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While artificial intelligence (AI) has recently been 
touted as very successful across a number of 
domains, including transportation, medical appli-

cations, and digital personal assistants, the reality that 
such systems may not actually be as capable as envisioned 
is slowly creeping into the national consciousness. While AI 
can show up in many everyday applications from shopping 
to management of home automation, it is the application 
of AI in safety-critical systems such as transportation and 
medicine that is the most concerning — because, literally, 
the incorrect use of AI can have deadly consequences.

For example, in transportation settings, it has been well 
established that AI is unable to cope with unexpected 
poses of known objects; a motorcycle laying on the ground 
after an accident may not actually be seen as a motorcycle 
(Alcorn et al. 2018). Problems with automotive computer 
vision have been cited as contributing factors in many fatal 
Tesla crashes (Crowe 2016; Lohr 2016) and the death of a 
pedestrian in an Uber self-driving car accident (Griggs and 
Wakabayashi 2018). Despite years of promises by many 
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companies of full-self driving powered by AI, many 
companies have walked back their claims in attempt 
to recalibrate the public’s and funders’ expectations 
(Bubbers 2019; Elias 2019).

Another major area where AI has been heralded 
as a success is in healthcare settings, including drug 
discovery (Morrison 2019) and radiology (Ardila et al. 
2019; Park et al. 2019). While these successes are 
important steps toward making AI a useful tool in 
aiding diagnostic applications, there have also been 
many spectacular failures. IBM’s Watson, the decision- 
making engine behind the Jeopardy! AI success, has 
been deemed a costly and potentially deadly failure  
when extended to medical applications such as cancer 
diagnosis (Strickland 2019). Alphabet’s DeepMind 
medical AI applications are facing similar questions 
(Lu 2019).

In concert with public backlash over AI and pri-
vacy, as well as concerns with AI embedded in social 
media that could be manipulating people, negative 
sentiment is growing about applications of AI. Many 
experts are concerned that this backlash could lead 
to another AI winter, which could lead to significant 
distrust in legitimate AI advances and a cooling of 
financial support (Walch 2019). Given this potential 
outcome, it is important to step back and analyze 
just why AI is struggling to gain traction in safety- 
critical systems and how the roadmap to success 
would need to change to achieve positive outcomes.

To this end, this article will first argue that, in cur-
rent formulations, AI that leverages machine learn-
ing (ML) fundamentally lacks the ability to leverage 
top-down reasoning, which is a critical element in 
safety-critical systems where uncertainty can grow 
very quickly requiring adaption to unknowns. Then, 
this article will explain how this lack of fundamental  
understanding combined with a lack of understand-
ing of what constitutes maturity in AI-embedded sys-
tems has contributed to the potential failure of these 
systems. This article concludes with recommenda-
tions for human-AI collaborative systems as well as 
paths forward to mitigate the impact of AI misappli-
cations and better inform future uses.

The Problem of Brittleness
In safety-critical settings such as transportation and 
healthcare, computer vision is a common application  
of AI, which typically means algorithms leverage 
machine-, sometimes called deep-, learning to per-
ceive the world to make decisions. For example, deep  
learning algorithms in driverless cars determine 
whether a car sees a pedestrian; or in healthcare, 
whether a tumor exists in a grainy image of a lung. 
While important advancements have been made in 
the last ten years in computer vision and in the deep 
learning algorithms that underpin these systems, 
such approaches to developing perceptual models of 
the real world are plagued by problems of brittleness.

Brittleness occurs when any algorithm cannot 
generalize or adapt to conditions outside a narrow 

set of assumptions. For example, many natural lan-
guage processing algorithms are brittle when they 
can understand a person from New York City but 
fail to understand the same sentence from someone 
in Appalachia or who speaks English with a foreign 
accent (Harwell 2018). While this brittleness may 
be frustrating for a person attempting to navigate a 
phone tree, it can be deadly in a safety-critical system 
that relies on any kind of ML for perception or crit-
ical reasoning.

The source of this perceptual brittleness comes from 
the fact that ML algorithms do not actually learn to 
perceive the world in a way that can generalize in the 
face of uncertainty. For example, computer vision 
ML algorithms typically rely on edge detection to 
decompose an image through mathematical compu-
tations to identify transitions between dark and light 
colors. These transition points then become a set of 
line segments, hence the term edges. Figure 1 is an 
example of how a picture can be decomposed into its 
edges. So, while humans see a tiger, a deep learning 
algorithm sees sets of lines in various clusters.

For an ML algorithm to learn to recognize a tiger, 
it must see tens of thousands of similar images to 
understand patterns of reoccurrence. Such patterns 
ideally scale spatially so that even potentially at dif-
ferent distances and angles, the object can be suc-
cessfully detected. What the algorithm has learned 
is that a particular set of mathematical relationships 
belong together as a label for a particular object. 
Once an algorithm can classify an object correctly, it 
can invoke a set of rules for how to treat that object; 
for example, if one is in a car and a tiger (or any 
other animal) is in the car’s path, then the car should 
stop.

Algorithm brittleness occurs when the environ-
ment changes in such a way that the computer vision 
algorithm can no longer recognize the object due to 
some small perturbation. Recognizing animals like 
tigers in images has been dramatically improving 
due to ML research, but images with multiple species 
and unusual behaviors can cause problems for iden-
tification (Norouzzadeh et al. 2017).

Such problems are also seen in safety-critical settings 
like driving. Brittleness for driverless car computer 
vision includes an inability to cope with changes 
caused by weather conditions. Lane markings that 
are partially covered by snow cause problems because 
the edges no longer match the system’s internal model 
(Krishner 2019). Even on sunny days, when a tree 
branch or other vegetation partially obscures just 
a traffic sign, what is obvious to a human becomes 
impossible to interpret for a computer vision algo-
rithm (Lewis 2019).

A common response to such brittleness is for engi-
neers and computer scientists to gather more data to 
fill what is thought to be a perceptual gap. For example,  
to fix the vegetation-obscuring-a-sign problem, many 
engineers will say “We just need more examples to 
train the algorithm to correctly recognize this condi-
tion.” While that is one answer, it begs the questions 
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as to how much of this finger-in-the-dyke engineering  
is practical or even possible? Every time a new sensor  
is created (like a new light detection and ranging  
[LIDAR] sensor) and every time this sensor experiences 
a new set of conditions it has not yet seen, it must 
be trained with a significant amount of data that 
may have to be collected. The workload to do this 
is extremely high, which is one reason why there is 
such a talent drain caused by the current driverless 
car space race. All this intense effort, which has a 
significant cost, is occurring for systems with signifi-
cant vulnerabilities.

Because computer vision based on deep learning 
is still a relatively new area of research, new prob-
lems are coming to light in university laboratories. 
Researchers have only recently uncovered that neural 
nets are not capturing accurate depth information 
in images (van Dijk and de Croon 2019), which can 
have significant safety implications. A relatively new 
field of study has emerged in the past few years 
called adversarial ML, which examines how systems 
that leverage versions of deep learning algorithms 
can be tricked or defeated.

Progress in adversarial ML has been eye-opening, 
as one set of researchers demonstrated that putting 
four innocuous black and white stickers on a stop 

sign could trick a computer vision algorithm to see a 
forty-five miles-per-hour speed limit sign (Evtimov 
et al. 2017). Another set of researchers then went on 
to show that only a single pixel needed to be changed 
to cause such an algorithm to mislabel an object  
(Su, Vargas, and Sakurai 2019). These recent efforts 
show just how vulnerable these ML-based approaches 
are in computer vision applications, and, ultimately, 
how nascent this field still is.

Bottom-Up versus  
Top-Down Reasoning

A fundamental issue with ML algorithm brittleness is 
the notion of bottom-up versus top-down reasoning,  
which is a basic cognitive science construct. It is 
theorized that when humans process information 
about the world around them, they use two basic 
approaches to making sense of the world: bottom- 
up and top-down reasoning. Bottom-up reasoning 
occurs when information is taken in at the sensor 
level — the eyes, the ears, the sense of touch, and so 
forth — to build a model of the world. Top-down rea-
soning occurs when perception is driven by cogni-
tion expectations. These two forms of reasoning are 
not mutually exclusive as humans use their sensors 

Figure 1. Edge Decomposition Example.

Courtesy of Wessam Bahnassi.
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to gather information about the world, but often 
apply top-down reasoning to fill in the gap for infor-
mation that may not be known.

For example, in the case of a lane marking covered 
by snow, humans leverage bottom-up reasoning to 
see the snow and partially covered lines and then use 
top-down reasoning to infer where the line would be 
even if they can’t see all of it. Humans do not need 
perfect information in the world because of their 
ability to fill in missing information from experience 
and abstract reasoning happens almost instantly 
with little-to-no previous experience (and certainly 
not requiring tens of thousands of examples to make 
such an educated guess).

The human ability to infer relationships from par-
tial information is captured visually by the Kanizsa 
triangle in figure 2. A computer vision algorithm 
would learn that this image has three equally spaced 
Vs with three alternately spaced circles, each missing 
a one-sixth piece. Such deconstruction is effectively 
bottom-up reasoning. However, because of experi-
ence and expectation, most humans will see two tri-
angles superimposed over one another, an example 
of top-down reasoning. While the label triangle could 
be assigned to this image (by a human programmer) 
as well as thousands of other similar images in an 
attempt to teach a computer what such abstractions 
mean, — up to this point in time, ML algorithms 
have been unsuccessful at both recognizing and 
creating visual illusions (Williams and Yampolskiy 
2018).

While there has been success of using ML in lim-
ited vision contexts, such algorithms effectively only 
apply only half of the reasoning needed to solve 
complex problems — the bottom-up construction of 
individual pieces of data. Deep learning algorithms 
are quite shallow in that they can detect patterns, but 
they lack any sense of causality — which is critical 
for understanding what to do in novel situations.

What is missing is the ability to consistently 
consider context as well as lower the uncertainty 
due to missing or degraded pieces of information, 
which are the missing pieces that knowledge- and 
expert-based reasoning apply. The lack of ML top-
down reasoning in perceptual tasks is why computer 
vision algorithms struggle with labeling unexpected 
images in transportation settings (Alcorn et al. 
2018) and fail in radiology applications (Hosny et al. 
2018).

To illustrate how and why both bottom-up and 
top-down reasoning is needed for complex decision- 
making, figure 3 depicts the kinds of reasoning needed 
for such a task, independent of who (the human and/or  
the computer) performs it. This skills-rules-knowledge- 
expertise (SRKE) depiction (Cummings 2014) is an 
extension of Rasmussen’s skills, rules, and knowledge- 
based behaviors taxonomy (Rasmussen 1983).

Skill-based behaviors are the lowest point in the 
taxonomy and consist of sensory-motor actions that  
are highly automatic and typically acquired after some 
period of training (Rasmussen 1983). In figure 3, 

an example of skill-based control for humans is the 
act of keeping a car within lane lines, which easily 
becomes a highly automated skill once learned. If 
uncertainty is low at this stage, for example, all the 
information is available for how to do a particular 
task, such reasoning is an ideal candidate for auto-
mation. Indeed, automated lane keeping is now a 
standard feature on many cars.

Once a set of basic skills is acquired, like those in 
driving between two lane lines, operators can then 
turn their attention to higher cognitive tasks such 
as rule-based behaviors, which are effectively those 
actions guided by subroutines, stored rules, or pro-
cedures. For example, when a driver (or a computer) 
detects a stop sign, a set of procedures that leverage 
various skills are involved, like slowing the car down 
and bringing the car to a stop before the sign. As 
depicted in figure 3, uncertainty is somewhat higher 
at this stage, primarily due to the need to infer which 
set of stored rules or procedures is needed at a par-
ticular time or place.

The next level in the SRKE taxonomy is that of 
knowledge-based behaviors, where mental models 
built over time aid in the formulation and selection 
of plans for an explicit goal (Rasmussen 1983). Those 
scenarios where knowledge-based reasoning is needed 
are typically characterized by higher uncertainty. 

Figure 2. The Kanizsa Triangle Visual Illusion.
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In figure 3, human drivers leverage knowledge- 
based reasoning when they see, for example, a partially 
occluded sign like a stop sign covered by vegetation. 
The entire sign is not visible, but faced with this uncer-
tainty, drivers easily surmise that it is a stop sign and 
then they know to invoke the required rule-based rea-
soning as a result.

The last behavior in the SRKE taxonomy is expertise. 
Figure 3 demonstrates that expertise must be lever-
aged under the highest levels of uncertainty, where 
decision-makers find themselves in situations that 
cannot precisely be determined, with potentially 
many unknown variables. Judgment and intuition 
are the key expert behaviors that allow for quick 
assessment of uncertain situations, typically in a fast 
and frugal manner (Gigerenzer and Todd 1999).  
The expert-reasoning scenario of multiple conflicting 
traffic signs in figure 3 demonstrates an extremely 
confusing and uncertain scenario, with no clear set 
of rules to rely upon, requiring significant judgment 
to resolve.

As depicted in figure 3, skill-based reasoning requires 
significant bottom-up processing of information and 
it is at this stage of information processing where 
ML-enabled computers perform well, assuming the 
sensors can accurately and reliably obtain exogenous 
information. So, for situations where skill-based rea-
soning dominates and sensors can reliably develop 
world models, ML-enabled systems can perform 
quite well. Indeed, many companies have demon-
strated impressive self-driving scenarios under sunny 
conditions and well-marked roads, which is primar-
ily due to low uncertainty and the ability to stay on 
the lower end of the SRKE spectrum.

However, while the bulk of driving may reside at 
the low end of the SRKE taxonomy as pictured in 
figure 3, there are occasions that require top-down 
reasoning that computers simply are currently not 
equipped to solve. Recently a driverless shuttle was 
involved in a crash because it could not understand 
the intent of a human driver of a tractor-trailer 
ahead of it who very slowly backed up for more 
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Figure 3. Bottom-Up and Top-Down Reasoning in Light of the SRKE-Based Behavior Taxonomy.

Occluded stop sign courtesy of Albert Bridge, road sign near Donegore, County Antrim, Northern Ireland. CC BY-SA 2.0.
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maneuvering room, expecting the shuttle to also 
back up (NTSB 2019). The tractor-trailer driver did 
not know the shuttle had no driver (nor did the 
shuttle have the ability to operate in reverse).

The driver had an expectation built over years of 
experience that the other vehicle would give way 
and be able to reverse, but the shuttle had no rule set 
to reference. This scenario seems simple for human 
drivers who understand the need to negotiate to 
resolve uncertainty, but such abstract principles and 
the development of alternative action plans, even 
simple ones, is outside of the realm of ML-enabled 
systems, at least for the foreseeable future.

Such ambiguous situations happen regularly in 
the driving domain and often with much more 
dramatic and deadly consequences. There have been 
several incidents where Tesla drivers have been 
killed while driving on Autopilot, an automated 
driving assist feature, which failed to see objects 
directly in cars’ paths, and a pedestrian was killed 
by an Uber self-driving car while undergoing 
human-supervised testing (Crowe 2016; Griggs and 
Wakabayashi 2018; Lohr 2016). In all these cases, 
the skill-based reasoning automated systems that 
relied on bottom-up processing failed, and deaths 
occurred because the inattentive drivers did not 
realize these cars still needed their top-down rea-
soning and judgment.

These examples highlight the essential need for 
any safety-critical system to incorporate both bottom- 
up and top-down reasoning, especially as uncertainty 
grows in a system. This is true whether such uncer-
tainty is caused by confusing scenarios in the external 
environment or by failures in the sensors to build 
accurate world models. Unfortunately, because of 
the nascent nature of ML-enabled technologies and 
the hypercompetitive nature of Silicon Valley, it 
is not always obvious to the engineers developing 
these technologies that their creations may not ade-
quately reason across the spectrum as pictured in 
figure 3, and are too immature for deployment.

The next section will discuss how companies in 
the past have known whether their technologies 
were mature enough for deployment and what mile-
stones should be achieved before fielding a technology 
with embedded ML in an operational setting. Most 
start-ups and other Silicon Valley-based companies 
pride themselves on working differently and faster 
than traditional companies, but the cost of this speed 
and agility is that many important lessons that more 
traditional companies have learned over the years, 
may be missed.

Not All Demonstrations Are Equal
To allow various programs across the National Aero-
nautics and Space Administration the ability to accu-
rately gauge the abilities of new proposed technologies 
in the space program, in the 1970s the Technology 
Readiness Levels (TRLs) framework was proposed. 
Originally seven and now nine, as seen in figure 4, 

the nine TRLs qualitatively describe where a potential 
technology sits in relation to its maturity and likeli-
hood of readiness for deployment (Hirshorn 2017). 
This framework allows people to evaluate technologies 
through a shared language, and has been adopted for 
use across the US Department of Defense (DOD 2017), 
the US Department of Energy (DOE 2010), the US 
Federal Highway Administration (Towery, Machek, 
and Thomas 2017), and many others.

When originally conceptualized, the TRL levels 
focused on primarily physical systems that were pre-
dominantly leveraging new hardware developments. 
The words model, prototype, and component suggest a 
physical item that can been touched and seen. Even 
the term “breadboard” refers to a physical circuits- 
and-electronics board where initial designs were con-
ceptualized. Curiously, the word software never shows 
up in any of the TRL levels, despite the increasing prev-
alence of software in such complex systems.

The US government has been broadly criticized 
for its lack of understanding of the importance of 
software development and how a lack of explicit 
consideration in the systems acquisition process can 
lead to long and costly delays (McQuade et al. 2019). 
While it is well recognized that the US government 
needs to overhaul its software engineering practices, 
what is less clear is how the lack of understanding 
of software maturity complicates the overall TRL 
framework in figure 4. Indeed, immaturity in both 
software testing and acquisition processes has been 
cited as major causes of delays in the US Department 
of Defense F-35 aircraft program. The number of 
extensive and costly delays in the program after it 
was deemed to have reached TRL 9, which is opera-
tional capability, suggest serious mistakes were made 
in assessing whether the whole system, including the 
software, was actually mature enough for operations 
(GAO 2019).

The military is not the only entity to suffer from 
lapses in accurately assessing the readiness of new 
technology. In the civilian aviation world, the recent 
Boeing 737 MAX groundings are an example of what 
happens when immature and untested software code 
is embedded in an aircraft thought to be a physically 
mature platform. Because versions of the Boeing 737 
(a TRL 9 platform) have been flying for well over fifty 
years, there was a cavalier assumption that the soft-
ware code did not have to be treated as a new “com-
ponent” for an aircraft with such a long history of 
physical implementation. The 737 MAX control soft-
ware was nothing like that of older aircraft, probably 
at a TRL of 5 to 6, and not at all ready for operational 
deployment at TRL 9. Given its flight criticality, even 
though the airframe was thought to a be a more 
mature technology, the entire system’s TRL was only 
as good as its lowest common denominator.

What lessons, if any, could be learned from the 
government’s mistakes in developing new technol-
ogies that are thought to be mature, but do not 
account for the immaturity of embedded software? 
One study of thirty-seven US Department of Defense 
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weapon systems showed that a lack of technology 
maturity understanding had a statistically significant 
effect on schedule overruns (Katz et al. 2014). The 
Government Accounting Office has stated that risk is 
acceptably low for product development for systems 

at or above TRL 7 when there has been a “demonstra-
tion of a technology in its final form, fit, and func-
tion within a realistic environment” (GAO 1999,  
2001). In terms of autonomous systems that incor-
porate significant layers of AI, like in driverless cars, 
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Figure 4. National Aeronautics and Space Administration TRLs.
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it is critical to further examine what it means to be 
in “its final form, fit, and function within a realistic 
environment.”

When a technology is in its final form, one would 
expect that not only are the hardware elements fairly 
stable, but that the software code underpinning the 
perception, sensor fusion, and control algorithms 
has also reached some measure of stability. It is not 
clear, in the case of self-driving cars, that either hard-
ware or software maturity has been reached. There is 
broad consensus across the self-driving car industry 
that LIDAR sensors are critical for safe operations, 
but the LIDAR industry is still in significant flux and 
many new types and kinds of LIDARs have recently 
been introduced (Lienert and Klayman 2019).

Changing or significantly upgrading a LIDAR has 
a direct impact on software stability in that all sensor 
fusion algorithms require recalibration and retraining 
whenever a new sensor is inserted into the hardware 
stack (the perception and control system of an auto-
nomous vehicle). So, if a critical hardware component 
is not yet stable, then it is impossible for the associ-
ated software to be stable. Moreover, LIDAR is not 
the only sensor expected to change in the near-term, 
as radars are also expected to undergo significant 
upgrades (Murray 2019) and new types of 3D cameras 
are making their way to the market (Dent 2019).

In addition to the Government Accounting Office’s 
recommendation for a technology to be in its final 
form, the other important attribute worth consider-
ation is what it means to perform in a realistic envi-
ronment. To reach broad market appeal, self-driving 
cars will need to operate in all weather conditions 
and under different levels of road quality. Self-driving 
systems, even with their multiple sensors and soft-
ware advancements, still cannot reliably work in rain 
and snow conditions (Zang et al. 2019), during time 
of low sun angles (Dowling 2019), and often where 
lines on the road are either nonexistent or are present 
with faded paint (Sage 2016).

While many self-driving companies have pro-
duced impressive demonstrations in places like Ari-
zona and California, such limited applications and 
the high number of conditions in which they cannot 
currently operate suggest that these technologies are 
actually at TRL 6, where a prototype demonstration 
has occurred in a relevant environment. Indeed, the 
biggest difference in whether a technology is TRL 6 
or TRL 7 is performing in a relevant versus a realistic 
environment. This one seemingly nuanced differ-
ence is easy to overlook, but could have many unex-
pected consequences when missed.

The problems with asserting that a technology 
is TRL 7 when it is actually at a TRL 6, like that of 
driverless cars, can be quite dramatic. The Govern-
ment Accounting Office looked at military technol-
ogies that were assumed to be TRL 7 when in fact 
they were TRL 6 and found that sixty percent of cost 
growth in programs occurred after the technology 
moved into production. Typically, these programs 
declared themselves to be production-ready and 

operational before fully completing testing in real-
istic (as opposed to relevant) settings, and then they 
ultimately failed (GAO 2017).

Rapidly moving products to production with 
embedded AI before they are ready has been a dis-
tinct trend for many Silicon Valley-backed technol-
ogies. While the Theranos debacle is often labeled 
as outright fraud, it is just an extreme example of 
the “fake-it-‘til-you-make-it” Silicon Valley culture 
and elements of such an attitude has occurred across 
numerous application of AI through Wizard of Oz 
techniques where humans pretend to be AI (Solon 
2018). The fake-it-‘til-you-make-it attitude is simply 
recognition that a technology is something less than 
TRL 7 but is then advertised as more mature than it 
actually is.

One of the ramifications of such a fake-it-‘til-you-
make-it culture is inflated and unrealistic expecta-
tions that drive a hypercompetitive first-to-market 
race, which can become prohibitively expensive. In 
the case of the driverless car industry that has sur-
passed $100 billion in investment (Eisenstein 2018), 
it is not clear if the industry can withstand a sixty 
percent or more cost growth as it moves into the pro-
duction phase with a significant risk of failure, just 
like the military programs with similar pedigrees of 
claiming to be more mature than they actually are.

Conclusion
AI, in the form of ML, has the potential to trans-
form elements of many safety-critical applications 
and offers up new forms of human–computer col-
laboration that previously were out of reach. For 
example, one military-sponsored project recently 
demonstrated that an AI-enabled robotic arm could 
assist the pilot of an airplane in nonessential mun-
dane tasks (Aurora Flight Sciences 2016). This is espe-
cially important because there is currently a global 
pilot shortage and so this kind of human augmen-
tation could free copilots to take captain roles and 
effectively double the workforce. In a related med-
ical example, many believe that the power of AI in 
radiology is not in the replacement of doctors but in 
assisting them in triaging images (Liew 2018).

Although AI augmentation of humans in safety- 
critical systems is well within reach, this success 
should not be mistaken for the ability of AI to replace 
humans in such systems. Such a step is exponential 
in difficulty and with the inability of ML, or really 
any form of AI reasoning, to replicate top-down rea-
soning to resolve uncertainty, AI-enabled systems 
should not be operating in safety critical systems 
without significant human oversight.

To address the known gaps in the brittleness of 
AI, there has been recent increasing interest in the  
fusing of symbolic and connectionist approaches to 
AI. Symbolic AI, the more classic form of AI, attempts 
to represent abstract human knowledge through the 
encoding of facts and rules (that is, symbols), and 
is commonly used in expert systems. Deep Blue, the 
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IBM chess-playing computer that outwitted Garry 
Kasparov, is an example of symbolic AI. AI in the form 
of ML is a connectionist AI approach, which loosely 
mimics neural connections in the brain in the form 
of probabilistic networks that represent information 
and simulated intelligence (Marcus and Davis 2019; 
Toews 2019). An AI algorithm that detects cancerous 
nodes in radiologic images, based on its training of 
thousands of images with such cancers previously 
labeled, is an example of connectionist AI.

Unfortunately, the fusing of symbolic and connec-
tionist AI will not fundamentally solve the brittleness 
problem from which both approaches suffer, nor will 
fusing the two have any ability to solve the top-
down reasoning issue. As per figure 3, connectionist 
AI approximates bottom-up reasoning and symbolic 
approaches represent rule-based reasoning, with some  
overlap between the two. Neither approach can  
handle significant uncertainty, and neither (or even 
both together) can approximate top-down reasoning, 
problems with context, and the need for judgment 
under uncertainty. Real breakthroughs in AI will 
not be achieved until some form of contextual and 
casual-based computational approach is developed.

Even though AI has limits, particularly in safety- 
critical systems with potentially deadly latent condi-
tions, demanding perfection could limit the benefits 
of developing such technology. As in the case of the 
robot pilot arm or in the case of slow-speed driverless 
shuttles that operate in protected environments, there 
may be very advantageous uses of such AI-enabled 
systems, even though the technology is not flawless. 
This then motivates the need to develop clear criteria 
and testing protocols so that companies and govern-
ments buying or approving AI-enabled systems can 
be sure that the proposed systems are indeed at TRL 
7 and capable of operating in their intended opera-
tional domains.

However well-intended, companies that demon-
strate that their AI-enabled systems, especially those 
that operate in safety-critical settings, can almost 
function as if they were operational is simply not a 
high enough bar. History is replete with examples of 
how similar promises of operational readiness ended 
in costly system failure, and these cases should serve 
as a cautionary tale to not just the driverless car com-
munity, but to all the AI researchers and practition-
ers that subscribe to the “fake-it-‘til-you make-it” 
mantra.
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