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Abstract

Hierarchical reinforcement learning often involves human ex-
pertise in defining multiple sub-goals to decompose complex
objectives into relevant sub-tasks. However, manually spec-
ifying these sub-goals is labor-intensive, costly, and prone
to introducing biases or misleading the agent. To overcome
these challenges, we propose a collaborative human-AI al-
gorithm that seamlessly integrates with hierarchical models
to automatically update prior knowledge and optimize can-
didate sub-goals. Our algorithm can be easily incorporated
into a wide range of goal-conditioned frameworks. We eval-
uate our approach in comparison with relevant baselines, we
demonstrate the effectiveness of our algorithm in addressing
and preventing negative inferences arising from confusing or
conflicting sub-goals. Additionally, our algorithm shows ro-
bustness across different levels of human knowledge, accel-
erating convergence towards optimal sub-goal spaces and hi-
erarchical policies.

Introduction
Hierarchical reinforcement learning (HRL) is a promising
approach for solving complex problems involving long-
duration tasks with delayed and sparse rewards. By mod-
eling problems at different levels of abstraction, HRL can
improve learning efficiency and reduce computational bur-
den. It can also facilitate transfer learning by enabling the
reuse of high-level policies. One common approach to de-
signing hierarchical structures is to divide the overall tar-
get into multiple sub-tasks by setting corresponding sub-
goals. Many popular efforts focus on the two-level hierar-
chical structure (Kulkarni et al. 2016; Nachum et al. 2018;
Pateria et al. 2021): the high level optimizes the policy to se-
lect a sub-goal representing a short-term task; the low level
learns the policies to achieve the targeted sub-goals. How-
ever, defining appropriate sub-goals often requires extensive
domain knowledge. Moreover, the sub-goal space introduces
bias and in severe cases, some confusing sub-goals may lead
to sub-optimal policies.

Figure 1 illustrates an example of a housekeeping robot
with the primary objective of cooking dinner. However,
humans may inadvertently introduce misleading sub-goals,
such as ”turning off the TV” or ”going to the bedroom,”
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Figure 1: A robot example of including confusing sub-goals
into a cooking dinner task.

which can divert the agent away from the optimal solution.
Intelligent agents should help eliminate bias and exclude
knowledge that may lead the agent off-track into “risky”
or “dangerous” states or regions in deriving optimal poli-
cies. To automatically detect and correct misleading hu-
man knowledge or confusing sub-goals in different solu-
tion contexts, we propose a Human-AI collaborative sub-
Goal Optimization (HAI-GO) algorithm1. Unlike the ap-
proaches that rely entirely on automatic discovery (McGov-
ern and Barto 2001; Şimşek and Barto 2008; Menache, Man-
nor, and Shimkin 2002; Sukhbaatar et al. 2018; Mahadevan
and Maggioni 2007; Liu et al. 2021), our algorithm lever-
ages human-AI cooperation, where humans encode general
and domain-specific knowledge in defining the sub-goals,
while machines optimize sub-goal selection in deriving op-
timal policies. Given a candidate sub-goal space, HAI-GO
maintains a critic function to evaluate the utility of select-
ing each sub-goal. The algorithm can be flexibly embedded
into a wide range of HRL frameworks without modifying
their original structures, enabling the agent to determine an
optimal sub-goal space and converge to the corresponding
optimal hierarchical policies.

1An earlier version of this work was presented as a poster at The
22nd International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2023).
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We evaluate our HAI-GO algorithm in complex maze en-
vironments and finds that it effectively identifies optimal
sub-goals based on relevant performance measures. Com-
pared to some sub-goal discovery baselines: L-Cut (Şimşek,
Wolfe, and Barto 2005) and the Hierarchical DRL algorithm
with Automatic Discovery of Sub-goals (HADS) (Liu et al.
2021), our algorithm shows more reasonable (or human-
understandable) results with detailed distributions. We fur-
ther show that HAI-GO is robust in detecting and filter-
ing potentially confusing pre-defined sub-goals through var-
ious candidate spaces with different degrees of integrated
human knowledge. Compared to some state-of-the-art HRL
methods: hierarchical Deep Q-Networks (h-DQN) (Kulka-
rni et al. 2016) and HADS (Liu et al. 2021), our algorithm
works well even with pre-defined knowledge that involves
misleading sub-goals and outperforms the baselines.

Methodology
We consider an environment E that our intelligent agent
interacts with. Suppose G = {g1, g2, ..., gN} is a candi-
date sub-goal space defined based on prior knowledge. We
assume that these sub-goals are responsibly defined and
cover a subset of positive decomposition of the overall task.
We define a critic function represented as a set of inde-
pendent Bernoulli distributions for each candidate sub-goal
as q = {q1(w1;λ1), q2(w2;λ2), ..., qN (wN ;λN )}. λi, i ∈
{1, 2, ..., N} are the parameters we aim to optimize. For
each qi(wi;λi), the random variable wi ∈ {0, 1} indicates
to select sub-goal gi by wi = 1 or not to select it by wi = 0.
We initialize an HRL agent with the high-level module and
low-level module. Our HAI-GO algorithm simultaneously
learns both the critic function and the hierarchical policies.
The optimal sub-goal space G∗ can be finally obtained based
on the learned critic function after training.

Hierarchical Structure with Sub-Goal Policy
HAI-GO is designed as an additional component in HRL
agents that learns a high-level policy to select one sub-goal
as a short-term target. One simple prototype consists of two
levels: at each time step, the high level selects a sub-goal
based on its policy πh representing a short-term task that
the agent is expected to complete in next stage; the low level
selects an elementary action based on its policy πl in the fol-
lowing N steps, where N > 1 is an integer hyper-parameter
representing the expected steps for the low level to complete
a particular sub-goal. The high level revises a new sub-goal
after N steps or after the low level completes the current
one.

The high-level interaction model is defined by a Markov
Decision Process (MDP) ⟨S,G, T h, Rh, γh⟩, where S is a
set of states, G is the sub-goal space, Th is the high-level
transition function that describes the probability of tran-
siting to the next state after taking a low-level sub-policy,
and Rh is the high-level reward function. A discounted fac-
tor γh is introduced for problems with infinite horizons to
bound the accumulated reward. The main target is to learn
the policy πh∗

: S → G to maximize the discounted
high-level return Rh

t =
∑∞

τ=t γ
hτ−t

rht . We implement Q-

learning-based algorithms to approximate the Qh(s, g; θ) by
minimizing the temporal difference error (TD-error), i.e.,
the distance between temporal difference target (TD-target)
yt = rht + γh maxg′ Qh(st+N , g′; θ) and the predicted Q-
value Qh(st, gt; θ). The low level learns a policy to select
the elementary action given a state st as well as the sub-goal
gi instructed by the high level, at = πl(st|gi), which can be
trained by any applicable flat RL algorithms. We will show
how HAI-GO can be embedded into this general framework.

HRL with Sub-Goal Optimization
Our proposed HAI-GO algorithm integrates human exper-
tise with automatic calculation, enabling the agent to start
from a human-specified sub-goal space and gradually refine
the candidate knowledge. The agent learns the critic func-
tion q = {qi(wi;λi)} to generate filtered sub-goal spaces
Ĝ during training. Ĝ only contains the sub-goals whose en-
try wi = 1 dominates the entry wi = 0, where the high
level will select one sub-goal from. We define QĜ(s, g; θ)
as the Q-function conditional on the filtered sub-goal space
Ĝ. Similarly, we denote the conditional TD-target and the
loss function as yĜ and LĜ respectively. Based on the con-
ditional assumption, we have:

LĜ = 0.5
(
yĜ −QĜ(s, g; θ)

)2
. (1)

The main objective of HAI-GO to optimize the critic func-
tion is to update qi(wi;λi) to be one best approximation to
the real posterior pi(wi|yĜ). The posterior gives the distri-
bution of indicator wi conditional on the corresponding TD-
target. We adopt a variational inference approach (Blei, Ku-
cukelbir, and McAuliffe 2017; Zhang et al. 2018) to opti-
mize the parameters λi. We minimize the KL-divergence of
qi(wi;λi) and pi(wi|yĜ) for i = 1, 2, ..., N , which is

DKL

(
qi(wi;λi)||pi(wi)

)
− Ewi∼qi(wi;λi)[log p(yĜ|wi)],

where pi(wi) ∼ Bernoulli(δi) is a prior, and δi is a hyper-
parameter. Eq. (1) indicates that yĜ = QĜ(s, g; θ) + ϵĜ,
where ϵĜ ∼ N (0, σ2). Hence, we have log p(yĜ|wi) =
−LĜ + constant. Thus, the loss function for each candi-
date is:

L(λi) = Ewi∼qi(wi;λi)[LĜ] +DKL

(
qi(wi;λi)||pi(wi)

)
.

As we assume that all Bernoulli distributions are indepen-
dent, we minimize the total loss: L(λ) =

∑N
i=1 L(λi).

HAI-GO Embedded HRL Frameworks
To timely influence the agent training, we adopt an ϵ-greedy
strategy to control our HAI-GO component to gradually af-
fect the high-level policy learning by providing the filtered
Ĝ. With an increasing probability of ϵ, the high level selects
one sub-goal only from Ĝt, with the probability of 1 − ϵ,
from the initial candidate space. The HAI-GO embedded
HRL will converge to both the optimal critic function and
the optimal policies. An overview of the interaction of the
HAI-GO and a goal-conditioned HRL framework is shown
in Figure 2.
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Figure 2: An overview of the hierarchical reinforcement
learning framework with our proposed HAI-GO algorithm
embedded in.

Figure 3: Comparison of the discovered sub-goals.

After learning, we derive the optimal sub-goal space G∗
based on the learned distributions. We define a threshold
ϕ > 0, if the difference between two entries is over the
threshold, qi(wi = 1;λi) − qi(wi = 0;λi) > ϕ, the sub-
goal gi will be included in G∗. The complete model is also
able to achieve an optimal hierarchical policy, while fully
exploited the learned sub-goal space G∗. Furthermore, both
the derived sub-goals and the policies can be transferred eas-
ily to similar tasks.

Experiments
Sub-Goal Discovery
In this section, we show the sub-goal discovery of our HAI-
GO compared with two baselines: the L-Cut (Şimşek, Wolfe,
and Barto 2005), a graph-theory-based approach and the
HADS (Liu et al. 2021), a pre-trained process before HRL
learning. We compute the normalized difference between the
two entries ϕgi = q(wi = 1;λi) − q(wi = 0;λi) to indi-
cate the intensity of selecting each candidate. The optimized
distribution is shown in Figure 3. In addition to indicating
the two paths as the most important sub-goals, our results
present an interesting feature, that is, the closer to the final
state the more important the candidate is, which is more rea-
sonable from the human perspective.

Human Knowledge Refinement
In this section, we compare our HAI-GO with two HRL
baselines: h-DQN (Kulkarni et al. 2016) and HADS (Liu
et al. 2021), to evaluate the learning performance and the
ability to refine the encoded human knowledge. We de-
signed two configurations representing different degrees of
prior knowledge: one with general candidates which include
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(b) confusing configuration.

Figure 4: Comparison of human knowledge refinement.

grids located in the rooms; the other one with confusing sub-
goals that may mislead the agent to useless exploration. The
two configurations with their corresponding convergence are
shown in Figure 4. As compared to the baselines, our ap-
proach learns the importance of each sub-goal and applies
it to the agent training. The unimportant and confusing sub-
goals can be filtered out and only the optimal ones are re-
tained, thus resulting in the fastest convergence.

Conclusion
We proposed HAI-GO, a human-AI collaborative sub-goals
optimization algorithm that integrates human expertise into
intelligent agent learning. HAI-GO maintains a critic func-
tion to eliminate biases and refine the encoded human
knowledge, resulting in faster convergence and stable learn-
ing performance. The optimal sub-goal space derived by
HAI-GO provides a better understanding of complex envi-
ronments, and can be easily transferred to the tasks in the
same domain. The algorithm is highly expandable and flexi-
ble to be embedded into goal-conditioned HRL frameworks.
Future work should focus on real-time human-AI collabora-
tion, defining better performance measures, and accurately
defining sub-goal spaces.
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