% for the baseline models. We recorded an inter-annotator
agreement of 0.72. We analyzed the 30% that the experts did
not find beneficial and observed that models have difficulty
distinguishing casual mentions from serious ones. For ex-
ample, a Reddit user reported wanting to kill themselves out
of class boredom before identifying a legitimate clinical is-
sue much further into their post. We leave the investigation

6https://github.com/jessevig/bertviz
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Figure 3: (a) and (b) present results for the CSSRS 2.0 dataset, while (c) and (d) show the results for the PRIMATE dataset. The
mean accuracy/AUC-ROC of different language models (LMs) - Baseline fine-tuned model (B), PKiL performance with Cosine
Similarity Kernel (CS-K), and PKiL performance with normalized Gaussian Kernel similarity (Gauss-K) - are displayed. The
prompt-based model Text-Davinci-003PK model (DPK) doesn’t utilize CS-K or Gauss-K, so no associated bar is shown. WV:
Word2Vec, SB: SBERT, RT: RoBERTa, EE: ERNIE, LF: LongFormer. (e) The self-attention-based interpretability visualization
for the SBERT baseline model indicates correct predictions and sensible highlights. However, the mapping of these highlights
to clinician-friendly concepts used in practice is unclear. Baseline language models consistently struggle to capture negation.
(f) The SB model trained with PKiL using the normalized Gaussian kernel provides clinicians with annotated explanations
that are more familiar. Additionally, the PKiL parameters enable the analysis of fragments conveying positive sentiment. (g)
Explanations from the Text-Davinci-003PK model also demonstrate that leveraging process knowledge helps clinicians better
understand the annotated explanations, as they are associated with familiar problem concepts.

of these posts for future work (e.g., by expanding our frame-
work to detect sarcasm).

Conclusion

In this study, we develop a novel paradigm PKiL that lever-
ages the combined benefits of explicit process knowledge
and high-performance language models to provide predic-
tions and explanations that the end user can readily un-
derstand. Our experiments demonstrate the effectiveness of
PKiL both quantitatively and qualitatively. Such improved
understanding of language model predictions can inform in-
sights for refining existing process knowledge guidelines
(e.g., adaptation to Reddit vocabulary) to facilitate remote
monitoring and improved access to healthcare via social me-
dia platforms.

Reproducibility: We provide the trained model for
SBERT with normalized Gaussian kernel similarity, the
CSSRS 2.0 dataset, and the CSSRS process knowledge used

in our experiments at the link in the footnote7. Additionally,
we also provide a Python notebook for users to play with the
Text-Davinci-003PK model at the link in this footnote8.

Ethics Statement: We adhere to anonymity, data privacy,
intended use, and practical implication of the AI-based men-
tal health assessment systems. The clinical process knowl-
edge does not contain personally identifiable information.
The datasets covered in the survey are publicly available and
can be obtained from user-author agreement forms. Figures
and examples are abstract and do not represent real-time data
sources or any person.
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