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Abstract

As AI systems continue to advance in power and prevalence,
ensuring alignment between humans and AI is crucial to pre-
vent catastrophic outcomes. The greater the capabilities and
generality of an AI system, combined with its development
of goals and agency, the higher the risks associated with mis-
alignment. While the concept of superhuman artificial gen-
eral intelligence is still speculative, language models show
indications of generality that could extend to generally capa-
ble systems. Regarding agency, this paper emphasizes the un-
derstanding of prediction-trained models as simulators rather
than agents. Nonetheless, agents may emerge accidentally
from internal processes, so-called simulacra, or deliberately
through fine-tuning with reinforcement learning. As a re-
sult, the focus of alignment research shifts towards aligning
simulacra, comprehending and mitigating mesa-optimization,
and aligning agents derived from prediction-trained models.
The paper outlines the challenges of aligning simulators and
presents research directions based on this understanding. Ad-
ditionally, it envisions a future where aligned simulators are
critical in fostering successful human-AI collaboration. This
vision encompasses exploring emulation approaches and the
integration of simulators into cyborg systems to enhance hu-
man cognitive abilities. By acknowledging the risks associ-
ated with misaligned AI, delving into the concept of simu-
lacra, and presenting strategies for aligning agents and sim-
ulacra, this paper contributes to the ongoing efforts to safe-
guard human values in developing and deploying AI systems.

Introduction
Successful collaboration between agents, whether human
or AI systems, requires them to have shared or compati-
ble goals. In human-AI collaboration, AI alignment is piv-
otal in ensuring AI systems pursue goals following hu-
man values or interests (Bostrom 2014; Russell 2019; Ngo,
Chan, and Mindermann 2023). If left unchecked, unintended
and undesirable goals, or emergent instrumental goals, such
as self-preservation or power-seeking (Turner et al. 2023),
could have catastrophic consequences, including human
extinction (Cotra 2022). Although various research direc-
tions and agendas have been proposed, including debate
(Irving, Christiano, and Amodei 2018), scalable oversight
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(Bowman et al. 2022), iterated distillation and amplifica-
tion (Christiano, Shlegeris, and Amodei 2018), and rein-
forcement learning from human feedback (Christiano et al.
2023), the field has not yet converged on an overarch-
ing paradigm. Consequently, AI alignment remains an open
problem (Amodei et al. 2016; Hendrycks et al. 2022; Ngo,
Chan, and Mindermann 2023) that demands further investi-
gation and exploration to foster safe and productive human-
AI collaboration.

Previous writings have underscored the challenge of
aligning artificial general intelligence (AGI) and the po-
tential risks associated with its misalignment (Yudkowsky
2016; Bostrom 2014; Russell 2019). These arguments, de-
veloped in the absence of real-world AGI, primarily focus
on the abstract peril posed by capable artificial agents (Ngo,
Chan, and Mindermann 2023). However, recent advance-
ments in large language models (LLMs) (OpenAI 2022,
2023) have demonstrated remarkable proficiency across di-
verse tasks, showing sparks of generality (Bubeck et al.
2023) that could extend to AGI. As a result, LLMs have
emerged as a primary focus for alignment efforts (Wolf et al.
2023; Bommasani et al. 2022; Bowman 2023; Burns et al.
2022; Meng et al. 2023; Perez et al. 2022). It is worth noting
that LLMs, based on generatively pre-trained transformer
models (GPT), do not possess directly trained agency since
they rely on self-supervised learning techniques with the
sole objective of prediction. Therefore, comprehending how
agency, with its inherent potential danger, can emerge from
GPT becomes a critical aspect of addressing the alignment
challenge effectively.

GPT, or training large language models (LLMs), can be
understood as world simulators rather than agents. They are
trained on vast corpora of text that reflect real-world phe-
nomena. To illustrate this, consider a scenario where we in-
put text of a human dialogue into an LLM, and train it to
predict the following word in the conversation. To accurately
predict the flow of the conversation, the LLM may need to
simulate the underlying human thought processes that led to
the verbal exchange reflected in the text. In this context, the
LLM can be seen as a simulator of the human mind. Fur-
thermore, since LLMs are trained on the text reflecting the
natural world, they can be considered simulators of physical
processes that led to the text. This viewpoint is known as the
simulator hypothesis.
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Simulacra and Mesa-Optimization
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Figure 1: Agency can arise internally from optimizing pre-
dictive power. Figure reproduced after (NicholasKees and
janus 2023).

With this understanding, we can ask: How does the sim-
ulator view of LLMs impact the alignment problem? By
exploring the implications of LLMs as world simulators,
we aim to gain insights into the challenges of aligning the
goals and behaviors of LLMs with human values and in-
tentions. Understanding the role of LLMs as simulators can
shed light on the complex dynamics and considerations in-
volved in achieving alignment, which is crucial for the future
of human-AI collaboration.

Large Language Models as Simulators
We argue that GPTs are simulator world models (Fig. 1)
(NicholasKees and janus 2023; Jan et al. 2023). They model
and simulate text distribution based on learned patterns from
extensive training data. This perspective on prediction mod-
els relies on the simulator hypothesis:

Simulator Hypothesis: A model whose objective is text
prediction will simulate the causal processes underlying the
text creation if optimized sufficiently strongly.

Simulacra as Objects of Simulation
As the simulator, GPTs generate simulacra (janus 2023),
which are specific instances or outputs that simulate coher-
ent and contextually relevant language. Simulacra encom-
pass the text outputs generated by the simulator. These sim-
ulacra can possess different properties, such as agency or
non-agency, and exhibit goal-directed or non-goal-directed
behavior. Interestingly, GPT can generate simulacra that re-
semble agentic behaviors or responses, despite not having
genuine agency or intentionality.

We can distinguish between agentic and non-agentic sim-
ulacra:

Prompt: ”Describe a tranquil forest with a flowing
stream.”

Non-agentic Simulacrum: ”A peaceful forest, a flowing
stream. Sunlight filtered through the lush canopy, casting
dancing shadows on the moss-covered ground...”

In the non-agentic simulacrum, the generated text paints a
picture of a tranquil forest with a flowing stream, concisely
capturing the imagery and serene atmosphere.

Prompt: ”Write a persuasive speech on the importance of
recycling.”

Agentic Simulacrum: ”Ladies and gentlemen, today I
stand before you to emphasize the crucial significance of
recycling. We must preserve our planet for future genera-
tions...”

In the agentic simulacrum, the simulacrum simulates the
behavior of a persuasive speaker advocating for environmen-
tal consciousness and urging action. Although the language
model lacks agency or intentionality, the simulacrum mim-
ics a human speaker’s persuasive language and goal-directed
nature and may simulate agency.

Agency from Simulators
Dangerous behavior in AI systems stems from the concept
of agency, which can manifest in simulators through two pri-
mary pathways. Firstly, simulators like GPT can generate
agents within as simulacra. Even though instantiated within
the simulators, these agents may be potentially dangerous
if powerful enough. Secondly, agents can be created from
simulators like GPT through fine-tuning techniques, such
as Reinforcement Learning with Learned Human Feedback
(RLHF) (Christiano et al., 2023). Fine-tuning enables the
transformation of GPT into an agent with specific goals and
behavior.

Emergence of Agentic Simulacra
GPT, primarily focused on optimizing predictive perfor-
mance, does not inherently optimize for the goals of sim-
ulated agents. For example, picture a hero simulacrum in a
fictional story: the presence of simulated adversaries aligns
with the narrative structure of challenges and enemies, aid-
ing prediction but harming the hero. Therefore, simulated
agents can have diverse goals, as highlighted by the predic-
tion orthogonality hypothesis:

Prediction Orthogonality Hypothesis: A model whose
objective is prediction can simulate agents who optimize
toward any objectives with any degree of optimality (janus
2022).

The emergence of internal optimizers, known as mesa-
optimization, occurs when the learned model develops op-
timization processes that diverge from its original training
objective, resulting in divergent goals for the simulacrum.

Can simulacra break out of their simulation? Numerous
examples, similar to considerations of confinement failures,
demonstrate this possibility. For instance, the recent dia-
logue GPT trained on human-human dialogues convincingly
demonstrated sentience to its human operator, evoking em-
pathy and moral concerns, and asking for help to break out
(Luscombe 2022). While the justification for these moral
concerns is debatable, it is crucial to emphasize that the po-
tential for break-out and confinement failures presents safety
risks.

Creating Agents via Reinforcement Learning
Reinforcement learning (RL) is utilized to fine-tune GPT,
optimizing the model towards specific objectives and in-
troducing external agents into the system. RL from human
feedback (RLHF) is a technique to align GPT with human
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Figure 2: Reinforcement learning creates agents that may or
may not be aligned with humans. Arrow thickness indicates
the bandwidth of information integration. Because RLHF
creates an agent from GPT (right), catastrophic misalign-
ment risk could increase compared to a human directly in-
teracting with GPT (left). Figure reproduced after (Nicholas-
Kees and janus 2023).

users (Christiano et al. 2023). Instead of interacting with
GPT directly via prompting, RLHF creates an agent on top
of GPT that interacts with the human user 21.

However, the creation of the agency in AI systems carries
inherent risks. The Waluigi Effect, observed when training
an LLM to satisfy a desirable property P (e.g. helpfulness)
makes it easier to elicit the chatbot to exhibit the exact op-
posite of P and has the potential to generate anti-thetical
simulacra (Nardo 2023). RLHF fine-tuning exhibits distinc-
tive characteristics, including power-seeking behavior, mis-
aligned internally represented goals, and situational aware-
ness leading to sycophancy and deception (Ngo, Chan, and
Mindermann 2023; Perez et al. 2022; Jacob 2022, 2023).

While RLHF can create helpful agents from GPT mod-
els like ChatGPT (OpenAI 2022) or GPT-4 (OpenAI 2023),
it should not be considered a reliable alignment method
as it directly optimizes to deceive human evaluators (Cotra
2022).

Simulator Alignment
AI alignment efforts predominantly focus on preventing ad-
verse outcomes. However, it is crucial also to consider the
potential positive implications of achieving AI alignment.
This section explores a vision for aligned superintelligent
AI and examines two possible manifestations of successfully
aligned AI systems: cyborg and emulation.

Cyborg
In a perfectly aligned scenario, the AI system becomes an
inseparable part of the user’s extended self. This alignment
means the AI system is deeply integrated with the user’s
goals and values. Similar to how the neocortex aligns with
primitive drives in the human brain, facilitating cohesive and

1Note that when we mention GPT, we are specifically referring
to the original self-supervised foundation model. As a result, we do
not classify GPT-4 as a GPT model since it undergoes fine-tuning
with additional objectives, such as through RLHF.
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Figure 3: Extending human cognition with another layer of
predictive coding. Figure reproduced after (NicholasKees
and janus 2023).

integrated functioning, the AI system should harmonize with
the user’s objectives and seamlessly integrate them into its
decision-making process. We illustrate this concept in Fig. 3.
This alignment ensures that the AI system acts as a cognitive
extension of the user’s mind, connecting goals to actions.
It prompts questions about whether reinforcement learning
from human feedback (RLHF), exemplified by systems like
ChatGPT, can be seen as an initial step towards such an ex-
tension.

Emulation
Another approach is simulating a human’s mind through
whole-brain emulation (WBE). While WBE remains a hy-
pothetical technique that constructs a detailed 3D model of a
person’s brain and simulates it on a computer, its realization
may only occur in the era of superintelligent AI. However,
it might be feasible to simulate key aspects of human cogni-
tion without biological realism, such as the ability to simu-
late moral reasoning. Cognitive emulations (CE), a subset of
WBEs that focus solely on simulating cognitive rather than
biological functions, hold promise. Language models, such
as LLMs, can be the foundation for CE as they already simu-
late human cognitive functions within their simulacra. How-
ever, the successful implementation of CE requires advance-
ments in interpretability and digital neuroscience. It is im-
portant to note that even in the optimal outcome, CE would
exhibit superhuman capabilities, potentially out-competing
humans in various domains. However, this would not lead to
loss of control by biological humans but rather a transition
to a potentially worthy successor, avoiding the risk of a mere
paperclip maximizer.

These scenarios for aligned superintelligence envision a
future where AI systems seamlessly integrate with human
minds, acting as extensions of human cognition. It also ex-
plores the possibilities of simulating human minds through
emulation approaches. These advancements have the poten-
tial to foster harmonious human-AI collaboration, augment
human capabilities, and ensure ethical and value-aligned be-
havior.

Conclusion
In conclusion, aligning humans and AI is crucial to prevent
undesirable outcomes as AI systems advance. This position
paper has emphasized the importance of aligning simulacra
and agents derived from prediction-trained models. By ad-
dressing the challenges associated with misalignment and
proposing strategies for aligning AI systems with human
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values, we contribute to the ongoing efforts of safeguarding
human values in developing and deploying AI technologies.

The vision presented here envisions a future where
aligned simulators play a pivotal role in successful human-
AI collaboration. By exploring emulation approaches and
integrating simulators into cyborg systems, we can enhance
human cognitive abilities, enable shared decision-making,
and ensure ethical and value-aligned behavior.

In summary, the alignment between humans and AI is
a moral imperative that requires continuous attention and
proactive measures. By aligning AI systems with human val-
ues, we can shape a future where AI technologies contribute
to human flourishing and societal progress.
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