
GUEST EDITORIAL 

Robotic Assembly and 
Task Planning 

If classical planners are ever to auto- 
matically plan the actions of the 
smart machines, particularly robots 
for the automatic assembly of indus- 
trial objects, then they will have to 
know much more about geometry 
and topology as well as sensing. Con- 
sider that the simple act of changing 
an object’s grasp-the change might 
be necessitated by the nature of some 
assembly goal-involves the interac- 
tion of the geometries of the grasping 
device and the object if the change is 
to occur without a collision between 
the device and the object. Of course, 
one could ask, Could geometric con- 
siderations be divorced from the 
highly developed symbolic-level 
planning? That is, could we first syn- 

, thesize a symbolic plan and then 
plug in the geometry for the execu- 
tion of the actions? Experience has 
shown the answer to be, unfortunate- 
ly, a big no. The actions chosen to 
fulfill an assembly goal depend as 
much on the symbolic nature of the 
goal-for example, by the form 
(PUTON A B)-as they do on the geo- 
metric constraints involved in 
putting object A on top of object 
B-for example, we might want cer- 
tain features on the exteriors of A and 
B to line up as a result of the assem- 
bly action. 

Then, there is the ever-present 
issue of how to integrate sensing with 
planning. This integration must be 
achieved if machines are to be able to 
use sensing to reduce the uncertain- 
ties in their environments. This issue 
is complex for a variety of reasons: 
An action can either increase or 
decrease the uncertainties associated 
with the environment and do so in a 
differential manner; that is, an action 
can cause a decrease in the uncertain- 
ty associated with, say, the x coordi- 
nate of the position of an object 
while causing an increase in the 
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uncertainty associated with the y 
coordinate. A sensor has to be chosen 
in light of this interplay between 
actions and uncertainties. The plan- 
ner must be able to figure out what 
actions are executable given the cur- 
rent uncertainties and what are exe- 
cutable if appropriate sensors are 
invoked to reduce these uncertain- 
ties.1 In an attempt to answer these 
issues, the planner Spar was devel- 
oped in the Robot Vision Lab at 
Purdue University. Now implement- 
ed on a Puma 762 robot, Spar is dis- 
cussed in “Spar: A Planner That 
Satisfies Operational and Geometric 
Goals in Uncertain Environments” 
by Seth A. Hutchinson and Avinash 
C. Kak. 

Input to planners such as Spar con- 
sists of assembly goals; these goals 
specify what two parts are to come 
together, the initial and the final 
positions of these parts, and the 
uncertainties associated with their 
initial placement. Who should speci- 
fy these assembly goals? Should they 
be supplied by a human expert? 
Should they be discovered by an 
automated reasoning agent starting 
from, say, a computer-aided design 
description of the assembled prod- 
uct? In the well-used example of 
flashlight assembly, some intelligent 
agent has to discover the fact that 
the two end pieces cannot be 
installed on the tube of the flashlight 
before the battery is inserted. In 
“Assembly Sequence Planning,” 
Arthur C. Sanderson, Hui Zhang, and 
Luiz Homem de Mello show how 
geometric reasoning can be carried 
out in the Pleiades system to discover 
optimum sequences of assembly 
operations with respect to such crite- 
ria as geometric feasibility, attach- 
ment feasibility, and tool availability. 

Clearly, the methods for determin- 
ing geometric feasibility are impor- 

tant not only at assembly design time 
but also when optimum assembly 
sequences are computed. How objects 
are represented, particularly with 
regard to their symmetries, has great 
bearing on the methods that can be 
invoked for testing the geometric fea- 
sibility of an assembly. As Robin Pop- 
plestone, Yanxi Liu, and Rich Weiss 
discuss in “A Group Theoretic 
Approach to Assembly Planning,” 
group theory provides us with a pow- 
erful and compact formalism for rep- 
resenting the symmetries of objects. 
In addition, it gives us a set of tools 
for inferring the overall symmetries 
of an object assembled from parts 
whose symmetries are already 
known. Furthermore, if an assembly 
consists of multiple features coming 
together from different objects, then 
group theory can also be used to test 
the geometric feasibility of the over- 
all assembly by intersecting the con- 
straints corresponding to each pair of 
mating features. 

This special issue on robotic assem- 
bly and task planning consists pri- 
marily of these three articles. My 
wish was to include one more, “AI 
Planning Systems: Problems and 
Solutions” by Austin Tate, James 
Hendler, and Mark Drummond; how- 
ever, a combination of circumstances 
precluded its publication in this 
issue. A general survey of the litera- 
ture on classical planning, this article 
will appear in the next issue of AI 
Magazine. 

Notes 
1. Of course, not to be forgotten is the 
use of sensors to endow a robot with 
reflexive behavior. In the context of robot- 
ic assembly, such behavior is important 
for tasks such as mating parts under tight 
tolerances using compliant motions gen- 
erated by force-torque feedback. 
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Letters 

Letters 
n Editor: 

“Fronti Nulla Fides”: No reliance can 
be placed on appearance. 

In a letter to the editor (AI Muga- 
zine, Winter 1989), Benjamin Kuipers 
criticizes various points made in an 
earlier paper of ours (Akman and ten 
Hagen 1989). 

First, a side (nonetheless impor- 
tant) remark: Although Kuipers 
asserts that he distributes QSIM to 
interested researchers, our experience 
has been otherwise. Akman has tried 
twice to obtain QSIM, without suc- 
cess. Although Kuipers promised to 
deliver a copy-QSIM was under revi- 
sion at the time of Akman’s request 
(this being as early as winter 1988)- 
the program was never sent. So much 
for the availability of QSIM. . . . 

Kuipers’ letter is full of sweeping 
generalizations that are so much 
against the nature of scientific enter- 
prise. We should also add that we are 
disappointed to see Kuipers employ- 
ing universal truths and unarguable 
facts such as “. . . if you build the 
wrong model, the predictions derived 
from that model are likely to be 
wrong” or ‘I. . . guarantees of mathe- 
matical validity [are] necessary for 
any science” as his main cheval de 
bataille. In the following we’ll point 
out, one by one, the weaknesses of 
QSIM. Our task will be easy since we 
shall merely reproduce, almost verba- 
tim, Kuipers’ own sentences (Kuipers 
1986) and, additionally, Janowski’s 
(1987) views. (The latter reference 
gives an excellent review of QSIM’s 
disadvantages.) Then, we’ll let the 
reader judge. 

. . . the QSIM algorithm, and 
local qualitative simulation algo- 
rithms in general, cannot be 
guaranteed against producing 
spurious behaviors; behaviors 
which are not actual behaviors 
for any physical system satisfying 
the constraint equations [Kuipers’ 
italics] (Kuipers 1986, pp. 317-318). 

. . . if a valid description of the 
mechanism can produce invalid 
predictions (false positives), its use- 
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fulness is limited [our italics] 
(Kuipers 1986, p. 318). 

If we explicitly add the con- 
straints representing conserva- 
tion of energy to the oscillating 
spring constraint equations, the 
single correct behavior is found. 
However, although the addition- 
al constraints are derivable from 
the original equations, it is not at 
all clear how to do such a deriva- 
tion automatically for an arbitrary 
mechanism [our italics] (Kuipers 
1986, p. 321). 

If qualitative simulation yields 
several possible behaviors, fur- 
ther analysis is required before 
concluding that they represent 
possible futures [our italics] 
(Kuipers 1986, p. 321). 

QSIM is just such a method of 
fitting together the jigsaw of the 
histories of individual parame- 
ters, by constraint propagation, in 
order to derive the possible 
behaviors of a system [our italics] 
CJanowski 1987, p. 67). 

For example, it is possible to 
simulate the behavior of an oscil- 
lating spring. But without infor- 
mation about dissipation of 
energy, QSIM is unable to tell 
whether each successive oscilla- 
tion is greater, smaller, or the 
same as the previous one. 
Accordingly, it generates all three 
possible behaviors. Obviously, 
only the decreasing oscillations 
represent a real-world behavior, 
and the others are spurious. This 
illustrates an important point 
about QSIM: if it is given a cor- 
rect description of the real-world, 
then all real-world behaviors of 
the system will be simulated, but 
not all the simulated behaviors will 
necessarily be possible in the 
system [our italics] (Janowski 
1987, p. 69). 

It is not the role of QSIM to 
create the initial model: QSIM is 
a method of solving the prob- 
lems once they have been formulat- 
ed. By contrast, [Ken] Forbus, and 
JJohan] de Kleer and jJohn Seely] 

Brown try to define a “physics,” 
of which generating behavioral 
descriptions is one part but in 
which they also attempt to for- 
malize the translation from the real 
world to the model [our italics] 
Uanowski 1987, p. 70). 

Thus, there is a distinction 
between, on the one hand, a 
“physics” based on general prin- 
ciples which has formalisms for 
modeling the real world in a 
qualitative manner and, on the 
other hand, a tool for “hand- 
crafting” such models more or 
less individually. It is in the second 
camp that QSrM sits [our italics] 
uanowski 1987, p. 70). 
We agree that QSIM is a mathemat- 

ical language for expressing models, 
rather than a physical methodology 
for building correct models. However, 
this doesn’t imply, as Kuipers suggests, 
that a modeling language must be 
able to express both good and bad 
models, both true and false models. 
This is equivalent to saying that all 
the responsibility for guaranteeing 
good models (or true models) is dele- 
gated to some outside agent (a 
person?). We then ask, Where is the 
intelligence of QSIM if one needs 
such a drastic amount of intervention? 

Kuipers’ letter also tries to establish 
a point which sounds plausible to us 
and probably to many people work- 
ing in the area; viz., QSIM is a step 
toward providing the degree of 
expressive and inferential power nec- 
essary for qualitative physics. Yes, but 
it is one step! To paint a rosy picture 
around an “all-powerful QSIM” is an 
attempt at creating a myth and is 
dangerous. D. McDermott said, “A 
common idiocy in AI research is to 
suppose that having identified the 
shortcomings of Version I of a pro- 
gram is equivalent to having written 
Version II” (McDermott 1981). The 
shortcomings of QSIM are not of the 
kind that can be corrected in a second 
version. (QSIM’s precursor was ENV 
[Kuipers 19841.) 

Finally, as for the simplistic remarks 
of Kuipers about causality, we suggest 



that he take a look at the modern 
accounts of causation as presented, 
say, in Shoham (1987). 

Probably, it is apt to conclude this 
discussion on a lighter note. To quote 
McDermott again, “To say anything 
good about anyone is beyond the 
scope of this letter.” 

Varol Akman 
Bilkent University, Ankara 
Paul ten Hagen 
Center for Mathematics and Com- 
puter Science, Amsterdam 
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Research and Development 
Opportunities 
in Knowledge-Based 
Systems Technology 

The Price Waterhouse worldwide financial services 
business provides a wide range of opportunities for 
using knowledge-based systems technology. In 
order to be realized, many of those opportunities 
require significant advances in the underlying 
technologies. The Price Waterhouse Technology 
Centre provides an environment in which high 
quality research and development professionals can 
pursue those advances and explore the strengths 
and weaknesses of the resulting technology by 
using it to build prototype systems that address 
central problems in the firm’s business. The Centre 
is located in Menlo Park, California, near Stanford 
University. The Knowledge Based Systems group, 
directed by Richard Fikes, is currently working on 
representation and reasoning techniques that 
support modeling of businesses and tax regulations, 
and the use of those models for diagnosis, planning, 
and risk assessment. 

If you have an established track record in research 
and/or the application of advanced Al techniques, 
and you wish to join an environment that 
encourages technical creativity and professional 
growth, we invite you to consider joining us. 

Please contact us at: 

Price Waterhouse Technology Centre 
Human Resources Department 
68 Willow Road 
Menlo Park, CA 94025 

podgorsk@pw.com 
Fax: (415) 321-5543 

An equal opportunity affirmative action employer 

Price Waterhouse a+ 
Expect more from us 
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