Integrating Medication Recommendation and Lab Test Response Prediction for Enhanced Clinical Decision Support

Suman Bhoi\(^1\), Mong Li Lee\(^1\), Wynne Hsu\(^1\), Ngiap Chuan Tan\(^2\)

\(^1\) National University of Singapore
\(^2\) SingHealth Polyclinics

sumanbhoi@u.nus.edu, leeml@comp.nus.edu.sg, whsu@comp.nus.edu.sg, tan.ngiap.chuan@singhealth.com.sg

Abstract

The rich data available in Electronic Health Records has led to the development of numerous systems for disease inference, mortality prediction, and personalized medication recommendations. However, integrating these diverse systems to enhance clinical decision-making in disease management remains an under-explored territory. This work describes a unified system that melds two distinct clinical tasks, namely medication recommendation and lab test response prediction, to bolster clinical decision support. This system could assist clinicians in personalizing dosage titrations and add-on medications. We present empirical studies from real-world datasets to demonstrate the potential of such a system.

Introduction

The proliferation of Electronic Health Records (EHR) and advancements in machine learning techniques have propelled healthcare analytics to the forefront. There is a growing body of research leveraging EHR data for diverse applications such as disease inference (Ni et al. 2017), mortality prediction (Tan et al. 2019) and personalized medication recommendation (Shang et al. 2019; Bhoi et al. 2021). Yet, there is a gap in efforts to unify these separate systems to enhance clinical decision-making in disease management.

Our research investigates the potential of employing an integrated system that combines two distinct clinical tasks – medication recommendation and lab test response prediction – to augment clinical decision support. Medication recommendation systems generate a combination of drugs for patients based on their medical history extracted from EHRs and other clinical knowledge bases like drug interaction databases. At the same time, lab test response prediction systems predict the patient’s response to a specific lab test, taking into account patient data from EHRs and other resources such as drug-lab interaction databases.

We envision a cohesive system capable of recommending various medication combinations for a patient and predicting the corresponding lab test responses for these combinations. Such a system would allow clinicians to understand and anticipate the effectiveness of different treatment regimes. This capability would provide enhanced decision support for clinicians to personalize dosage titrations and add-on medications, leading to improved disease management.

In this work, we present evidence-based studies on two real-world datasets to demonstrate the utility of such a system. We discuss the challenges in developing these integrated systems, their current limitations, and assess the feasibility of implementing such systems in a real-world healthcare setting.

Related Work

Early works in medication recommendation learn a collection of rules from EHR. Solt and Tikk (Solt and Tikk 2009) extract rules from discharge summaries whereas Lakkaraju et al. (Lakkaraju and Rudin 2017) learn the mapping between the patient characteristics and treatments using Markov Decision Process. However, these approaches may introduce conflicting rules and are difficult to generalize and scale. Subsequent works employ recurrent neural networks (RNN) to model sequential dependency in patient’s past visits and can be divided into two groups based on the inclusion or exclusion of drug interaction information while providing recommendations. The first group of works (Bajor and Lasko 2017; Le, Tran, and Venkatesh 2018) do not consider drug interactions to minimize adverse drug reactions. The second group of works (Shang et al. 2019; Wang et al. 2019) use Graph Convolutional networks (GCN) to learn and incorporate the drug interaction information to provide safe drug recommendations. These systems do not learn the rel-
deficiency anemia and decreased by hemolytic anemia. Dornhorst, Powis known to increase the HbA1c, a lab test typically per-
sult is not considered. For example, patients with high blood
impact of medications or diagnosis on the target lab test re-
rent neural network (RNN) based architecture to model the
task of predicting HbA1c test results, and propose a recur-
Ferritin lab test. In (Kang 2018), the authors examine the
test result by using patient demographics and the results of
visit records to make predictions (Luo et al. 2016; Kang
) whereas KALP requires fine-grained medication informa-
i.e., drug names with dosage information, several
modifications to PREMIER are required.
First, we align the patient data used in both systems by
replacing the procedure information used in PREMIER with
lab test information. Second, we refine PREMIER’s vocabulary
specfic drug names instead of the broader medication
class. Third, we substitute the medication class-based drug
interaction knowledge base TWOSIDES (Tatonetti et al.
2012) with the drug name-based knowledge base, DDInter
and lab test results by augmenting the patient representation
with the knowledge of drug-lab interactions and diagnosis-
lab interactions.
Our goal is to take the medication combinations suggested
by PREMIER as inputs to KALP, which in turn predicts the
potential outcomes of specific lab tests for a patient upon
taking these suggested medications. However, PREMIER
recommends medications at the drug class level (e.g., class
A10B which encompasses drugs like Metformin, Glipizide,
etc.) whereas KALP requires fine-grained medication informa-
tion i.e., drug names with dosage information, several
modifications to PREMIER are required.

Proposed System
Figure 1 gives an overview of the proposed system com-
prising of a medication recommendation system PRE-
MIER (Bhoi et al. 2021) and a lab test response prediction
system KALP (Bhoi et al. 2022).
PREMIER is a two-stage recommender system designed
to generate personalized medications with minimal adverse
drug interactions. The first stage utilizes a two-level neu-
ral attention mechanism to model patient-specific informa-
such as diagnosis, procedures and previously prescribed
medications as a query vector. This stage ensures that the recommended
medication set has minimal drug interactions.
KALP provides a personalized prediction of patient’s re-
sponse to a target lab test while considering drug-lab in-
teractions, diagnosis-lab interactions, medication dosages,
as well as past lab test responses. It uses transformer en-
coder to capture the patient-specific information, while the
information of similar patients is modeled using the modified
graph attention network (GATv2) (Brody, Alon, and Yahav 2021). With this, KALP obtains a strong latent patient
representation which incorporates fine-grained dosage informa-
tion to accurately predict patient response to a target lab
test, even amidst medication titrations. Further, KALP mod-
els the complex relationships between drugs, co-morbidities,
and lab test results by augmenting the patient representation
with the knowledge of drug-lab interactions and diagnosis-
lab interactions.

Evidence-based Study
We implemented the combined system in PyTorch and
trained the models on two NVIDIA Titan RTX GPUs. We
use the following two datasets for our analysis:

• MIMIC-III (Johnson et al. 2016) This is the largest pub-
Figure 2: EHR of a patient with three visits. Information sources are color-coded. Green indicates medication with dosage information, red indicates diagnosis, and blue indicates lab test response.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>MIMIC-III</th>
<th>PRIV ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>6412</td>
<td>6312</td>
</tr>
<tr>
<td>Number of diagnosis</td>
<td>1919</td>
<td>139</td>
</tr>
<tr>
<td>Number of medications</td>
<td>2941</td>
<td>45</td>
</tr>
<tr>
<td>Average number of visits per patient</td>
<td>2.67</td>
<td>13.06</td>
</tr>
<tr>
<td>Average number of diagnosis per visit</td>
<td>13.47</td>
<td>5.90</td>
</tr>
<tr>
<td>Average number of medications per visit</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Maximum number of diagnosis per visit</td>
<td>39</td>
<td>27</td>
</tr>
<tr>
<td>Maximum number of medications per visit</td>
<td>148</td>
<td>12</td>
</tr>
</tbody>
</table>

(a) Dataset statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>MIMIC-III</th>
<th>PRIV ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Discrete</td>
<td>65.36 (13.27)</td>
<td>58.45 (15.67)</td>
</tr>
<tr>
<td>Gender</td>
<td>Categorical</td>
<td>4136 (M), 2276 (F)</td>
<td>3324 (M), 2988 (F)</td>
</tr>
<tr>
<td>Weight</td>
<td>Continuous</td>
<td>66.23 (15.25)</td>
<td>71.45 (14.12)</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Continuous</td>
<td>9.2 (3.9)</td>
<td>10.5 (4.2)</td>
</tr>
</tbody>
</table>

(b) Patient characteristics.

Table 1: Summary of datasets.

We separately train the models in PREMIER and KALP for the tasks of medication recommendation and lab test response prediction respectively and use the trained models in our combined system. The embedding size for the models is fixed at 128 and training is done using the Adam optimizer. The learning rate is 0.0002, and the best-performing model is chosen after 50 epochs. We apply dropout of 0.4 and 0.6 on the input embedding layer for MIMIC-III and PRIVATE respectively.

Sample Patient A from PRIVATE

We analyze the medical records of a sample Patient A from the PRIVATE dataset, who has been diagnosed with Diabetes Mellitus, Hyperlipidemia, and Hypertension over two visits. The actual HbA1c values of this patient fluctuate between 7.5 and 8.8 as depicted in Figure 3.

The recommended sets of medications at different cut-offs are shown together with the corresponding predicted HbA1c value. We see that cut-off values of 0.4 and 0.6 generally result in higher and lower number of prescribed medications respectively. KALP’s predictions suggest that the HbA1c levels could be 8.9, 8.3, and 7.7, respectively, for the medication sets recommended by PREMIER at cut-offs of 0.4, 0.5, and 0.6.

From these predictions, the clinician might opt for the medication set at the 0.6 cut-off. Notably, this selection aligns with the actual medication regimen prescribed in the next visit, leading to an actual HbA1c value of 7.5.

This case highlights the potential of our integrated approach to assist clinicians to predict patients’ lab test re-

licly available EHR dataset which contains clinical data for 7870 neonates and 38,597 adults admitted to ICU between 2001 and 2008.

• PRIVATE. This is a proprietary outpatient dataset that includes a wide array of patient information such as demographics, vital signs, results of blood tests, and details of prescribed medications over a period from 2010 to 2019.

Both MIMIC-III and PRIVATE use the ICD-9 coding system for diagnosis and the generic names for medications. Since the dosages are reported in different units, we standardize and convert all the dosage values to milligrams.

For gender, we report the count of male (M) and female (F) patients. Compared to MIMIC III, the average number of diagnosis, and medications per visit in PRIVATE is fewer. We use HbA1c as the target lab test. Figure 2 shows a sample of the visit information extracted from a patient’s EHR.

We separately train the models in PREMIER and KALP for the tasks of medication recommendation and lab test response prediction respectively and use the trained models in our combined system. The embedding size for the models is fixed at 128 and training is done using the Adam optimizer. The learning rate is 0.0002, and the best-performing model is chosen after 50 epochs. We apply dropout of 0.4 and 0.6 on the input embedding layer for MIMIC-III and PRIVATE respectively.

Sample Patient A from PRIVATE

We analyze the medical records of a sample Patient A from the PRIVATE dataset, who has been diagnosed with Diabetes Mellitus, Hyperlipidemia, and Hypertension over two visits. The actual HbA1c values of this patient fluctuate between 7.5 and 8.8 as depicted in Figure 3.

The recommended sets of medications at different cut-offs are shown together with the corresponding predicted HbA1c value. We see that cut-off values of 0.4 and 0.6 generally result in higher and lower number of prescribed medications respectively. KALP’s predictions suggest that the HbA1c levels could be 8.9, 8.3, and 7.7, respectively, for the medication sets recommended by PREMIER at cut-offs of 0.4, 0.5, and 0.6.

From these predictions, the clinician might opt for the medication set at the 0.6 cut-off. Notably, this selection aligns with the actual medication regimen prescribed in the next visit, leading to an actual HbA1c value of 7.5.

This case highlights the potential of our integrated approach to assist clinicians to predict patients’ lab test re-

licly available EHR dataset which contains clinical data for 7870 neonates and 38,597 adults admitted to ICU be-

• PRIVATE. This is a proprietary outpatient dataset that in- includes a wide array of patient information such as demo-

graphics, vital signs, results of blood tests, and details of

prescribed medications over a period from 2010 to 2019.

Both MIMIC-III and PRIVATE use the ICD-9 coding sys-

tem for diagnosis and the generic names for medications. Since the dosages are reported in different units, we stan-
dardize and convert all the dosage values to milligrams.

Table 1(a) summarizes the statistics of these datasets. The characteristics of the patients in these datasets are given in Table 1(b). Here, we report the average age, gender, and HbA1c along with their standard deviation in parenthesis. For gender, we report the count of male (M) and female (F) patients. Compared to MIMIC III, the average number of diagnosis, and medications per visit in PRIVATE is fewer. We use HbA1c as the target lab test. Figure 2 shows a sample of the visit information extracted from a patient’s EHR.

We separately train the models in PREMIER and KALP for the tasks of medication recommendation and lab test response prediction respectively and use the trained models in our combined system. The embedding size for the models is fixed at 128 and training is done using the Adam optimizer. The learning rate is 0.0002, and the best-performing model is chosen after 50 epochs. We apply dropout of 0.4 and 0.6 on the input embedding layer for MIMIC-III and PRIVATE respectively.

Sample Patient A from PRIVATE

We analyze the medical records of a sample Patient A from the PRIVATE dataset, who has been diagnosed with Diabetes Mellitus, Hyperlipidemia, and Hypertension over two visits. The actual HbA1c values of this patient fluctuate between 7.5 and 8.8 as depicted in Figure 3.

The recommended sets of medications at different cut-offs are shown together with the corresponding predicted HbA1c value. We see that cut-off values of 0.4 and 0.6 generally result in higher and lower number of prescribed medications respectively. KALP’s predictions suggest that the HbA1c levels could be 8.9, 8.3, and 7.7, respectively, for the medication sets recommended by PREMIER at cut-offs of 0.4, 0.5, and 0.6.

From these predictions, the clinician might opt for the medication set at the 0.6 cut-off. Notably, this selection aligns with the actual medication regimen prescribed in the next visit, leading to an actual HbA1c value of 7.5.

This case highlights the potential of our integrated approach to assist clinicians to predict patients’ lab test re-
responses for different medication regimens. This in turn enables more personalized treatment strategies to improve the management of various health conditions.

Sample Patient B from PRIVATE

Sample Patient B has received diagnoses of Diabetes Mellitus and Hyperlipidemia across two visits and has an HbA1c of 8.7 at baseline. Figure 4 shows the actual prescribed medications across two visits, as well as the sets of medications recommended by PREMIER at two cut-off values. The corresponding actual and predicted HbA1c is also shown.

We observe that when the patient was actually administered a mixture of Metformin, Glipizide, and Fenofibrate, the HbA1c level increases to 9.2. However, KALP predicts it to be 8.6, a slight decrease from the baseline HbA1c. A closer inspection of the prescribed and recommended medications...
Figure 5: Predicted and actual HbA1c response for Patient C with medication input generated from PREMIER. Cut-off 0.4 denotes the medication set generated by PREMIER at a threshold of 0.4. The information sources are color coded as red, green, blue for diagnosis, medication, lab test response respectively.

reveals that the dosages of the prescribed medications were of a lower value as compared to the dosages of the recommended medications. This discrepancy arises because PREMIER does not include dosage information in the recommendations, and we have assigned the most frequently prescribed dosages for the medications, which were higher than the actual administered dosages. This indicates the need for more fine-grained medication recommenders that includes dosage along with the medications.

Sample Patient C from MIMIC-III

Finally, we examine the lab test response generated by our integrated system for a patient extracted from the MIMIC-III dataset. As shown in Figure 5, this patient has been diagnosed with Diabetes, Hyperlipidemia, Nausea, Vitamin D and Iron deficiency. The HbA1c levels for this patient vary from 8.6 to 9.1.

We observe that the predicted HbA1c response to the recommended medication set at a cut-off threshold of 0.5 is 8.7 on the first visit. It is interesting to see that a medication combination similar to that recommended in the first visit at a threshold of 0.5 is actually prescribed on the next visit leading to an HbA1c response of 8.6 which is similar to the response predicted by our integrated system. This shows that the integrated system discussed in this work can help clinicians to anticipate the personalized response of a patient to a combination of medications.

Conclusion

In this work, we have investigated the potential of an integrated system consisting of a medication recommendation system and a lab test response prediction system to enhance clinical decision support for managing the health conditions of patients. While the initial results are promising, there is still room for improvement. Currently, KALP employs the set of medications suggested by PREMIER as input, defaulting to the most recently prescribed or commonly administered dosage of these medications. This may not be the most effective approach to assigning dosage. A more fine-grained recommender system, suggesting a personalized set of medications along with their corresponding dosages, is needed.

Future work includes broadening the system by incorporating data from a range of sources such as clinician notes and physiological data to build a more comprehensive clinical decision support system. Furthermore, providing clear justifications for the generated recommendations is vital, as it enables deeper insights and fosters trust among clinicians using the system.

Acknowledgments

This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-GC-2019-001-2A).

References

Wang, S.; Ren, P.; Chen, Z.; Ren, Z.; Ma, J.; and de Rijke, M. 2019. Order-free Medicine Combination Prediction With Graph Convolutional Reinforcement Learning. In *CIKM 2019*.