
Should the back be
tapered or squared?
Should the ears be
covered? Should the
top be just trimmed
or shortened? Most
barbers only ask a
few questions. Often,
they assume one of
a few standard
models of the cus-
tomer’s hairstyle
and pursue this
model until they are
given directions to
the contrary. Given
no direction, they
still give a haircut.
Even with directions,
they must make
numerous, perhaps
hundreds, of inter-
mediate decisions
that drive the hair-
cut toward a model
in their minds. Also,
far too often, they

inject a personal bias or interpretation, and
although they are expert hairstylists, this bias
results in a surprise—a haircut that the cus-
tomer did not ask for or expect.

Scene 2: A student signs up for a Master’s
degree program and asks his adviser (1) to
release the prerequisite course requirements
because he had similar courses in the under-
graduate curriculum, (2) to waive several
required courses because of on-the-job experi-
ence in these fields, and (3) to permit several
electives not normally taken by students in
this curriculum. By asking a series of standard

It is evident that
when the instances
on one side of a
question are more
likely to be remem-
bered and recorded
than those on the
other, especially if
there be any strong
motive to preserve
the memory of the
first, but not of the
latter, these last are
likely to be over-
looked, and escape
the observations 
of the mass of
mankind.
—John Stuart Mill

The fundamental
premise being pur-
sued in this article
concerns the need
for a strong model
of a domain-trained
knowledge engineer
(that is, a knowl-
edge worker) to be embedded in a question-
asking system if this system is to be effective
in having a dialog with and extracting usable
knowledge from the user. The user is defined
here as a nonprogramming domain expert.
An expert, in turn, is an individual with some
know-how in a given domain. Consider the
following:

Scene 1: A person walks into a barbershop
and asks for a haircut. What sort of haircut
does the barber give? The style depends, in
part, on the sex, age, and desires of the cus-
tomer. How long should the sideburns be?

The funda-
mental

premise . . .
concerns the

need for a
strong model
of a domain-

trained
knowledge

engineer 
. . . to be 

embedded in 
a question-

asking 
system . . .
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Critiquing Human Judgment
Using Knowledge- 

Acquisition Systems1

Barry G. Silverman

Automated knowledge-acquisition systems have
focused on embedding a cognitive model of a key
knowledge worker in their software that allows
the system to acquire a knowledge base by inter-
viewing domain experts just as the knowledge
worker would. Two sets of research questions
arise: (1) What theories, strategies, and
approaches will let the modeling process be facil-
itated; accelerated; and, possibly, automated? If
automated knowledge-acquisition systems reduce
the bottleneck associated with acquiring knowl-
edge bases, how can the bottleneck of building
the automated knowledge-acquisition system
itself be broken? (2) If the automated knowledge-
acquisition system centers on having an effective
cognitive model of the key knowledge worker(s),
to what extent does this model account for and
attempt to influence human bias in knowledge
base rule generation? That is, humans are
known to be subject to errors and cognitive
biases in their judgment processes. How can an
automated system critique and influence such
biases in a positive fashion, what common pat-
terns exist across applications, and can models
of influencing behavior be described and stan-
dardized? This article answers these research
questions by presenting several prototypical
scenes depicting bias and debiasing strategies. 
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questions, the adviser discovers the under-
graduate courses aren’t similar to the prereq-
uisites. Because she has heard the on-the-job
experience line before, the adviser gives a
standard set of answers and explanations that
convince the student he needs these courses.
Finally, the adviser recalls that the electives in
question aren’t normally allowed because
they are easy courses, such as Basket Weaving
201, and she tactfully explains this fact to the
chagrin of the advisee. After some prompting
for reselections by the student, a plan of
courses several semesters long is eventually
constructed that serves as the rules the stu-
dent should follow when trying to complete
his degree.

These two scenes illustrate some of the situ-
ations in which models of tasks and work are
used by individuals to aid their information
processing and guide their decision-making
and problem-solving activities. Knowing how
to elicit these models and build them into a
normative judgment sequence is vital to the
effectiveness of the system. As a step in this
direction, this article presents (1) a human
judgment theory that includes a generic
model of the judgment processes (elicitation,
bias identification, and corrective actions) of
the knowledge-acquisition task (see Adapt the
Theory and General Model of Human Bias
Reduction) and that suggests that experts
should be treated by the machine as fallible
and (2) a methodology, called cognitive work
analysis (CWA), for adapting the generic
model knowledge to the specifics of an appli-
cation (see Cognitive Work Analysis: Collect

the Domain Description and Cognitive Work
Analysis: Build the Model).

Cognitive or qualitative models of work
tasks are only as good as the user of the
model. In the barbershop case, the barber
does not have a strong enough model of how
to better serve the customer, and the barber is
portrayed as having the tendency to commit
two human biases: the availability bias, in
which readily available models of good hair-
cuts are applied despite customer direction,
and the representativeness bias, in which all
customers are viewed as similar and represen-
tative of the generic customer. In the student
advising case, unlike the barber who injected
biases when using the models, the adviser
used additional models to debias the student’s
program plan. The adviser used a graph of
models organized under a supramodel to
guide the student into an acceptable plan
with no surprises or flaws. Using graphs of
cognitive models in such a critiquing sequence
is introduced in the next two sections.

The goal of model-based reasoning, as used
here, must be kept in mind because it is easy
to forget while you concentrate on the indi-
vidual cognitive-modeling and -critiquing
topics. This goal is to use model-directed
question asking to elicit valid knowledge
from humans for knowledge bases. The
output of a cognitive model or set of models
is a knowledge base that the machine can use
to problem solve with. Just as the student in
scene 2 wound up with a plan that he could
use to guide his actions in the future, so, too,
should the end result of running a cognitive
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      Advisor)

Knowledge Base
  for Problem
   Solving In
  The Domain

    Knowledge Based
Expert System and/or
    Expert Support
System (e.g., Student's
      program plan)

Domain Experts
and Non-Experts
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Problems that
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Users:
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Figure 1.  Inputs, Outputs, and Steps in the Cognitive Modeling Process for Knowledge Base Invention.



model lead to collecting from the human a
set of rules that can be chained on by a
knowledge-based expert system. This area is
discussed in Cognitive Work Analysis: Evalu-
ate the Model.

In short, as shown in figure 1, CWA is used
to model the knowledge-acquisition and -cri-
tiquing work that domain-trained knowledge
engineers do when collecting a knowledge
base for a new domain. The term knowledge
engineers, or knowledge workers, is used liber-
ally here to imply any individual who engi-
neers or constructs knowledge bases for
others. Thus, the adviser is a knowledge engi-
neer for the student, as the barber is for the
customer. The input to CWA is a new domain
and a set of knowledge workers in this
domain, and CWA’s output is a functioning
cognitive model.

Running the resulting model to interview
experts in this domain should lead to auto-
mated knowledge base construction on the
fly. Here, again, liberal use of the term expert
is useful. The student, for example, is
assumed to be an expert on what he needs for
his career goals. So, too, is the customer in
the barbershop an expert on his needs. These
experts are the users of the knowledge-acqui-
sition system or model. The input to the
model is provided in dialog with the human
expert, and the model’s output should be a
valid knowledge base for use in problem solv-
ing (for example, in registering for courses).
By using these models, the machine is, thus,
adaptive in the sense that it can teach itself
new rules and plans.

A research frontier is the embedding in the
knowledge-acquisition system of a library of
critiquing strategies that it can use for miti-
gating different types of expert bias and user
error that it might encounter. This is the sub-
ject of this research and is indicated by the
dashed lines in figure 1.

Cognitive Work Analysis:
Collect the Domain Description
The goal of CWA is to generate a cognitive
model of a domain in terms of several specific
categories of data structures and representa-
tional techniques. There are three major steps
to CWA: (1) describing the domain, (2) build-
ing the appropriate model components, and
(3) evaluating the final model.

Beginning with the first of these major
steps, one can expect some sequence and
combination of the following activities to be
necessary: defining the boundaries and goals
of the domain; identifying and profiling the

work tasks of a representative sample of the
knowledge workers or engineers who work
within these boundaries; interviewing these
workers to determine the tasks and work
packages that they undertake as well as the
conditions under which they work; and veri-
fying the purposes, conditions, tasks, and
output of the workers. Each of these activities
is discussed more fully.

Define the Domain Boundaries

Simple and seemingly small shifts in the
domain boundary can cause no end of diffi-
culty if not carefully elaborated. A furnace is a
dumb, uncontrolled machine unless its ther-
mostat is included, in which case it becomes
an elegant feedback-driven system. The
barber in scene 1 might have defined his job
boundaries rather narrowly and when queried
might respond, “I’m just doing my job.” We
cannot argue with success, if indeed the
barber stays in business. It might be that
people simply accept the barber’s self-defined
job boundaries with a shrug and a thought to
the fact that it must be difficult to have to
earn a living this way. However, if the adviser
had let the student in scene 2 devise a plan
that would have caused him to fail to gradu-
ate after substantial monetary investment,
the student might have grounds to litigate.
The stakes are higher in this situation, and
the student as a customer would not simply
shrug his shoulders and forget about his
adviser’s narrow definition of job boundaries.

The point being made here is described
quite eloquently (however, from a different
perspective) in the largely overlooked litera-
ture on human judgment: Slovic (1972), Hog-
arth (1987), Kahneman and Tversky (1973),
Nisbett and Ross (1980), and Silverman (1983,
1990). These references explore the paradox
that is associated with the difference between
the way humans form everyday judgments
and the way normatively appropriate, scien-
tifically sound strategies would be employed.
This paradox is represented in scenes 1 and 2
as the difference between the scientist (the
adviser) and the lay scientist or everyday
problem solver (the barber).

This is not to say that the scientist’s mind is
always going to form more correct judgments
than the lay person’s. The professional scien-
tist, who is trained to know better, occasional-
ly makes inferential errors and misadvises her
students, and the barber’s simple strategies
more often than not work out for the best.
Examples of professionals injecting bias in
their work is documented in Silverman (1985)
and Silverman and Tsolakis (1985). The point
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TABLE 1 - COMMON BIASES IN HUMAN JUDGMENT

BIAS                                                                                                            COMMENTS                                                

Adjustment & Anchoring Using of heuristics which may reduce the mental efforts required to arrive at a solution at 
the cost of using the full amount of information 

Availability Using of only easily available information and ignoring not easily available sources of 
significant information

Base Rate Ignoring abstract information at the expense of concrete information                                      

Conservatism Failing to revise estimates as much as they should be revised                                               

Data Preservation Context Being more influenced by summarized data rather than the same data presented in detail    

Data Solution Reaching premature conclusions on the basis of too small a sample of information

'Desire for Self-Fulfilling Prophecies Another form of selective perception                                                                                        

Ease of Recall Being affected by data which can easily be recalled or assessed                                           

Expectations Attaching higher validity to information which confirms previously held beliefs &
expectations                       

Fact-Value Confusion Regarding and presenting strongly held values as facts                                                          

Fundamental Attribution Associating success with personal inherent ability and failure with poor luck                          
Error (Success/Failure Error)                                                                                                                                                                 

Gamblers Fallacy Falsely assuming that unexpected occurrence of a "run" of some events enhances the
probability of occurrence of an event that has not occurred                                                     

Habit Reutilizing the same procedure                                                                                                

Hindsight Failing to think objectively upon receipt of information that an outcome has occurred &
being told to ignore this information                                                                                         

Illusion of Control Assuming a feeling of control over events that is not reasonable                                            

Illusion of Correlation Mistakenly believing that true events covary when they do not                                               

Law of Small Numbers Expressing greater confidence in predictions based on small samples of data with
nondisconfirming evidence than in much larger samples with minor disconfirming 
evidence                                                                       

Order Effects Placing undue importance on the first and last pieces of information provided                       

Overconfidence Ascribing more credibility to data than is warranted                                                                 

Redundancy Increasing confidence in predictions due to greater redundancy in the data                           

Reference Effect Perceiving and evaluating stimuli in accordance with one's present and past experimental
level for the stimuli 

Regression Effects Using the largest observed values of observations without regressing toward the mean

'Representativeness As sample size is increased, interpreting the results of small samples to be representative
of the larger population                                                                                                             

Selective Perceptions Seeking only information that confirms one's views and values                                              

Spurious Cues Accepting as commonly occurring, cues that appear only by occurrence of a low
probability event                  

Wishful Thinking Choosing an alternative that one would like to have associated with a desirable outcome     

Source:  Silverman (1983)

Table 1.  Common Biases in Human Judgment.



is that the definition of a job’s boundaries
cannot be entirely entrusted to hearsay and
the say-so of the knowledge worker-engineer.
Verification with the consumers of the knowl-
edge processing service is warranted. There is
also no intent to cast aspersions on the bar-
bering profession; this is an isolated example
used only for the sake of argument.

Knowledge engineering practice through-

out much of the first decade of knowledge-
based systems ran counter to what is present-
ed here. The boundaries were often drawn so
that the expert’s say-so was assumed correct,
as is so eloquently pointed out in Woods
(1986). Much of the automated knowledge-
acquisition literature and technique of the
last half of the 1980s was also built on this
presumption (Boose and Gaines 1987), and
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Figure 2.  Inferential Thought in Human Judgment–A Cognitive Work Analysis.



Thus, the barber easily recalls only a few stan-
dard haircuts, and all customers are given one
of these. Numerous other biases that might
pertain to this barber but that aren’t exam-
ined here are summarized in table 1. More is
known about human biases than is currently
known about how to debias and counter such
tendencies. What systematic debiasing tech-
niques should be used? Will knowledge-
acquisition–question-asking systems need to
have a library of many such routines? How
will they be deployed or triggered? These and
other questions have yet to be fully answered.

CWA of the Nisbett and Ross (1980)
portrayal of human judgment reveals the six
tasks are subject to six sources of bias related
to availability and representativeness, as
depicted in figure 2. The tree in figure 2a
reveals a work breakdown structure (WBS) of
normative scientific thought, and figure 2b
suggests that the characteristic form of each
leaf node must include a subgraph to correct
the task process. Two alternative debiasing
subgraphs are possible: (1) preventative correc-
tion, in which the subject is influenced before
doing, for example, by helping him remem-
ber more analogs or standard (default) hair-
cuts, or (2) post facto correction, in which the
subject is checked using a debiaser sequence,
for example, by asking whether this customer
is really similar to all the others and having
the barber rethink his categorization. These
two options for correction are portrayed as
subgraph templates, as shown in figure 2c.
These options would apply during CWA to
either of the knowledge workers in scenes 1
and 2, although debiasing would be needed
more frequently for the lay person. The figure
2c subgraphs would apply to the experts of
each domain as well.

Interview Knowledge Workers

The point of the preceding two subsections is
that one must take care when trying to ana-
lyze a domain to get the sense of the bound-
aries and overall tasks not just from the
interviewers but also from normatively cor-
rect strategies and a general sense of what
should be done in this domain. For example,
the influencer and debiaser sequences are
universals that must be systematically applied
to virtually all tasks that humans undertake.
Normatively correct strategies must serve as a
metasense to be invoked when interviewing
either (1) the knowledge workers or engineers
to obtain their cognitive model or (2) when
running this model, the experts to acquire
knowledge bases (either can be biased subjects).

A number of questions have been raised

pushing this boundary back has been, and
continues to be, a major research undertak-
ing, as shown in the following discussion.
How should knowledge-acquisition systems
be designed in the presence of susceptible
experts? How can subjects’ potential biases be
detected and mitigated by the machine? If
little has been done about this problem to
date, what can be learned from trying differ-
ent ways of achieving this goal?

Identify Work Tasks

Not only must the boundaries be carefully
elaborated but also the major categories of
the work. For example, Nisbett and Ross
(1980) describe the major inferential steps in
forming judgments by either the scientist or
the lay scientist as (1) describe individual
objects or events (datum points), (2) charac-
terize the sample of data, (3) observe the
covariation between events, (4) form a theory
capable of causally explaining the covaria-
tion, (5) predict future events (compare
observed covariation with postulated causal
explanation), and (6) test the theory (criticize
it to see if it can be disconfirmed).

One can envision the adviser in scene 2
having applied such steps to her students
until she began to discover all the commonly
recurring errors in program plans that would
lead to a failure to graduate.2 In fact, these six
steps are fairly universal to problem solving
and can be equated to the discovery mode of
thought used in machine discovery systems.
Once the common and recurring student
problems were discovered, one can also envi-
sion the adviser storing them in associative,
episodic memory and eventually abstracting
them into associative semantic memory such
that they become automatic reactions to stu-
dent plans.

The barber in scene 1, however, represents
a prototypical lay scientist who injects bias
into each of the six tasks. Kahneman and
Tversky (1973) suggest two basic and univer-
sal sources of such bias arise from (1) knowl-
edge structure, or a representativeness bias in
which the human reduces many inferential
tasks to simple similarity judgments (for
example, an object, such as a customer, is
assigned to one category rather than another
based on overly simplistic feature similarity)
and (2) judgment heuristics, or availability bias
in which the human forms frequency, proba-
bility, or even causality assessments (for
example, an object or event is judged as fre-
quent, probable, or causally efficacious to the
extent that it is readily available in memory
despite the inadequacies of human memory).
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about exactly how to do it. That is, how can a
machine question-asking system prevent,
detect, isolate, and compensate for human
biases? Further, can this system become adap-
tive and learn on its own how to criticize
answers in a fashion that exceeds what it was
originally programmed to do? Given the
status of the research to date, results concern-
ing the former question are tentatively
addressed and presented here. The answers to
the second question require further research,
although the lessons learned in the research
to date can serve as a point of departure for
those interested in pursuing the matter. What
follows is a summary of how existing knowl-
edge-acquisition strategies have been com-
bined, integrated, and extended in an attempt
to address the first question. More detailed
implementation issues and lessons learned
from actual applications to date are explored
in Cognitive Work Analysis: Build the Model.

“You know what you don’t know but you
don’t know what you know” is an easy state-
ment to prove. What’s the phone number of
the president of the United States? You won’t
even waste memory search effort because you
know you never knew it and can quickly
answer to that effect. However, the question
“How many degrees do you rotate the steer-
ing wheel every night when you turn your car
into your driveway?” takes longer to answer
but is equally unanswerable. It takes longer
because you think you know the answer, and
you attempt to visualize yourself doing the
activity. We do not store information of this
type (that is, degrees of rotation) in memory,
nor are we able to consciously visualize at
such a fine degree of detail, even though we
know how to do the task at some motor-sen-
sory level. Three points can be inferred from
this visualization exercise, as discussed in the
next three subsections.

Direct Line of Querying versus Case-
Induction Strategies. First is the well-
established principle that much of a human’s
expertise is situationally triggered (for exam-
ple, at the edge of the driveway, the driver
knows what to do) and that knowledge
cannot be easily retrieved by the expert in
response to direct questioning, such as “What
is the trait?” “How many degrees does it
rotate?” or “What is the solution?” Although
an astute expert can often give direct answers
to certain kinds of questions, an alternative
strategy is also needed when the expert draws
a blank to this line of querying. The obvious
alternative is to place the expert in the situa-
tion; that is, confront the expert with an
actual case (problem) and elicit the traits,

classes, mappings, and solution items that the
expert pays attention to in these instances. By
looping through a number of these cases, the
expert’s knowledge is eventually elicited. This
strategy is a form of CWA widely known as
case induction.

Enhancing the Domain Model Specificity
Strategy. A second and related point is that
perhaps the domain hadn’t been “psyched
out” well enough to ask the correct question.
For CWA to work, questions must be posed at
the level at which subjects can answer them,
that is, at the knowledge level. Thus, the
appropriate question to ask while you are sit-
ting down reading this text is “In which
direction and about how many rotations do
you think you move your wheel as you turn
into your driveway?” A second, follow-up
question could be “Take a tape measure into
your car, and attempt to turn into your drive-
way. How many degrees must you turn the
wheel for this maneuver?”

Strategies for Human Bias Reduction.
The final point inferable from the driver visu-
alization example is the human tendency
toward self-deception. Although this example
was limited to the reader deceiving himself
only temporarily about what he thought he
knew, there are numerous documented exam-
ples of the natural tendency of normally pro-
ficient individuals toward judgment and
reporting biases. However, as Slovic (1972)
points out, “Simply warning a judge about a
bias may prove ineffective. Like perceptual
illusions, many biases do not disappear upon
being identified” (p.798). The acquisition
system must take stronger action to debias
human or expert judgment.  

A number of stronger strategies are possible,
just a few of which are tested in the cases cov-
ered in this article. The ultimate objective is
to have a standard set of strategies available
in the shell’s library that will be triggered by
the various cognitive biases and user errors
that arise. What this library should contain is
an open research question. The current
approach to developing this library is to
adopt a set of strategies, try them out, and
refine them as results suggest. The following
five strategies are a few of those currently
being explored:

First is the use of default logic to provide
anchors from which adjustment will be more
appropriate and cue the subject about the
types of answers desired to a question. Show-
ing defaults is an influencer strategy that
extends to the reuse by others of previously
successful answers to the same question posed
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the theory takes the form of an algorithm
because in this form, it is most directly
testable (the algorithm is implemented as a
hierarchical graph of rules rather than as a
specifically programmed source code ele-
ment). The theory cast as a general model is

H1: For a given problem-solving situation,
human bias can be reduced by the following
sequence of steps:

1. Ask user to attempt a problem-solving sub-
task.

a. Show defaults, analogs, or both as 
anchors likely to influence successful
outcomes (strategy 1).

2. Check user’s answer for bias (epistemologi-
cal assessment).

3. If bias remains:

a.Tutor the user about the bias 
(strategy 3)

b. Retry step 1 at a more finely grained 
level of detail (strategy 2).

4. If unsure whether bias remains, then
attempt a path of action designed to iden-
tify inconsistencies and, thereby, trap the
user into confronting the bias (strategy 4):

a. Repeat steps 1 through 3, as needed, 
to remove the inconsistency.

5. If bias still remains, then attempt a debias-
ing step in which a (possibly) correct
answer is injected into the user’s work
space (strategy 5).

6. If all redundant strategies fail, place a
warning in the user’s knowledge base, or
load the subject’s task results into the rule
form of the knowledge base being
acquired.

The test of these elements of H1 is three-
fold: (1) test of expressive richness—an
attempt to express H1 in the language of the
Cope system is a test of the expressiveness of
this language (see the next three subsec-
tions)—(2) quantitative experimentation—real
results from actual subjects are collected and
statistically analyzed; a control and experi-
mental group is used (see Conduct Quantita-
tive Experimentation)—(3) qualitative
analysis—subjects’ qualitative assessments of
the value of the joint cognitive system are
collected and evaluated (see Collect Qualita-
tive Reactions).

Cognitive Work Analysis: 
Build the Model

To become effective, model building should
not be an arcane discipline but should be rel-

for developing similar knowledge bases.
These knowledge bases will improve recall
biases and can affect selective perceptions.

An alternative strategy (failing in the first)
involves specializing a sequence of increas-
ingly more detailed defaults, assisting the
subject in combining and abstracting these
defaults into a new response (influencer), and
then assuring the result is usable and measur-
able (debiaser). This approach can help ease
the availability, conservatism, data-preserva-
tion, and data-solution categories of biases.

If the first two strategies fail, the direct line
of querying might be tried but generally in a
tutorial fashion that would include showing
the subject principles, good and bad exam-
ples with critiques, and references that might
positively influence the subject’s input to try
and jar base rate, conservatism, and reference
effects (influencer).

Any of the first three strategies are to be
followed by a case-induction loop that elicits
the subject’s situationally triggered expertise
and that tests under what conditions earlier
answers actually hold up, traps for inconsis-
tencies, and identifies when answers need to
be altered (debiaser).

All answers under these four strategies are
potentially suspect and are subjected to a
credibility refinement, or critiquing sequence of
activities, that is beyond the scope of this dis-
cussion but that is fully addressed in Silver-
man (1990) as a formalism for debiaser
strategies.

After explaining how these strategies are
implemented in general, I present a case
study and evaluate the results of each strate-
gy. Hoping to reduce biases is different from
actually doing it. Measuring the impact of a
strategy is more difficult still. As is seen, most
of the results to date only provide gross-level
feedback on the value of the combined set of
strategies. Also, the implementation to date
of each strategy is somewhat limited. Advanc-
ing these (and other) strategy implementa-
tions and setting up controlled experiments
to evaluate their impact is a fertile avenue for
future research efforts.

Adapt the Theory and General Model
of Human Bias Reduction    

In general, to implement the strategies, it is
useful to construct a hypothesis for experi-
mental investigation. What follows is a
hypothesized theory cast as a general model
that must be tailored and experimentally
applied to each new domain. It is also only
one of many possible hypotheses of how to
combine and sequence the strategies. Finally,
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atively easy for any computer-literate individ-
ual to do. Models should consist of relatively
simple data structures that are easily edited,
modified, extended, and adapted. If the com-
puter is to begin to shoulder some of the
modeling activity and elicit and infer models
from modelers (rather than just act as a user-
friendly model editor), then it is also impor-
tant to pinpoint (1) model components that
are often reused from model to model, (2)
types of influencer-debiaser situations and
standard combinations of model components
appropriate to these types (for example, each
of the five strategies in the preceding section
is a commonly recurring combination), and
(3) sequences of questions and steps needed
to set up a recurring strategy or combination
with a model.

In what follows, experiences are summa-
rized, and lessons learned are extracted from
the application of a user-friendly modeling
system called Cope, available on 68020 or
286-chip machines (or higher) using the DOS
or Unix operating systems. Cope is a WBS
(task tree) and WBS node (frame) editor in
which models can be built by computer-liter-
ate individuals (for example, in a knowledge
support systems class, 12 graduate students
from engineering, management, and opera-
tions research programs learned to use it and
built models for a student-advising domain in
a seven-week interval in May-June 1989 on 12
PS 2/80 machines). Cope, a 50,000-line C lan-
guage program, includes an inference engine
that runs the models and acts as a question-
asking system guided by WBS that elicits
knowledge bases from users (for more details,
see Silverman [1990]). Although able to con-
struct knowledge bases, Cope does not cur-
rently construct or adapt the model it has
been given. By analyzing how these students
built their influencer and debiaser models, I
hope to pinpoint the lessons learned in terms
of the three points given in the opening para-
graph of this section.

To implement the various strategies and
build WBSs of question sets that use the
strategies to help the subject instantiate each
knowledge base element-—in short, the
model-theoretic approach—several steps must
be followed: 

First, construct WBS of the overall domain
and the strategies to be used in the domain.
Normally, this task tree is too large to think
about or develop all at once and needs to be
decomposed into logical clusters of WBS
nodes, that is, into subtrees that are logically
interconnected but that might be worked on
in isolation from each other. As sequences of
tasks, trees are processed left to right in a

depth-first fashion. It is possible to designate
a tree to be looped over, in which case it is
processed N times with variable binding per-
formed on each of the N cycles. Looping and
jumping are powerful features, and although
the modeler need only construct trees, the
result is a graph of tasks for the computer to
perform.

Second, for each subtree, fill in the slots of
each node. Nodes are work packages that indi-
cate the subtasks for the computer to per-
form. Subtasks at a node might include the
working memory input and output to be pro-
cessed; the database variables or blackboard
objects to instantiate; the information to be
sent to, and captured from, the user at the
screen; and other intermediate trees to jump
to. There is a library of precanned functions
that can be used to construct the eliciting,
influencing, and debiasing strategies by speci-
fying the sequence of functions required in a
given node (node function list).

Third, run the trees by invoking the infer-
ence engine, which backward chains across
the trees, performs the functions and subtasks
called for at each leaf node, propagates node
statuses (met, not met, unknown) up the tree,
and drives toward completion of all tasks and
strategies. Because any of a number of tasks
could occur at a node, the backward chainer
is suspended when it reaches a node, and it is
resumed when node processing is finished.

Fourth, transform the end result from the
database format into knowledge base rule
form, and attach to an expert system infer-
ence engine.

Fifth, edit the resulting rule base, as desired.
Steps 3, 4, and 5 are intended to be per-

formed by the user–domain expert rather
than the model builder; however, the modeler
will want to test all these steps to ensure they
work properly. The steps are organized as
shown in figure 3. To add more strategies and
build models, one just extends the trees. If
existing node functionality is insufficient,
new functions are added to the function
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As a software engineering tool, the language
allows WBSs to be decomposed into subtrees
or work package clusters that are more man-
ageable to engineer and maintain (this engi-
neering detail has less significance than the
knowledge communication purposes of the
language).

A work package cluster is essentially a goal
tree that the interpreter chains over and uses
to visit nodes from which it receives instruc-
tions about which functions to fire with what
input and output (that is, blackboard levels,
user queries and responses, and so on). As
shown in figure 3, each work package cluster,
or subtree, can include various combinations
of as many as six types of nodes: classifying
(labeled WP [work package] in figure 3), con-
dition, question, sentence, jump, and loop.  

Classifying nodes are nonleaf nodes that
group a series of subnodes into a logical unit
(that is, a rule) that can be tested as true or

library. For the time being, the transformer
only converts user answers into further WBSs
(decision trees) that can be run as an expert
system using the same inference engine and
edited using the same editor that the model-
ers use. To transform user answers to any
other expert system shell’s syntax simply
requires a new transformer and a template
file that indicates the data structures required
by this shell.

Construct Work Breakdown 
Trees and Subtrees

Work breakdown trees are effectively a pro-
gramming language. The purpose of this lan-
guage is to act as an electronic medium—a
communication tool—that lets modelers
transfer ideas, information, examples,
strategies, menus, and questions to the user
and that facilitates users providing responses.
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false, as directed in the node’s truth table
(precise details on how node logic works are
unnecessary for the purposes of this article).
For instance, assuming an and-valued subtree,
WP1 and its leaf nodes form a single rule for
which all the subnodes must be satisfied for
WP1 to be satisfied. If one of the leaf nodes is
unsatisfied (for example, loop), WP1 remains
unsatisfied and, hence, unfinished. Users can
choose to postpone answering a question and
continue to a subsequent work package or
question, but eventually, the questions with
unknown answers are reasked of the user; WP
nodes always attempt to reach a state of com-
pletion in their children.

Condition nodes are tests and checks of what
exists in the database or what the user has
answered thus far. Condition nodes often act
as gates for the inference engine to decide
whether it should execute the rest of a work
package. Question nodes send menus and ques-
tions to the screen for user querying, and sen-
tence nodes insert requisite information
(boilerplate information) or warnings into the
working memory database (and, ultimately,
into the users knowledge base once trans-

formed). Jump nodes cause the inference
engine to suspend the current tree from com-
pleting and process an intermediate tree
before completing the assessment of the cur-
rent tree. Loop nodes cause the current tree to
be cycled over N times based on the value of a
cycle variable. The following case study
should help clarify the process of tree design.  

Case Study: Student Plan Knowledge
Base Generation. For the student-advising
domain in scene 2, suppose every incoming
student is required to include three core
courses in his plan of study—Fundamentals
of Engineering Administration I (EAD211)
and II (EAD212) plus Management Decision
Making (EAD269). However, there is a ten-
dency for students to omit some of these
courses. The foreign students who don’t know
English well attempt to omit EAD211 and
EAD212 because these are management cours-
es that require students to read cases and
write essays, skills they haven’t mastered yet.
The American students, however, tend to
omit EAD269, which is a math-intensive
course with a reputation for being quite ardu-
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indicates that if the condition node is false,
then skip the rest of the work package, or do
all the rest of the work package. In this fash-
ion, the inference engine is, thus, told how to
chain through the nodes of the tree until a
jump node is reached (for example, after step
5 in figure 4), whereupon a path is designat-
ed, and processing of this intermediate tree is
performed to compute the truth value of the
calling (jump) node. More details of the ques-
tion, condition, sentence, and loop nodes are
offered in the ensuing subsection.

Fill in the Slots of Each Node

Tree nodes follow the same object-facet-
attribute (or frame-type check-slot) formalism
regardless of which of the six kinds they are.
Specifically, each node consists of the follow-
ing slots:

[Keyword: (name of the node)
Input BB Level: (what variables to retrieve 

from what database)
Phrase-List:

Format: Phase-1@Phrase-2@
Text: (string)
Principle: (notecard)
Example: (notecard)
Reference: (notecard)
Function List:

Format: Function-1@Function-2@ . . .
Output BB Level: (where to place function 

output)
Delete-List:

Format: Variable-1@Variable-2@ . . .
Add-List:  

Format: Variable-1(value)@Variable-
2(value)@ . . .

Jump Path: (message to chair to try another
subtree)

Status: (met, not met, or unknown)
Evaluation Order: Do, Jump, and/or Loop.  ]
Several of these slots are almost self-

explanatory, such as keyword; input and
output BB levels that indicate where to get
shared-variable values and where to make
additions or deletions based on user respons-
es or function results; and jump, which is a
path name and a request to the engine to
process another tree prior to completing this
one. Other slots are not as clear and require
further elaboration, particularly because they
will be used differently depending on the
kind of leaf node the modeler wants to add.

Showing all the slots for each of the objects
of figure 4 isn’t necessary for the reader to
capture the gist of the technique or the strate-
gies. Instead, the first three nodes from the
tree are elaborated.

ous. In both cases, the students often try to
substitute courses that are known to be easy. 

From a bias viewpoint, the students can be
thought of as exhibiting a number of the
biases listed in table 1, such as (1) selective
perception, creating plans from a limited view-
point even though it will cause them educa-
tional deficiencies in the long run; (2)
availability bias, suffering from a lack of
analogs on how to successfully cope with the
difficulties that the tough courses present; (3)
conservatism, trying to maximize chances of
short-term success (at the expense of their
long-term good); and (4) a variety of other
biases that are self-explanatory, such as wish-
ful thinking, illusion of control, and habit.

An influencer sequence might try to pre-
vent students from constructing course plans
that omitted 211, 212, or 269 by use of hint-
ing, direct query with explanations (situated
tutoring), debiasing, the showing of analo-
gous students’ successful plans, and plan-fail-
ure handling (other strategies might also be
possible, but only these are illustrated here).
The precise sequence might involve the fol-
lowing tailoring of the H1 algorithm: (1)
show required courses, and ask which of
these the student will include in his plan; (2)
check his answer for missing courses; (3)
explain the requirement for these courses
more fully; (4) ask him if he would like to
reanswer the question in step 1; (5) if 4 is
“no,” jump to a debias tree, but if 4 is “yes,”
loop back to 1 and repeat; (6) if all else has
failed, insert a warning sentence in the stu-
dent’s plan; and (7) load the plan knowledge
base with rules of the following form: If ‘core
course’ is planned for = true, THEN core
course requirement will be satisfied ELSE
‘warning’ (here, core course and warning are
instantiated with their actual values from the
results of the session).

This sequence of tasks is converted into a
work breakdown subtree, as illustrated in
figure 4. The WP# nodes are classifiers that
hold truth tables or trade-off matrixes, which
indicate the pathways the inference engine
should take through the tree. The rows of a
matrix correspond to the children of this
WP# node, and the columns are different
pathways through these children. A 1 means
the child node must be tested and must be
met or true, a 0 means the child must be not
met or false, and a 2 means the child’s truth
value no longer matters. Thus, the truth table
of WP0 indicates the three children are in an
and configuration, and all must be true to
complete this work breakdown subtree. The
table for WP1, however, is disjunctive and
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Student Curriculum Planning Case Study
Continuation. The first node elaborated in
figure 5 has an eval-order slot set to “do”
(rather than loop, chain, or jump), which sig-
nals the inference engine to process the func-
tion in the function-list. Ask-user-mult is
invoked from the function library, which
displays the phrase-list as a screen menu from
which multiple selections can be made. It also
displays text at the screen as a question to
accompany the menu. Finally, it takes the
user’s menu selections, stuffs them into a
temporary variable called answer-list that the
output.db and add-list slots tell it to bind to
the core-selected variable to be added to the

courses database.
The first step taken when a do is encoun-

tered in the eval-order, as it is again in the
second node of figure 5, is to instantiate any
variables enclosed in bars. Thus, |’Core-select-
ed| of the text slot is instantiated to a list of
the selections made in the preceding node.
The check-all function in the function-list
then compares this list with the list contained
in the phrase-list slot and sorts the items in
the phrase-list into found phrases and miss-
ing phrases. If missing phrases is empty, there
is no student bias, and the node succeeds;
otherwise, it’s set to “not met.”

Finally, node 3 of figure 5 is another ask-
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Keyword:  Ask-Core-Courses-Planned
Phrase-list:  EAD 211@ EAD 212@ EAD 269@
Text:  Which of the core courses listed in the menu do you plan to include in your
          program plan?
Function-list:  Ask-user-mult@
Output.db:  Courses.db
Add-list:  Core-Selected!Answer-list@
Eval-order:  Do@




Keyword:  Condition-of-Answer
Input-db:  Courses.db
Phrase-list:  EAD 211@ EAD 212@ EAD 269@
Text:  |'Core-Selected|
Function-list:  Check-all@
Output.db:  Courses.db
Add-list:  Student-Bias!Missing-phrases@
Eval-Order:  Do




Keyword:  Explain
Input-db:  Courses.db
Phrase-list:  Continue After Reading@
Text:  You have omitted the following required courses from your plan:
          |Student-Bias|.  You must select and read PRINCIPLE, EXAMPLE, and REFERENC
          and then select "Continue After Reading" when you are done. Otherwise you
          will be unable to proceed.
PRINCIPLE:  All students who wish to obtain the Masters degree must take the
                   core courses including EAD 211, 212, and 269 for 9 credit hours.
EXAMPLE:  A good course plan includes all three core courses as follows:
                EAD 211, EAD 212, EAD 269.  Any example other than this is a poor
                one and will require counseling with your advisor.
REFERENCE:  Engineering School Bulletin, p. 286

Figure 5. Detail of Slot Values for Three Illustrative Influencer Nodes of the 
Curriculum Collaboration Work Breakdown Tree.
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																				a) Influencing via Hinting and Querying


Which of the core courses listed in the menu do you plan to take?
     1.  EAD 211
     2.  EAD 212
     3.  EAD 269
>3
Do you wish to select another (y/n)?>n


																				b) Situation Sensitive Explaining


You have omitted the following required courses from your plan:  EAD 211.
You must and read PRINCIPLE, EXAMPLE, and REFERENCE and then select
"Continue After Reading" when you are done. Otherwise you will be unable to proceed.
 
          Continue After Reading
          PRINCIPLE
          EXAMPLE
          REFERENCE


PRINCIPLE:  All students who wish to obtain the Masters degree must take
	the core courses including EAD 211, 212, and 269 for 9 credit hours.
EXAMPLE:  A good course plan includes all three core courses as follows:  EAD 211,
EAD 212, EAD 269.  Any example other than this will require counselling with your adviso
REFERENCE:  Engineering School Bulletin, p. 286


Which of the core courses listed in the menu do you plan to take?


     1.  EAD 211
     2.  EAD 212
     3.  EAD 269


																		c) Debiasing


You have omitted 211 and 212 from your program plan despite earlier instructions and
warnings. Since your nationality is foreign and your EFL scores are low, it seems you
might be concerned about verbal obstacles. Please select one of the following to
inspect plans for taking English prep in tandem with engineering electives and for
postponing EAD 211 & 212 until late in your program:
		 1. Inspect a default plan for your situation
	  2. Examine analogous students' plans
   3. Obtain further background

Figure 6.  Dialog Listing Resulting from the Trees That Elicit a Plan.



user node that reveals a few more aspects of
the ask-user functionality. In particular, the
ask-user function also displays a menu of
three background notecards at the screen:
principle, example, and reference. These note-
cards can be filled with information intended
to influence the user, such as school policy
regarding core courses, and the user can be
prompted to read these carefully before
making his final decision, as is done in node 3.

Run the Model and Related Steps
Running the models just created leads to the
screen dialogs shown in figure 6a (Note:
There is a windows package in Cope that pro-
duces the text of the dialog in a better human
interface, but because of space restrictions, a
simple listing of the dialog is printed instead).
This dialog listing only collects a small part of
a single rule for the domain: Earlier trees col-
lect background on the student (for example,
foreign versus American, English as a foreign
language scores, math aptitudes), and latter
trees collect other rules. Specifically, the
dialog of figure 6a is rather positive and pre-
ventative in character: It acts before the stu-
dent has a chance to firm up his bias. That is,
it first gives a strong hint that “you should
take the core courses,” although it allows lati-
tude at this point because there might be
legitimate reasons for not doing so. There are
numerous follow-up dialogs possible for fur-
ther influencing his answer and determining
why the student omitted EAD269 (for exam-
ple, further hinting, isolating the reason and
touting the virtues of the core courses, show-
ing examples of good plans), only one of
which is shown in figure 6b. The entire rule
being worked on is eventually constructed
and transformed into the following format. In
this case, the student persisted with his bias
despite all influencing attempts.

IF: (1) Warning—EAD 211 not in plan
(2) Warning—EAD 212 not in plan
(3) EAD 269 is taken

THEN: Warning—Core course requirement
will not be satisfied.

At this point, the user (or student) might
want to further edit the rule. For example, the
student and adviser will want to discuss the
warning and make an adjustment. The editor
used in Cope to elicit user changes is graphic
and displays the rules as trees with the if con-
ditions as children nodes and the then clause
as the parent node. Graphic tree editors are
particularly useful for visualizing, and user-
friendly accessing of, large collections of
entries, as was established by the recent
semantic data model literature on intelligent
databases (Potter and Trueblood 1988). 

Before the user reaches this point, however,
the Cope tree designed in figure 4 calls a debi-
asing tree (step 5 of the algorithm of H0) that
will attempt one more strategy for critiquing
the user’s knowledge base. Specifically, a neg-
ative, corrective strategy is attempted (the
definition of debiasing). As shown in the
dialog in figure 6c, initially, this strategy
mildly berates the user, then sympathizes
with his perceived dilemma and indicates a
default plan for coping with the difficulties it
thinks the user’s poor judgment is attempting
to circumvent. Further dialog branches are
offered that can buttress the user’s confidence
in the concept behind the default plan, or
alternatively, the user can opt for immediate-
ly inspecting and tailoring the default. The
default and analog plans are offered to the
user, again not as requirements but as sugges-
tions because it is the user that ultimately
must tailor the final plan and schedule into a
workable one. That is, the default and analog
plans suggest how to take quantitative elec-
tives in tandem with English preparatory
courses and postpone the highly verbal cours-
es such as EAD211 and EAD212 until later in
the program; however, conflicts with actual
schedules and user desires must be resolved
by the user.

Cognitive Work Analysis: 
Evaluate the Model

The model of cognition in knowledge acquisi-
tion, as conducted thus far, is merely a
hypothesized model of cognition. To verify
that the model is more than just conjecture
requires empirical evidence of both the quan-
titative and qualitative varieties. Standard
procedures are used for these purposes in each
of the two ensuing subsections, respectively.

Conduct Quantitative Experimentation

The full hypothesis was delineated earlier (see
Adapt the Theory and General Model of
Human Bias Reduction), and only a summary
of it is tested here. Also, the test is, at best,
only a partial test of the full H1 because only
a subset of the full algorithm was implement-
ed in the student case study (although this
test included an essential subset). Finally, it is
easier to test for the absence of user improve-
ment. For all these reasons, the null hypothe-
sis to be tested is

H0: m2 - m1 = 0,
where m2 is the mean performance level of
the sample of measurements drawn from the
students who did use Cope to complete their
curriculum plans, and m1 is the mean for the
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Collect Qualitative Reactions

Although from a statistical viewpoint, it is
premature to definitively claim that the man-
machine collaboration approach is superior
to an unassisted approach, the qualitative
reactions of subjects both with and without
the machine collaborator are highly informa-
tive. Comments from unassisted experts
include “I wish that someone would explain
what they want,” “The decision makers don’t
know what they want,” “The rules keep
changing,” and “I just keep rewriting until
they see something they like.”

Comments from experts working with the
machine collaborator include “I wanted all
the information and assistance it gave me.”
“It helped me see some flaws in my plan,”
“Now I understand some of the reasons for
this document,” “It needs to do even more
influencing and debiasing than it did,” “The
user’s guide needs to be improved so more
can use it,” and “When are you going to
build more of these (collaborators) for the
other tasks I do?”

Early studies collected numerous qualita-
tive reactions at this level of detail. Currently,
ongoing studies include the collection of in-
depth protocol results both during and after
the subject’s use of Cope, with special atten-
tion devoted to isolating what cues the remain-
ing biased individuals missed and how the
theory, strategies, or implementation need to
be adjusted in light of this information.

Discussion of Results
This article theorized that a generic cognitive
model of how to criticize, influence, and
debias human judgment could be a suitable
machine collaborator for human experts
engaged in knowledge-acquisition endeavors.
The theory includes a hypothesized generic
model (H1) and a methodology (CWA) for
adapting this model to specific instances. Five
major strategies included in the theoretical
model were discussed (default logic, specializ-
ing-abstracting, tutorial, case induction, and
credibility refinement) and sorted into two
major clusters—influencer and debiaser—
with this article focusing primarily on the
former.

In this article, an attempt was made to see
how influencer strategies should be formed to
affect the selective perception, availability,
conservatism, wishful thinking, illusion of
control, and habit types of bias. Both general
theoretical hypotheses and domain-specific
hypotheses were presented and tested for the
proper sequence and content of the influ-
encer strategies they entailed. 

sample of students who did not use it. For the
sake of simplicity, performance level is mea-
sured as either unbiased (that is, no errors) or
biased and scored as 1 or 0, respectively. 

Because the experiment is to determine
whether the computer collaborator reduces
the bias, the alternative hypothesis is

Ha: m2 - m1 > 0 .
Assumptions of the experiment are that (1)

the difference in bias of the two populations
of samples is the result of individual differ-
ences, and the variability for the two popula-
tions of measurements is equal and (2)
because small samples are involved in both
sets of measurements, the student’s t test is
used in a one-tailed evaluation at the alpha =
.05 significance level. 

For the student case study, 11 students
were asked to prepare curriculum plans with-
out Cope, of which 4 were biased, for a value
of m1 = .64. Eight additional students were
given the same task but were given Cope as a
collaborator. This time, the results included
only a single bias, for a value of m2 = .875.
Applying the t test for 17 degrees of freedom
leads to a rejection of H0 if t > 1.74; however,
the computed t value is only 1.13. As a result,
the null hypothesis cannot be rejected for the
student example; similar proportions of stu-
dent plan improvements would have to be
observed over large sample sizes to reject H0
and accept H1.

In a separate case study involving docu-
ment authoring in the U.S. Army, measure-
ments were both easier to obtain and harder
to evaluate. They were easier to obtain in the
sense that no unbiased documents could be
found in the sample of about two dozen
examined; the mean for the control group
was zero (m1 = 0). Figuring out a simple mea-
surement scale for the experimental group,
however, remains problematic. In a workshop
in which 10 Army experts attempted the
authoring task with the assistance of a 1000-
node work breakdown tree, all results were
also biased (according to three knowledge
workers who served as judges). The judges’
subjective evaluation was that the users’
results were only slightly biased and that a
vast improvement could be observed.3 This
result implies a different scale, such as the
number of errors committed on the first
attempt, should be used. Unfortunately, no
such data were logged for the control sample:
There were only several knowledge workers’
statements (and numerous anecdotes) about
high error occurrences. Several measures are
now being worked out, however, and future
experiments are being planned that will help
to test the hypothesis.
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The domain-specific model of cognition of
the knowledge-acquisition task illustrated
here includes the use of critics that employ
hinting and direct query with explanation,
situated tutoring, default logic, and analogs.
Because the general model is unclear about
exactly how to organize these critiquing
strategies for a specific application, it is neces-
sary to experiment with different variations
of this model: Only a few of the overall set of
strategies, sequences, and other variables have
been attempted. The next four paragraphs
outline the goal of the variations attempted
thus far.

For direct query with explanation, it is
believed that specific cues, rather than gener-
ic, are more effective in prompting the user.
For example, instead of saying simply, “Do
you want to add another item (for example,
course, trait, measure) to the knowledge
base?” the system asks specific questions
about individual items about to be added,
such as about course EAD211 or the measure
for the receiver function in the communica-
tion subdiscipline.

For situated tutoring, in the literature on
human judgment, Tversky’s and Kahneman’s
(1973) point about the effects of a cognitive
anchor is widely demonstrated and accepted.
Once subjects have made a first pass at the
problem, the initial judgment might prove
remarkably resistant to further information,
alternative models of reasoning, and even
logical or evidential challenges. Thus, at the
time of the first pass, it is vital to prime the
user with principles, good and bad examples,
warnings, and so on, before the user’s answer
has time to gel. Priming the user in this
manner requires a situated tutor or, more pre-
cisely, a partial tutor capable of indicating
generally correct directions but incapable of
holding a store of all possible user errors and
corrective approaches.

For default reasoning, in general, the easier
it is to think of examples of a category or
proposition, the more likely the correct
answer will be forthcoming. Human memory
is often distorted by vividness, recency, repre-
sentativeness, and other criteria. The idea of
providing a wide array of default answers to
choose from is an attempt to mitigate
memory biases at the point of first decision
and provide good anchors that will bias users
in the correct direction. Also, it is useful to
suggest a default plan when users persist in
their bias, as shown in figure 6b.

For analogs, a list of successful analogs also
extends the user’s memory and increases the
number of anchors that can be chosen and
adjusted from. Successful past analogs have

the advantage over defaults in that they
worked before but the disadvantage in that
they bind the user to repeat the past. Defaults
plus analogs offer an interesting counterbal-
ance.

A test of the generic model is also, indirect-
ly, a test of the methodology by which this
model is adapted to a domain. Properly refin-
ing the CWA methodology is of particular
importance because it is concerned with pat-
terns that would allow the knowledge-acquisi-
tion–system (rather than the knowledge base)
modeling process to be better understood
and, ultimately, automated. The state of the
methodology was discussed in this article,
including the following steps:

1. Collect the domain description.
1.1. Define domain boundaries.
1.2. Identify work tasks.
1.3. Interview knowledge workers.
1.4. Adapt theory-model of human bias 

reduction.
2. Build the model.

2.1 Construct work breakdown trees.
2.2. Fill in the slots.
2.3. Run the model.
2.4. Transform the knowledge base.
2.5. Edit the results.

3. Evaluate the model.
3.1. Conduct quantitative experiments 

with experts.
3.2. Collect experts’ qualitative 

reactions.
3.3. Analyze the results.

Testing of both this methodology and the
general model was accomplished using a pair
of actual case studies in which average experts
constructed biased knowledge bases that a
knowledge worker had to manually criticize,
influence, and debias. This knowledge worker
was modeled; that is, the influencer strategies
were described using the methodology and
emulated using an adaptation of the model.
In both cases, only a portion of the resulting
strategy (model adaptation) was actually dis-
played in this article: This strategy involved a
direct line of querying followed by a reinforc-
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consistent with the literature on human judg-
ment, questions for future research must also
include the following: Is each strategy imple-
mented correctly, in the sense of maximizing
its impact on bias mitigation? What alterna-
tive ways of implementing each strategy
exist, and which ways fare better in con-
trolled experiments? How do the four strate-
gies interact? Is there an ordering and
combining sequence preferable to those sug-
gested here? Are there other important influ-
encer strategies? How many strategies should
be used in tandem? When do users get turned
off or information overloaded? Are user skill
levels and other individual differences impor-
tant variables and in what ways? Are the
intents of the various strategies being realized
in the way they are implemented and per-
ceived by various types of users? In short, the
progress made to date has helped to establish
a theoretical and computational beachhead,
but this work is literally only a beginning. 

The results presented here are only a begin-
ning from another direction as well. This
direction, as mentioned at the outset of this
section, concerns the automation of the cog-
nitive-modeling process itself. Clearly, a cer-
tain degree of automation has already been
achieved. For example, the function library
holds the capability for crafting the various
strategies, and the tree nodes and node slots
are elicited by the machine in either simple
question-asking style (for example, “Would
you like to add another child?” or “What is
the output.db of this node?”), or they can be
input by more experienced modelers through
the graphic editor. However, the creation of
the strategies themselves, their subtrees, and
the balancing of these tree truth tables is
largely a manual, time-consuming activity.
For example, could there be a meta–work
breakdown tree that is cognizant of the avail-
able influencer and debiaser strategies that
queries the user for which one to insert next
or, better yet, that somehow knows when
each strategy should be deployed (that is, it
has the benefit of the answers to the ques-
tions posed in the prior paragraph)? How
could this metatree or metamodel best walk
the modeler through the process of building
a knowledge-acquisition system for a specific
domain? How would it account for differ-
ences between domains or even within differ-
ent parts of the same domain? These and a
host of other longer-term research questions
must be answered if large-scale knowledge
bases are eventually to be built. Quickly creat-
ing, editing, and altering the knowledge-
acquisition system seems to be a prerequisite
to the widespread development of cost-effec-

ing tutorial mode (principle and example
being offered), after which the question to be
answered was returned to, and a warning was
placed in the knowledge base if a biased
answer was retained.  

As a test of the computational richness of
the Cope language and the abilities of the
methodology, much attention was devoted to
computational issues and to how precisely to
build such strategies into cognitive models.
Although most of the details of the modeling
language were omitted, enough were includ-
ed to give the reader a sense of realization
that each of the four variations, plus others,
could be readily modeled both in general and
for specific domains. Various types of chain-
loop-jump trees, node slots, function library
capabilities, and other details were offered to
illustrate the generality of a specific modeling
language and uncover recurring patterns that
would pinpoint further areas of generality
not yet exploited for automated model-build-
ing purposes.  

An empirical set of tests of the implement-
ed models was attempted that led to relative-
ly promising results, although the task of
obtaining sufficient quantitative results to
statistically validate the promise of the joint
cognitive approach is still unfinished. Specifi-
cally, both individual users’ qualitative
remarks and quantitative performance
improvement results to date overwhelmingly
favor the theory and the idea that human-
computer collaboration (rather than strictly
human-to-machine transfer) is an important
model of the knowledge-acquisition task.
However, lest we fall prey to a judgment bias
ourselves, it is worth noting that the sample
sizes used thus far do not permit the statistics
to bear out the trend. The final answer to the
validity of the human judgment theory pre-
sented here can only be found by conducting
further tests with increased sample size.

Although the influencer strategy variations
presented are both intuitive and apparently
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tive knowledge-acquisition systems. Early
feedback on maintaining large-scale knowl-
edge bases at a few pioneering sites such as
the U.S. Army or the National Aeronautics
and Space Administration indicates that
knowledge base maintenance of larger sys-
tems cannot be done reliably by humans but
depends instead on automated rule generators
tracking what they invented and why so that
they can recall what needs to be altered as
systems evolve. The same points apply to the
automated knowledge-acquisition systems.

In the 1950s and 1960s, AI research empha-
sized general problem-solving techniques that
were search intensive. In the 1970s, the
paradigm shifted to knowledge-based prob-
lem solving using domain-specific rules to
minimize or eliminate search. As larger rule-
based systems emerged in the 1980s, knowl-
edge acquisition replaced search as the key
bottleneck. The advent of automated knowl-
edge-acquisition systems has demonstrated
that this bottleneck can be broken. The bot-
tleneck of the 1990s will clearly be the model
intensiveness of the automated knowledge-
acquisition systems. Only further research
such as that begun here will erode this next
bottleneck.
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Notes
1. This article is an abridged version of material
from a forthcoming book entitled Building Expert
Critics (Silverman 1990).

2. Of course, a short cut to such an extended dis-
covery process—and a sign of an intelligent
entity—would be for her to ask questions; that is,
question-asking systems save time if they can locate
knowledge sources (for example, older professors)
to learn from. They must still pursue the six steps
to verify what was learned from question asking
and to handle “outlier” data points, but the overall
theory-formation process is accelerated.

3. One judge’s feeling that a marked improvement
was observed was sufficiently strong to cause him
to recommend the project for continuation.
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