Al Magazine Volume 10 Number 4 (1989) (© AAAI)

Tlhe
Advamced!

Arclnitectures
Project

J@eEs IKice

26 Al MAGAZINE

The Advanced Archi-
tectures Project (AAP)'
has been running for
a number of years at
Stanford University’s
Knowledge Systems
Laboratory (KSL). The
project is large and
has a number of
components that
have been document-
ed at length. These
components have
never been drawn

The Advanced Architectures Project at Stanford
University's Knowledge Systems Laboratory
seeks to gain higher performance for expert
system applications through the design of new,
innovative software and hardware architectures.
This research concentrates particularly on the
use of parallel machines to gain speedup and the
design of the software to exploit emergent paral-
lel hardware architectures. This article describes
the project and details its goals and the work
performed in the pursuance of these goals. A
brief description is given of each of the project
components, and a complete bibliography appears
of the publications produced for the project.

publications are
available from KSL,
and many have also
been published else-
where. This article,
then, is more of a
concept or a research
in progress article
than one presenting
scientific goals.

Project Goals
The project’s prima-

together in one doc-

ument; thus, this article describes the project
and gives a taste of the individual subprojects
that have kept the project members so busy for
so long. A large number of publications have
emerged from the project, so a full bibliogra-
phy of the work appears for the reader who
wants to follow up on any intriguing topics.

AAP straddles a number of research areas
and, thus, does not fall easily into any one
sphere of interest. A certain amount of work
has been done on the parallelizing of expert
systems, most notably by Gupta (1986).
Similarly, some machines on the market
resemble in some respects the machines that
project members have been designing, most
notably the Ametek machine. This article
does not in any significant way relate the
work of AAP to the work in other fields; for
such comparative studies, you can refer to the
bibliography. The reader should keep in mind,
however, that I know of no projects that have
been comparable to AAP, and so it is often
hard to find a reasonable point of compari-
son. For instance, considerable effort is being
spent on concurrent image recognition on
massively parallel machines such as the Con-
nection Machine™, 2put this research has had
little influence on the work of this project.

At this point, I should make a brief dis-
claimer. The subject matter for AAP is com-
plex and not in the mainstream of experience
for members of the Al community. Thus, the
AAP project members are concerned that the
conclusions they have drawn from their work
might be misinterpreted, trivialized, or over-
generalized. It is unrealistic in such a short
article to try to do justice to the full lessons
that can be learned from the project’s exten-
sive quantitative experiments. For this reason,
I do not attempt to draw any great conclu-
sions here. The reader is strongly encouraged
to read any of the 50-odd papers that are
cited here to gain a deeper understanding of
the work and the lessons learned. All these

0738-4602/89/$3.50 ©1989 AAAI

ry goal is to find
ways to increase the performance of expert
systems through the use of the new, emer-
gent, parallel hardware designs.

The number of possible implementation
strategies for such a project is huge. One only
has to look at the large number of different
hardware designs that are emerging and at
the number of different problem-solving
methods to see how combinatorial the prob-
lem would be if the project tried to investigate
all the reasonable and plausible architectural
combinations. It was decided, therefore, that
the project members could learn a great deal
by simply making a commitment to one, or
at least a small number of, different options
at each point in the system’s makeup. Thus, it
was decided that the project would take a
“vertical slice” through the space of possible
solutions. Clearly, the members did not
intend to investigate any options that seemed
nonuseful. Although they could not prove
they had the best design to meet their goals,
they knew from the outset their design would
at least be a plausible architecture for a future
computational environment.

The project members viewed the task of
implementing concurrent expert systems as
one that was split into a number of imple-
mentation layers. If they could achieve
speedup at each one of these layers, then they
could hope for a substantial overall perfor-
mance improvement compared to existing Al
systems. The model of the layers into which
the project could be split appears in figure 1.

It was originally anticipated that the needs
of the applications would drive the develop-
ment of the problem-solving frameworks and
the needs of the problem-solving frameworks
would drive the development of the knowl-
edge retrieval layer and so on until eventually
the hardware would be designed under the
constraints passed down from above (figure
1). In practice, however, this process did not
occur. Because of the difficulty of finding and

Articles

... itwas
decided

that the
project would
take a
“vertical
slice” through
the space of
possible
solutions.

WINTER 1989 27

Articles

28 AI MAGAZINE

Applications

Problem-Solving Frameworks

Applications

Knowledge Retrieval

Problem-Solving Frameworks

Resource Management

Resource Management

Programming Languages

Programming Languages

Operating Systems

Hardware

Hardware

Figure 1. The Layers of System Implementation
Through Which Project Members Hoped to
Achieve Computational Speedup.

mounting an application suitable to the pro-
ject’s needs and the early availability of per-
sonnel interested in the hardware design
aspect, hardware design proceeded more
rapidly than the other layers. Thus, the
designs were more hardware driven than
application driven. Such a result is not neces-
sarily bad because an entirely top-down
design process could have easily resulted in
low-level system requirements that could not
have been implemented.

The levels of abstraction actually imple-
mented differed significantly from those
shown in figure 1. Figure 2 gives a more real-
istic representation of what the project mem-
bers actually did, as opposed to what they
intended to do.

KSL staff members have considerably more
expertise in software than in hardware. Pro-
ject members decided early not to build any
hardware; many other research groups are
better at hardware development. Therefore,
they decided to simulate their hardware,
allowing them to modify the software and
hardware designs easily and extract the maxi-
mum insight with the minimum effort.

The remainder of this article is split into
sections that reflect the major layers shown
in figure 2. In each of these sections, the
work of the relevant subprojects is discussed.
Because of the project’s bottom-up emphasis,
the components are discussed in bottom-up
order. This format reduces the number of for-

Figure 2. Layers Actually Tackled in the Project.

Resource management appears in small type because it
is a recent addition, and most of the work has been
done without the help of this layer.

ward references made because a discussion of
the higher layers inevitably has to refer to the
substrates on which they are implemented.

Personnel

This project has employed a large number of
people over the years. It seems appropriate to
name them all here because otherwise they
might only appear as authors referenced in
the bibliography: Ed Feigenbaum, Bob Engel-
more, Penny Nii, Bruce Delagi, Harold Brown,
Hiroshi Okuno, John Delaney, Byron Davies,
Hirotoshi Maegawa, Nelleke Aiello, James
Rice, Nakul Saraiya, Sayuri Nishimura, Eric
Schoen, Greg Byrd, Max Hailperin, Russel
Nakano, Masafumi Minami, Chris Rogers,
Alan Noble, Jean-Christophe Bandini, Manu
Thapar, Pandu Nayak, Djuki Muliawan, Jerry
Yan, and Sam Hahn.

Hardware

As mentioned earlier, hardware design led the
way in AAP. In this section, I discuss a little
bit of the motivation for the hardware designs
and briefly describe the current generation of
hardware designs that project members are
working on and the simulator they are using.

Simple and Helios

The hub of all the work done on AAP has
been the circuit simulator; everything else is

Il

Figure 3. The Simple System Provides a Tool Kit from Which to Build Circuits to Be Simulated,
a Collection of Probes to Connect to the Circuit, and a Set of Instruments to Connect to the Probes.

built on it. This simulator is called Simple. It
is an event-driven simulator devised to allow
the user to design and specialize digital cir-
cuits in a simple and modular way using a cir-
cuit design tool called Helios. A sophisticated
set of instrument tools allows the user to
design and specialize simulated probes that
can be connected to the circuit while it is run-
ning. This setup allows a number of instru-
ments to be connected to the probes that
permit the user to see the behavior of the cir-
cuit as it operates without interfering with
the system’s behavior. Project members like to
view this model as a laboratory workbench
equipped with collections of instruments,
probes, and circuit-building components from
which the user can build systems and on
which the user can perform quantitative
experiments (figure 3) (Delagi et al. 1986, 1987).

It was found early on that simulations of
the sort project members wanted to do would
be computationally expensive. An attempt
was made, therefore, to parallelize the simula-

tor itself in an attempt to reduce the time
taken for the simulations, which often
exceeded one day. This attempt resulted in
AIDE, a distributed version of Simple (Saraiya
1986). Unfortunately, project members were
unable to achieve any speedup at all for their
simulations, largely because of the communi-
cations bandwidth necessary and the latency
associated with communicating between the
multiple Symbolics machines used by way of
Ethernet. Also, the simulator was event driven
and required frequent synchronization on the
event queue, which serialized the processing.

CARE

The Simple simulator was used to design and
build what project members refer to as the
CARE’ machine and simulation system
(Delagi et al. 1988) (figure 4). The CARE
machine is the simulated machine on which
all the experiments mentioned in the follow-
ing paragraphs were performed. The

Articles

WINTER 1989 29

Articles

CARE EXAMINER: EYALUATOR QUEUE LOAD
ArAnaml IS ST A g Dy Sims

a4
13
S
31
23
R
4
5155
5 5
51
T 4
i 2
p o
i1

H

simulated Time [ms]

4 B &8 14

Figure 4. An Example Piece of Instrumentation from the CARE System.
This figure shows the lengths of the task queues on the different processors plotted

against time.

30 AI MAGAZINE

machine’s design has a few key features that
are worthy of note:

e Dynamic cut-through routing to optimize
network throughput (Byrd, Nakano, and
Delagi 1987a)

e Toroidal topology (Byrd and Delagi 1987)

* Nonblocking message sending to encourage
pipeline processing

e Communications network with alternative
paths between points to reduce communi-
cations problems resulting from busy com-
munication paths

* A separate communications controller to
support operating system functions and
implement the nonblocking send function-
ality mentioned previously

The work on the CARE subproject has
focused mainly on the design of interproces-
sor communication networks, as is appropri-
ate. Thus, project members have been able to
ignore the instruction-level behavior of the
processors themselves. The application pro-
grams that the members run are merely timed
as they run between the points at which code
fragments cause communication between
processors. Being able to avoid doing register-
level simulation of the processors themselves
has allowed project members to execute
much more complex and realistic programs

- = T T = T B = = I |

on their simulated machines. Therefore, they
traded accuracy in their processor simula-
tion—assuming that the processing elements
will behave much like existing Lisp machine
processors—in favor of greater realism in
terms of the system’s performance under the
load of real programs.

A number of system design aspects have
not been addressed in detail, and the simula-
tions do not take these into account. Perhaps
most significant is the fact that memory
usage, code distribution, and garbage collec-
tion are not simulated.

The CARE/Simple simulator system is per-
haps the most valuable tangible product of
the project. It is now being used in a number
of research departments, both corporate and
academic, outside Stanford. Like all AAP soft-
ware, it is in the public domain. CARE/Simple
will soon be running under Common Lisp,
CLUE, and X11 on a number of different
platforms.

Operating Systems
and Languages

A considerable amount of effort has been
spent working at the operating system level
of abstraction. Curiously, the project mem-
bers have written no operating systems. The
CARE machine itself features a dual processor
for each processing element. This arrange-
ment allows much of the work of the operat-
ing system, particularly interprocessor
communication, to be done by a dedicated
processor in parallel with the execution of
user code. The behavior of this communica-
tions processor is coded directly into the sim-
ulated hardware. Work in this area has been
done on concurrent object-oriented systems,
concurrent Lisp dialects, programming
models, and resource allocation.

CAREL

CAREL (Davies 1986) was one of the first pro-
grams written to run on the CARE simulated
machine. It was an early attempt to find a
Lisp language interface to the distributed-
memory hardware provided by CARE. It took
as its basis Scheme (Abelson and Sussman
1983) and QLisp (Gabriel and McCarthy
1984) and included primitives to allow
remote function calls and remote CONSing.
It was quickly found that because of the cost
of process creation, it was desirable to make
the best use of any processes which were
spawned. Therefore, there was a need to store
application-dependent data in nonephemeral
spawned processes.

Work in this area has been done on concurrent object-
oriented systems, concurrent Lisp dialects, programming
models, and resource allocation.

State of this type was implemented in
CAREL as writable closure variables. These
process closures could be used as elements in
pipeline computations or as representations
of mutable communicating program objects,
for instance, to represent real-world objects
with state. State, as encapsulated in commu-
nicating objects, and the idea of pipeline par-
allelism have been pivotal in the design of
the other systems developed in the project.
The CAREL project was used primarily as a
feasibility study and was soon discontinued.

CAOS

The first implementation of the Elint applica-
tion, described later, was made without the
benefit of any problem-solving framework. It
was anticipated that the application could
easily be mounted almost directly on the
CARE machine and that some experiments
could be run quickly, which would allow pro-
ject members to learn some important lessons
early in the project.

To mount the application, a distributed
object-oriented system was implemented; at
the time, the CARE system did not come with
its own preferred object system. The system
was called CAOS (concurrent asynchronous
object-oriented system) (Schoen 1986). It was
implemented using the Flavors system sup-
ported by the project’s Lisp machines. It had a
number of key features.

First, each CAOS object was potentially a
multiprocess object, although executing on a
single processor, with at least one stack group
associated with each CAOS object.

Second, CAOS objects were intentionally
large grained. Because it was anticipated that
the communications network would be the
resource most competed for, the programmer
was encouraged to perform a lot of computa-
tion to reduce the number or size of the mes-
sages sent.

Third, message passing was used as the
metaphor for communication in the language
extensions provided by CAOS.

Finally, a large number of different mes-
sage-sending primitives were defined, includ-
ing nonblocking sends that did not require a
reply from the message target, sends which
returned futures to the values returned by the

targets, and send operations that immediately
blocked to wait for a reply from their targets.
The CAOS system proved to be too expen-
sive to use for future experiments. Contrary
to the intuition of the project members, the
communications network proved to be the
least loaded of the CARE machine’s resources
during our experiments on CAOS. The com-
putational expense of supporting its complex
object model caused the granularity of the
resulting computations to be too large.

LAMINA

Lamina (Delagi, Saraiya, and Byrd 1986) is the
object system that was designed after the
lessons learned from the CAOS experiments.
It was originally intended to provide a small,
lightweight layer on top of the CARE machine
so that distributed object-oriented programs
could be efficiently implemented. A signifi-
cant part of the motivation for Lamina’s
design was the desire to reduce the overhead
suffered by the CAOS system in terms of asso-
ciating large stack groups with each of the
CAOS objects. Lamina introduced the idea of
objects with restartable, rather than resum-
able, code segments, which do not require
stacks to preserve their state when they are
not running. Since its first appearance,
Lamina has been extensively developed, and
although still small and lightweight, it now
provides a platform for the development of
computational models for functional and
shared-variable, as well as object-oriented,
programming.

Lamina has been used to implement a
number of programs, both for direct imple-
mentations of the two real-time expert sys-
tems being investigated (see Applications)—
AirTrac and Elint—and for a number of
numeric programs. Lamina is now the pre-
ferred core programming system for the CARE
machine. Applications in Lamina have consis-
tently shown the highest performance of all
programs running on the CARE machine.

Interprocessor and Interprocess
Communication

Different mechanisms for interprocessor and
interprocess communication have been

Articles

WINTER 1989 31

Articles

signal-interpretation sys-
tems such as Elint and
AirTrac (see Applications).
Without load balanc-
ing, only a lightly loaded
multicomputer that
dynamically creates pro-
cesses can, in general,
achieve real-time perfor-
mance. The work focuses
on how to achieve global
load balancing, which
would be an attractive
solution to this problem
because it would allow
the effective use of mas-
sively parallel ensemble
architectures for larger
soft-real-time problems.
The challenge is to
replace quick global com-
munication, which is
impractical in a massive-
ly parallel system, with
statistical techniques. In

Figure 5. Load Balancing.

extensively investigated. For distributed-
memory machines, project members believe
that the efficient distribution of work for
large applications is crucially linked to the
efficient implementation of multicast com-
munication (Byrd, Nakano, and Delagi 1987;
Byrd, Saraiya, and Delagi 1988). Although the
principal emphasis has been on the develop-
ment of distributed-memory hardware, the
fact that the CARE simulator can also simu-
late shared-memory machines has allowed
project members to investigate the relative
performance of these two distinct classes of
machines and the relative performance and
appropriateness of shared-variable and mes-
sage-passing, object-oriented programming
models (Byrd and Delagi 1988). Current work
focuses on the design of hardware that might
provide efficient support for both the shared-
variable and the message-passing program-
ming models (Byrd 1989).

Load Balancing

Project members have started examining
load-balancing problems (figure 5) within the
context of the AAP vertical slice (Hailperin
1988). In particular, this work focuses on a
load-balancing method intended to migrate
Lamina objects in large (thousands of pro-
cessing elements) CARE multicomputers to
improve the performance of soft-real-time

32 AI MAGAZINE

this vein, a mnovel
approach to decentral-
ized load balancing is
being investigated based
on statistical time-series analysis. Each pro-
cessing element estimates the systemwide
average load using information about past
loads of individual sites and attempts to
equal this average. This estimation process is
practical because the soft-real-time systems
in which the project is interested naturally
exhibit loads that are periodic (in a statistical
sense akin to seasonality in econometrics).

A load-balancing system for Lamina/CARE
was designed using this load-characterization
technique. It has been implemented, and
experiments with it in the context of ELINT
and AIRTRAC have begun.

Concurrent and
High-Performance Lisp

To understand the behavior of Lisp on
shared-memory machines, work was done on
the QLisp system (Okuno and Gupta 1987).
Although this work was not directly used by
other parts of the project, it involved examin-
ing some of the constraints on parallelizing
production systems by studying the OPSS5
language.

In the search for higher-performance sym-
bolic computation, work was also done on
the development of high-performance Lisp
interpreters (Okuno, Osato, and Takeuchi
1987). This work was also not directly used in

Articles

the project because all the code
used in the project’s experiments

has been compiled.

Problem-Solving
Frameworks

One of the key layers in the AAP
strategy was problem-solving
frameworks. Faced with a large
number of different problem-
solving models, the project com-
mitted itself early to the
blackboard problem-solving

model (Engelmore and Morgan
1988). This choice was not
entirely arbitrary. The blackboard
metaphor was successfully
applied in the area of real-time
signal processing (Nii et al.
1982), the selected problem
domain for AAP. Also, it was
anticipated that the blackboard
metaphor would help project

Blackboard Knowledge Base
KS
Nodd i Rule %__
Update event Rule
Node Node / « <
| T
Rul
Nodd Node| Node] — t
| | Rule
Scheduler

members extract parallelism
from the application in the way
that the problems were formulat-
ed because the metaphor has a
model of asynchrony built into
it. For reasons detailed in Rice
(1988c), the blackboard model
turned out to not be as parallel as
was hoped, but project members
still know of no better one for
concurrent execution.

The development of problem-solving
frameworks took two distinct courses. First
was the development of a fairly conservative
concurrent implementation of an existing
blackboard system to run on existing shared-
memory machines. This system is described
in the next subection. Second was the need to
rethink the blackboard metaphor from
scratch in the hope of achieving really high
performance on distributed-memory multi-
processors, such as the CARE machine. The
result was the Poligon system. Three genera-
tions of papers were produced describing pro-
ject strategy, the Cage and Poligon systems as
they evolved, and the experimental results
produced by these systems (Nii 1986; Nii,
Aiello, and Rice 1988a, 1988b).

Cage

Cage (Concurrent AGE) (Aiello 1986) is a
reimplementation of the AGE (Nii and Aiello
1979) blackboard system developed by the
Heuristic Programming Project at Stanford.
The central idea behind Cage is that the

Figure 6. The Cage Architecture.

blackboard model, by its nature, provides a
certain amount of parallelism. Therefore, it
should be possible to exploit this parallelism
without any major redesign or rethinking of
the problem-solving model. Cage is, there-
fore, an implementation, that is designed to
allow the concurrent execution of a black-
board system through the concurrent execu-
tion of the knowledge sources and rules in
the application (figure 6).

At the outset, it was not known how diffi-
cult it would be to program such a system
and how much performance could be expect-
ed. However, project members thought that
such an architecture might well be suitable
for the current generation of multiprocessors,
which mostly have a shared-memory design.
Blackboard systems are typically implemented
using a central, shared database to represent
the blackboard. The match between the
shared blackboard and the shared-memory
resource seemed to be worth investigating.
The Cage system was implemented first on a
simple emulator, which emulated the func-
tionality of a QLisp implementation without
paying the costs of detailed simulation. It was
later ported to run on the CARE simulator

Update events are perceived by the scheduling component and collected in a global event queue. The
scheduler selects the knowledge sources that are interested in any given event and can execute them in
parallel. In turn, these knowledge sources inspect the blackboard and perform updates that are seen
by the scheduler.

WINTER 1989 33

Articles

Node Rules
Pipe _ \i} L]
Update _ D
Rule
Invocation
Node Rules Node Rules

e N e

i 4

Figure 7. The Poligon Architecture.
Updates on the blackboard are observed by rules that watch specific slots of black-
board nodes. These rules can fire in parallel, causing further updates to the same or
other nodes. This flow of updates from one node to another implicitly forms pipes,
which increase the parallelism realizable by the system.

using an implementation of QLisp built on
top of the Lamina shared-variable program-
ming interface (Saraiya 1988).

The Elint application, discussed later, was
mounted on the Cage system, and experiments
were performed on it. These experiments are
detailed in Aiello (1988) and Rice and Aiello
(1989). The Cage system showed that black-
board programs can, indeed, be run in parallel
in a relatively simple manner. The performance
of Cage, however, is restricted by a number of
factors (Nii, Aiello, and Rice 1988b): (1) its
implementation, which was not highly tuned;
(2) its architecture, which exhibits significant
contention for global shared resources such
as the event queue; (3) the QLisp substrate on
which it is built; and (4) the shared-memory
hardware on which it runs.

Thus, the Cage architecture is viable for
existing shared-memory hardware systems,
but because of the close link between the
Cage programming model and its underlying
hardware, project members do not anticipate
that future concurrent expert system tools
will be built like Cage. Instead, they believe

34 AI MAGAZINE

that the trend of multiprocessor design is
moving away from shared-memory machines
toward distributed-memory designs because
of their greater ability to scale. Software
design is likely to track this trend.

Poligon

The expectation is that for reasons of simplic-
ity, performance and cost, the next generation
of multiprocessors is likely to be distributed-
memory machines. This expectation required
rethinking the blackboard model so that it
could be mounted on such machines in a
manner likely to deliver good performance.
Poligon (Rice 1986a, 1986b, 1989) was devel-
oped in an attempt to address these needs. It
took the view that processors were going to
be cheap and plentiful; thus, if necessary, it
was quite acceptable to allocate one processor
or more to each node on the blackboard.

First, the serializing, centralized control
mechanism of conventional blackboard
systems was discarded. Distributing the nodes
of the blackboard over the processor network
allowed the knowledge base to be spread over
the blackboard as well; this arrangement
eliminated any performance bottleneck as a
result of the costs of communication between
the knowledge base and the blackboard. The
simplest available rule-invocation mechanism
was selected to maximize performance; rules
were directly attached to slots of the nodes
on the blackboard. Modifying a slot resulted
in invoking the rule attached to it. Rule invo-
cations were spun off into different processes
on different processors for execution; thus,
the length of the critical sections on the pro-
cessors holding blackboard nodes was mini-
mized, and multiple, simultaneous rule
invocations for the same modified blackboard
object were allowed (figure 7).

In practice, these mechanisms did, indeed,
result in good performance, but they also
resulted in significant problems. Lots of
uncontrolled asynchronous processes all
reading and writing in a shared database are
bound to cause problems when it comes to
getting a coherent or correct answer. Extra
mechanisms had to be implemented, which
allowed the blackboard nodes to have goals
and the ability to evaluate their own perfor-
mance with respect to the overall system
goal. These mechanisms allowed the black-
board nodes to have the final decision about
whether to perform any modification opera-
tion attempted by a rule. The result was a sort
of distributed hill-climbing behavior. Nodes
iterated toward a good solution.

These mechanisms did not come without

associated costs in terms of granularity.
Although the Poligon system delivers high
performance when compared to other black-
board systems such as AGE, it significantly
lacks the performance provided by an applica-
tion written directly in Lamina. Therefore,
Poligon provides a fairly general concurrent
implementation of the blackboard problem-
solving model with all the accompanying
advantages of abstraction and modularity. It
does so, however, at a price. A detailed
description of Poligon’s design and imple-
mentation can be found in Rice (1989), which
also describes how Poligon’s performance
could be improved by superior compilation if
it were to be turned into a production-quality
system.

The Elint application, described in the next
section, was implemented in the Cage, Poligon,
and Lamina systems. The results of these
experiments are reported in Rice (1988b); Rice
and Aiello (1989); Nii, Aiello, and Rice
(1988b); and Nii and Rice (1989). Another
application called ParAble, (Bandini 1989)
implemented using the Poligon framework, is
also described in the next section.

Applications

As mentioned in the introduction, the project
members expected at the outset that AAP
would be application driven. In the search for
an application domain, which would need
significant speedup for expert systems to be
fielded and yet held a certain obvious poten-
tial for concurrent execution, they picked the
field of real-time signal understanding. Exist-
ing blackboard systems, such as HASP/SIAP
(Nii et al. 1982) and Tricero (Williams, Brown,
and Barnes 1984) showed that the blackboard
problem-solving model was appropriate for
this domain and that the performance deliv-
erable using the existing blackboard tools was
entirely inadequate to field such systems.
What was needed, therefore, was a problem
complex enough to give us a reasonable
model of a real system and yet simple enough
to prevent project members from expending
too much effort on the mechanics of its
implementation. The unavailability of a satis-
factory application at the start of the project
caused it to become somewhat more hard-
ware driven than originally expected. It was
eventually decided that project members
would focus on a problem called Elint, a
system for understanding passive radar signals.
This application is described in the next section.
After a fair bit of experimentation, it was
determined that the ability to exploit paral-
lelism was being constrained by the problem

Articles

(Blackboard nodes)

M3

G

|Observations |

| Input Data |

Figure 8. The Elint Application.

Sensor data are abstracted into hypothetical radar emitters, which are tracked as clus-

ters of emitters.

being used; it was not sufficiently complex. In
the search for a more knowledge-rich and
computationally intensive application, pro-
ject members developed AirTrac (described
later). Work was also done in areas other than
real-time signal understanding; ParAble
(described later), a system for fault finding in
particle accelerator beamlines, was developed
using the Poligon framework. A number of
numeric or seminumeric programs were also
developed during the hardware-related
experiments.

Elint

Elint is a soft-real-time system for interpret-
ing passive radar signals. Data are collected
from a number of receiving stations and inte-
grated to allow the system to track radar-emit-
ting aircraft as they pass through the
monitored airspace. The data are abstracted
into hypothetical radar-emitting platforms. In
turn, these platforms are collected into clus-
ters of emitters, which might represent a
number of planes or a single plane using mul-
tiple radar systems, as is often the case with
modern military aircraft (figure 8). Elint was
first implemented using the CAOS system. It
was originally thought that this work would

WINTER 1989 35

Articles

36 AI MAGAZINE

. . . . the project members expected at the outset that
AAP (Advanced Architectures Project) would be

application driven.

take only a couple of months. However, the
complete task—implementation, experimen-
tation, and analysis of results—took 18
months. Project members learned early that it
is by no means a trivial matter to reimple-
ment an existing serial application in a paral-
lel environment. These initial experiments
are detailed in Brown, Schoen, and Delagi
(1986).

Since the CAOS implementation, Elint has
been implemented three times, using Lamina
(Delagi and Saraiya 1988; Saraiya 1989) and
the Cage (Aiello 1988) and Poligon (Rice
1988b; Nii, Aiello, and Rice 1988b) frame-
works, and a number of experiments have
been performed.

AirTrac

The development of the Elint application
showed that the amount of parallelism that
could be demonstrated was much more
dependent on the application than had been
anticipated. Project members had hoped that
by extracting parallelism at the different levels
of the system’s implementation hierarchy,
they could gain significant speedup. Howev-
er, they were unable to demonstrate speedup
in this way. They were able to demonstrate
that their experiments showed poor speedup
largely because the application itself had run
out of parallelism.

What project members needed was an
application that would really stretch the
hardware and software they were developing
in a realistic manner. As a result, the AirTrac
application was developed (Delaney 1986).

The AirTrac problem domain sounds super-
ficially like that of Elint. It was a system for
interpreting radar data, although in this case,
the radar systems being modeled were active
not passive. Unlike Elint, AirTrac was
designed to go much further than simply
tracking aircraft and finding likely threats.

The scenario for AirTrac was the detection
of smugglers flying across a border. The prob-
lem faced by existing radar users is that a
large number of legitimate aircraft travel in
the same airspace as smugglers. Smugglers
can take advantage of variations in terrain to
find areas of poor or no radar reception. They
also resort to other evasive tactics.

The system was designed in a number of
layers so that different implementation
efforts could be decoupled. The first subsys-
tem implemented was called the data-associa-
tion component (Nakano and Minami 1987)
and is the subsystem that most closely
matches the Elint application. Initially, this
component was to be implemented using the
Poligon framework. However, it was found
that simulating the Poligon system for a
problem as complex as AirTrac would take
prohibitively long. Consequently, AirTrac was
directly implemented in Lamina. Substantial
speedup was shown, which seemed to
increase linearly with the number of proces-
sors. This result was encouraging.

The second component of AirTrac, Path
Association (Noble and Rogers 1988), was sig-
nificantly more knowledge intensive than the
first. This subsystem was also initially imple-
mented directly in Lamina. However, pro-
gramming in the raw Lamina framework was
too complex and time consuming, so a layer
called ELMA was built on top of Lamina that
provided the abstraction model needed for
the implementation (Noble 1988b).

The final, most abstract component of Air-
Trac has not been implemented. Project
members have not yet learned all they can
from the second layer and were not able to
show all the speedup that they thought was
possible in this layer, so work is continuing in
this area.

ParAble

The ParAble project (Bandini 1989) was an
attempt to test the generality of the problem-
solving model offered by Poligon by choosing
a completely different application domain. To
achieve this goal, a parallel implementation
of the ABLE system (Selig 1987), which was
also developed at Stanford, was made.

The objective of the ABLE project was to
find a fast way to diagnose difficulties with
particle accelerator beam lines. These large
and complex machines are prone to beam
alignment problems because (1) the magnets
that steer and focus the beam are misaligned
or (2) the power supplies to these magnets are
incorrect, resulting in the magnets not
having the desired strength. These systems

are so complex that it can take many months
of knob twiddling simply to commission
them.

The ABLE system used an analytic model of
the beam-line-component transfer functions
and a number of heuristics that employ suc-
cessive model runs and compare the results
with real data to locate the faults. It was thus
able to find faults in particle accelerator systems
in about 10 minutes. As these systems become
more complex, there might well be a need to
control them in real time. Thus, although no
immediate need exists for higher performance
in the ABLE system, it is reasonable to sup-
pose the need might exist in the future.

A number of experiments were performed
on ParAble and are detailed in Bandini
(1989). Again, the realizable parallelism in
this project was found to be limited mostly by
the availability of data parallelism.

Numeric and Seminumeric Programs

The expert systems mentioned here are not
ideal applications for multiprocessor execu-
tion. They are irregular and data dependent.
A large body of applications already exists in
the area of numeric and seminumeric process-
ing that will require the speedup associated
with parallel execution. Indeed, such pro-
grams are already being run on a number of
multiprocessors. Therefore, it is essential that
any machine designed to be general purpose
must also be able to execute these regular,
argorithmic problems efficiently. A number of
small numeric programs have been developed
that allow project members to test their hard-
ware and software ideas in a much more con-
trollable way than is possible with any expert
system application. Among these are a Gaus-
sian elimination algorithm, a partial differen-
tial equation solver, and an integrated circuit
line simulator.

Conclusions

AAP has been running for a number of years
now. The project members have found that
they have moved from having a good under-
standing of Al problem-solving techniques
and knowing little about parallel computation
to having have a good understanding of all
the issues involved; the problems facing the
implementers of concurrent problem-solving
systems, and the gains they can reasonably
expect. The project members hope that the
successes and failures reported in the publica-
tions cited in the bibliography will help the
rest of the research community in the move
to concurrent computational platforms.

Notes

1. The project’s real name is Expert Systems on
Multiprocessor Architectures, but all the project
members have always felt more comfortable calling
it either the Advanced Architectures or the Archi-
tectures project for short. This name more effective-
ly captures the fact that new architectures for both
hardware and software will be needed to meet the
project’s goals.

2. Connection Machine is a registered trademark of
Thinking Machines Corp.

3. The expansion for this acronym seems to have
been lost somewhere in the wash. I think that it
has something to do with the words concurrent
and array.

Bibliography
Advanced Architectures
Project Publications

Aiello, N. 1988. Cage: The Performance of a Con-
current Blackboard Environment, Technical Report,
KSL-88-80, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ.

Aiello, N. 1986. User-Directed Control of Paral-
lelism: The CAGE System, Technical Report, KSL-
86-31, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ. Also in 1986.
Proceedings of the Defense Advanced Research Pro-
jects Agency Expert Systems Workshop, 146-151.
Arlington, Va.: Science Applications International
Corp.

Bandini, J. C. 1989. Poligon Applications, Technical
Report, KSL-89-43, Heuristic Programming Project,
Dept. of Computer Science, Stanford Univ.

Brown, H.; Schoen, E.; and Delagi, B. 1986. An
Experiment in Knowledge-Base Signal Understand-
ing Using Parallel Architectures, Technical Report,
STAN-CS-86-1136, Heuristic Programming Project,
Dept. of Computer Science, Stanford Univ. Also in
1986. Proceedings of the Defense Advanced
Research Projects Agency Expert Systems Work-
shop, 93-105. Arlington, Va.: Science Applications
International Corp.

Byrd, G. 1989. Support for Fine-Grained Message
Passing in Shared-Memory Multiprocessors, Techni-
cal Report, KSL-89-15, Heuristic Programming Pro-
ject, Dept. of Computer Science, Stanford Univ., 1989.

Byrd, G., and Delagi, B. 1988. A Performance Com-
parison of Shared Variables versus Message Passing,
Technical Report, KSL-88-10, Heuristic Programming
Project, Dept. of Computer Science, Stanford Univ.
Also in 1988. Proceedings of the Third Internation-
al Conference on Supercomputing, 1-7. Boston,
Mass.: International Supercomputing Institute.

Byrd, G., and Delagi, B. 1987. Considerations for
Multiprocessor Topologies, Technical Report, KSL-
87-07, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ. Also in 1987.
Proceedings of the Defense Advanced Research Pro-

Articles

WINTER 1989 37

Articles

38 AI MAGAZINE

jects Agency Knowledge-Based Systems Workshop,
119-122. Arlington, Va.: Science Applications Inter-
national Corp.

Byrd, G; Nakano, R.; and Delagi, B. 1987a. A
Dynamic, Cut-Through Communications Protocol
with Multicast, Technical Report, STAN-CS-
87-1178, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ.

Byrd, G.; Nakano, R.; and Delagi, B. 1987b. A Point-
to-Point Multicast Communications Protocol, Tech-
nical Report, KSL-87-02, Heuristic Programming
Project, Dept. of Computer Science, Stanford Univ.

Byrd, G.; Saraiya, N.; and Delagi, B. 1988. Multicast
Communication in Multiprocessor Systems, Tech-
nical Report, KSL-88-81, Heuristic Programming
Project, Dept. of Computer Science, Stanford Univ.

Davies, B. 1986. CAREL: A Visible Distributed Lisp,
Technical Report, KSL-86-14, Heuristic Program-
ming Project, Dept. of Computer Science, Stanford
Univ. Also in 1986. Proceedings of the Defense
Advanced Research Projects Agency Expert Systems
Workshop, 171-178. Arlington, Va.: Science Appli-
cations International Corp.

Delagi, B., and Saraiya, N. 1988. ELINT in LAMINA:
Application of a Concurrent Object Language,
Technical Report, KSL-88-33, Heuristic Program-
ming Project, Dept. of Computer Science, Stanford
Univ.

Delagi, B.; Saraiya, N.; and Byrd, G. 1986. LAMINA:
CARE Applications Interface, Technical Report,
KSL-86-67, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ. Also in 1988.
Proceedings of the Third International Conference
on Supercomputing, 12-21. Boston, Mass.: Interna-
tional Supercomputing Institute.

Delagi, B.; Saraiya, N.; Byrd, G.; and Nishimura, S.
1988. CARE User’s Manual, Technical Report, KSL-
88-53, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ.

Delagi, B.; Saraiya, N.; Nishimura, S.; and Byrd, G.
1987. Instrumented Architectural Simulation, Tech-
nical Report, STAN-CS-87-1189, Heuristic Pro-
gramming Project, Dept. of Computer Science,
Stanford Univ. Also in 1988. Proceedings of the
Third International Conference on Supercomput-
ing, 8-11. Boston, Mass.: International Supercom-
puting Institute.

Delagi, B.; Saraiya, N.; Nishimura, S.; and Byrd, G.
1986. An Instrumented Architectural Simulation
System, Technical Report, KSL-86-36, Heuristic Pro-
gramming Project, Dept. of Computer Science,
Stanford Univ. Also in 1988. Artificial Intelligence
and Simulation: The Diversity of Application. San
Diego, Calif.: The Society for Computer Simulation
International. Also in 1986. Proceedings of the
Defense Advanced Research Projects Agency Expert
Systems Workshop, 106-118. Arlington, Va.: Sci-
ence Applications International Corp.

Delaney, J. 1986. Multi-System Report Integration
Using Blackboards, Technical Report, KSL-86-20,
Heuristic Programming Project, Dept. of Computer
Science, Stanford Univ. Also in 1986. Proceedings
of the Defense Advanced Research Projects Agency

Expert Systems Workshop, 179-184. Arlington, Va.:
Science Applications International Corp.

Hailperin, M. 1988. Load Balancing for Massively
Parallel Soft-Real-Time Systems, Technical Report,
KSL-88-62, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ.

Nakano, R., and Minami, M. 1987. Experiments
with a Knowledge-Based System on a Multiproces-
sor, Technical Report, KSL-87-61, Heuristic Pro-
gramming Project, Dept. of Computer Science,
Stanford Univ.

Nii, H. P. 1986. CAGE and POLIGON: Two Frame-
works for Blackboard-Based Concurrent Problem
Solving, Technical Report, KSL-86-41, Knowledge
Systems Laboratory, Dept. of Computer Science,
Stanford Univ. Also in 1986. Proceedings of the
Defense Advanced Research Projects Agency Expert
Systems Workshop, 142-14S5. Arlington, Va.: Sci-
ence Applications International Corp.

Nii, H. P, and Rice, J. 1989. Signal Understanding
and Problem Solving: A Concurrent Approach to
Soft-Real-Time Systems, Technical Report, KSL-89-
73, Heuristic Programming Project, Dept. of Com-
puter Science, Stanford Univ. Also in 1989.
Proceedings of the Twenty-Third Asilomar Confer-
ence on Signals, Systems, and Computers. San Jose,
Calif.: Maple. Forthcoming.

Nii, H. P; Aiello, N.; and Rice, J. 1988a. CAGE and
Poligon: Two Frameworks for Concurrent Problem
Solving, Technical Report, KSL-88-02, Heuristic Pro-
gramming Project, Dept. of Computer Science,
Stanford Univ.

Nii, H. P,; Aiello, N.; and Rice, J. 1988b. Experi-
ments on Cage and Poligon: Measuring the Perfor-
mance of Parallel Blackboard Systems, Technical
Report, KSL-88-66, Heuristic Programming Project,
Dept. of Computer Science, Stanford Univ. Also in
1989. Readings in Distributed Artificial Intelligence,
Volume 2, eds. M. N. Huhns and L. Gasser, San
Mateo, Calif.: Morgan Kaufmann. Forthcoming.

Noble, A. 1988. ELMA Programmer’s Guide, Techni-
cal Report, KSL-88-41, Heuristic Programming Pro-
ject, Dept. of Computer Science, Stanford Univ.

Noble, A., and Rogers, E. 1988. AIRTRAC Path Asso-
ciation: Development of a Knowledge-Based System
for a Multiprocessor, Technical Report, KSL-88-41,
Heuristic Programming Project, Dept. of Computer
Science, Stanford Univ.

Okuno, H., and Gupta, A. 1987. Parallel Execution
of OPSS in QLISP, Technical Report, KSL-87-43,
Heuristic Programming Project, Dept. of Computer
Science, Stanford Univ.

Okuno, H.; Osato, N.; and Takeuchi, I. 1987. Firmware
Approach to Fast Lisp Interpreter, Technical Report,
STAN-CS-87-1184, Heuristic Programming Project,
Dept. of Computer Science, Stanford Univ.

Rice, J. 1989. The Design and Implementation of
Poligon, a High-Performance, Concurrent Black-
board System Shell, Technical Report, KSL-89-37,
Heuristic Programming Project, Dept. of Computer
Science, Stanford Univ.

Rice, J. 1988a. The Advanced Architectures Project,
Technical Report, KSL-88-71, Heuristic Programming

Project, Dept. of Computer Science, Stanford Univ.

Rice, J. 1988b. The Elint Application on Poligon:
The Architecture and Performance of a Concurrent
Blackboard System, Technical Report, KSL-88-69,
Heuristic Programming Project, Dept. of Computer
Science, Stanford Univ. Also in 1989. Proceedings of
the Eleventh International Joint Conference on
Artificial Intelligence, 212-217. Menlo Park, Calif.:
International Joint Conferences on Artificial Intelli-
gence, Inc..

Rice, J. 1988c. Problems with Problem Solving in
Parallel: The Poligon System, Technical Report, KSL-
88-04, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ. Also in 1988.
Proceedings of the Third International Conference
on Supercomputing, 25-34. Boston, Mass.: Interna-
tional Supercomputing Institute. Also in 1989. Arti-
ficial Intelligence, Simulation, and Modelling, ed.
Lawrence Widman, 231-253. New York: Wiley.

Rice, J. 1986a. Poligon, A System for Parallel Prob-
lem Solving, Technical Report, KSL-86-19, Heuristic
Programming Project, Dept. of Computer Science,
Stanford Univ. Also in 1986. Proceedings of the
Defense Advanced Research Projects Agency Expert
Systems Workshop, 152-159. Arlington, Va.: Sci-
ence Applications International Corp.

Rice, J. 1986b. The Poligon User’s Manual, Techni-
cal Report, KSL-86-10, Heuristic Programming Pro-
ject, Dept. of Computer Science, Stanford Univ.

Rice, J., and Aiello, N. 1989. See How They Run:
The Architecture and Performance of Two Concur-
rent Blackboard Systems, Technical Report, KSL-89-
08, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ. Also in 1989.
Blackboard Architectures and Applications: Current
Trends, eds. V. Jagannathan and R. Dodhiawala,
153-178. San Diego, Calif.: Academic.

Saraiya, N. 1989. Design and Performance Evalua-
tion of a Parallel Report Integration System, Techni-
cal Report, KSL-89-16, Heuristic Programming
Project, Dept. of Computer Science, Stanford Univ.

Saraiya, N. 1988. A Shared-Memory Lisp Package for
CARE, Technical Report, KSL-88-85, Heuristic Pro-
gramming Project, Dept. of Computer Science,
Stanford Univ.

Saraiya, N. 1986. AIDE: A Distributed Environment
for Design and Simulation, Technical Report, KSL-
86-56, Heuristic Programming Project, Dept. of
Computer Science, Stanford Univ. Also in 1986.
Proceedings of the Defense Advanced Research Pro-
jects Agency Expert Systems Workshop, 185-190.
Arlington, Va.: Science Applications International
Corp.

Schoen, E. 1986. The CAOS System, Technical
Report, KSL-86-22, Heuristic Programming Project,
Dept. of Computer Science, Stanford Univ. Also in
1986. Proceedings of the Defense Advanced
Research Projects Agency Expert Systems Work-
shop, 160-170. Arlington, Va.: Science Applications
International Corp.

Stanford University. 1988. Expert Systems on Multi-
processor Architectures: Phase One Final Report,
RADC-TR-88-187, Rome Air Development Center.

Other Publications

Abelson, H., and Sussman, G. 1983. Structure and
Interpretation of Computer Programs. Cambridge,
Mass.: MIT Press.

Engelmore, R., and Morgan, T. 1988. Blackboard Sys-
tems. Reading, Mass.: Addison-Wesley.

Gabriel, R., and McCarthy,]J. 1984. Queue-Based
Multi-processing Lisp. In Proceedings of the ACM
Symposium on Lisp and Functional Programming,
25-44. New York: ACM Press.

Gupta, A. 1986. Parallelism in Production Systems.
Ph.D diss., Dept. of Computer Science, Carnegie-
Mellon Univ.

Nii, H. P.,, and Aiello, N. 1979. AGE: A Knowledge-
Based Program for Building Knowledge-Based Pro-
grams, Technical Report, HPP-79-4, Heuristic
Programming Project, Dept. of Computer Science,
Stanford Univ. Also in 1979. Proceedings of the
Sixth International Joint Conference on Artificial
Intelligence, 645-655. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence,
Inc.

Nii, H. P,; Feigenbaum, E.; Anton, J.; and Rockmore,
A. 1982. Signal-to-Symbol Transformation:
HASP/SIAP Case Study, Technical Report, HPP-82-6,
Heuristic Programming Project, Dept. of Computer
Science, Stanford Univ. Also in AI Magazine 3(2):
23-35.

Selig, L. 1987. An Expert System Using Numerical
Simulation and Optimization to Find Particle Beam
Line Errors, Technical Report, KSL-87-36, Heuristic
Programming Project, Dept. of Computer Science,
Stanford Univ.

Williams, M.; Brown, H.; and Barnes, T. 1984.
TRICERO Design Description, ESL Inc.

Acknowledgments

The author gratefully acknowledges the support of
the following funding agencies for this project: The
Defense Advanced Research Projects Agency/Rome
Air Development Center under contract F30602-85-
C-0012, the National Aeronautics and Space
Administration under contract NCC 2-220, and
Boeing Computer Services under contract W-266875.

James Rice has been a researcher
in Stanford University’s Knowl-
edge Systems Laboratory since
1985, concentrating on concur-
rent problem-solving models, par-
ticularly the Poligon system. He
received his B.Sc. in Cybernetics at
the University of Reading in Eng-
land in 1981. He worked for four
years at SPL Int., a software house, on expert system
tools and the United Kingdom'’s first blackboard
system, MXA.

Articles

FALL 1989 39

