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Abstract
Big data analytics employs algorithms to uncover people’s preferences and val-
ues, and support their decision making. A central assumption of big data ana-
lytics is that it can explain and predict human behavior. We investigate this
assumption, aiming to enhance the knowledge basis for developing algorith-
mic standards in big data analytics. First, we argue that big data analytics is by
design atheoretical and does not provide process-based explanations of human
behavior; thus, it is unfit to support deliberation that is transparent and explain-
able. Second, we review evidence from interdisciplinary decision science, show-
ing that the accuracy of complex algorithms used in big data analytics for pre-
dicting human behavior is not consistently higher than that of simple rules of
thumb. Rather, it is lower in situations such as predicting election outcomes,
criminal profiling, and granting bail. Big data algorithms can be considered as
candidate models for explaining, predicting, and supporting human decision
making when they match, in transparency and accuracy, simple, process-based,
domain-grounded theories of human behavior. Big data analytics can be inspired
by behavioral and cognitive theory.

INTRODUCTION

Who has not heard the motto that data analytics, machine
learning, Facebook, or Google...“know us better than we
know ourselves”? Even those alarmed by the prospect of
silicon superintelligence (Harari 2016; Zuboff 2019) do not
doubt its prowess. In the “18 Miles Outside of Roanoke”
episode of the TV show For the People, a judge bypasses the
prediction of a recidivism algorithm but warns the defense
attorney that such algorithms are the future of law, draw-
ing an analogy to AI now beating human chess cham-
pions (Attie and Verica 2018). This type of argument for
the imminent coming of superintelligence based on the
success of AI in games is a common one, as pointed out,
among others, by Gigerenzer (in press). The problem is
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that such arguments show a lack of appreciation for the
serious challenge that social situations—as when people
interactwith each other or institutions—that are less stable
and well defined than games such as chess and Go pose for
making accurate predictions (Wu 2019; Makridakis, Hyn-
dman, and Petropoulos 2020).
We appreciate that AI researchers strive to avoid hyper-

bole. The phrase big data analytics can be a marketing
device in parts of academia and industry. It is a blan-
ket term for applications of models from statistics and
machine learning to datasets with “volume,” “velocity,”
and “variety” (McAfee et al. 2012). As in the famous
quote of Peter Norvig, director of research at Google: “We
don’t have better algorithms, we just have more data.” In
this sense, the usual comments for the possible risks and
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benefits of AI apply to big data analytics as well. Still,
because big data analytics is pronounced to be no less than
a revolution in the name of AI, ready to sweep science as
well as business (Anderson 2008; McAfee et al. 2012), fur-
ther investigations of the risks and benefits of big data are
necessary.
The risks of big data analytics are very real (Clarke 2016).

Biases have been identified in the data and algorithms
guiding law enforcement decisions (Richardson, Schultz,
and Crawford 2019), medical decisions (Obermeyer et al.
2019; Benjamin 2019), and in language corpora (Caliskan,
Bryson, and Narayanan 2017). Big data analytics systems
are also vulnerable to adversarial attacks (for example,
Brundage et al. 2018; Nguyen, Yosinski, and Clune 2015).
Misapplications of big data analytics have resulted in law-
suits and claims of improper government support of those
with developmental and intellectual disabilities (Stanley
2017), fraudulent unemployment insurance fraud investi-
gations (Garza 2020), discriminatory car insurance rates
(Varner 2020), and incorrect background housing checks
(Kirchner and Goldstein 2020).
These well-publicized risks notwithstanding, perhaps

one should be less certain of the benefits of big data ana-
lytics. For instance, Frederik andMartijn (2019) provide an
overview of the capacity of big data analytics for effective
personalized online advertising. Consider eBay and a host
of other companies, which pay Google to display their ads
at the top of a screen for users who are deemed to need just
a little nudge to buy. What is the evidence for the effective-
ness of such personalized advertising? Surely, it is naïve to
even ask because companies as eBay have all the analyt-
ics support to make sure they are not burning money ($20
million in some years), right? The profit from these online
ads was estimated by eBay to be about $240 million (Fred-
erik and Martijn 2019). But such estimations are fraught
withmethodological problems. For example, howdoes one
know that those targeted by an online ad would not have
purchased the product anyway? Experimental control is
required to tease such confounds apart. Blake, Nosko, and
Tadelis (2015) ran a series of critical large-scale field experi-
ments. They found that brand keyword ads had nomeasur-
able short-term benefits. And, while new and infrequent
users could be profitably influenced by ads, this effect was
offset formore frequent users, resulting to negative average
returns.
Motivated by such findings, this article takes a step back

and reviews the purported benefits of big data. We criti-
cally examine the capacity of big data analytics to explain
and predict individual and group human behavior, and
thus to support human decision making. Note that we do
not question the success of complex algorithms such as
deep learning in engineering problems such as processing
images, video, speech, and audio (LeCun, Bengio, andHin-

ton 2015). Our contribution takes a scientific perspective,
sampling arguments, and evidence from decision research
across multiple disciplines that might be little known to
academics and practitioners in AI who do not work on its
intersection with fields such as business, politics, and law.
The article aims at enhancing the knowledge basis for the
development of algorithmic standards in big data analytics.
We propose that simple rules of thumb that use few pieces
of information and combine them in computationally sim-
ple ways (Gigerenzer and Todd, 1999; Katsikopoulos et al.,
2020) can serve as benchmarks for big data algorithms. We
do not provide a comprehensive review but open doors and
provide pointers to the literature in the decision sciences
broadly construed.
The article is organized as follows. In the next section,

we argue that big data analytics is by design atheoretical
and does not provide process-based explanations of human
behavior; making it unfit to support deliberation that is
transparent and explainable to experts and laypeople. In
the section after that, we review evidence showing that
the accuracy of complex statistical and machine learning
algorithms used in big data analytics in predicting human
behavior is not consistently higher than that of simple rules
of thumb; rather, it has been found to be lower in situations
such as predicting election results, criminal profiling, and
granting bail. Finally, in a last section, we synthesize these
points and conclude that simple, process-based, domain-
grounded theories of human decision making should be
put forth as benchmarks, which big data algorithms, if
they are to be considered as candidate models for explain-
ing, predicting, and supporting human decision making,
should match in terms of both transparency and accuracy.
Taking a constructive point of view, we join others (Grif-
fiths 2015; Analytis, Barkoczi, and Herzog 2018) in suggest-
ing that big data analytics can be inspired by behavioral
and cognitive theory.

BIG DATAANALYTICS: LACKOF THEORY,
EXPLANATIONS, AND TRANSPARENCY

Theory and explanations

A foundational piece of big data analytics is Chris Ander-
son’s “The End of Theory: The Data DelugeMakes the Sci-
entific Method Obsolete.” This title is striking. One might
say that it provokes in order to attract attention, and is not
to be taken literally. Perhaps. Let us look closer at what
Anderson actually says:

“Petabytes allow us to say: ‘Correlation is
enough’. . .We can analyze the data without
hypotheses about what it might show. We can
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throw the numbers into the biggest comput-
ing clusters theworld has ever seen and let sta-
tistical algorithms find patterns where science
cannot.”

And also

“This is a world where massive amounts of
data and applied mathematics replace every
other tool that might be brought to bear.
Out with every theory of human behavior,
from linguistics to sociology. Forget taxonomy,
ontology, and psychology. Who knows why
people do what they do? The point is they
do it, and we can track and measure it with
unprecedented fidelity. With enough data, the
numbers speak for themselves” (Anderson
2008).

So, the theory of big data analytics is that human behav-
ior in any domain can be studied without a theory of
this domain. Content and context do not matter. Rather
measurement and statistics suffice to reveal correlations,
which in turn supposedly suffice to make accurate predic-
tions.
This idea can go too far. There are ample situations

where statistical methods, even sophisticated ones, can-
not generalize well if they do not have access to a causal
domain theory (Matthews 2020). For example, statistics
may identify features correlated with the outcome but
which did not cause the outcome, such as when an image
recognition algorithm distinguishes between dogs and
wolves, not via the features of the animals themselves but
by using the snow that is only present in the pictures of
wolves because it is part of their natural habitat (Ribeiro,
Singh, and Guestrin 2016). After its high accuracy is adver-
tized, users may apply the algorithm confidently to all
kinds of wolves on snowless ground and dogs in snow, only
to see it fail. Without any domain theory of howwolves dif-
fer from dogs, even a rudimentary theory stating which of
the two is more likely to live outdoors, users will be at a
loss as to why this smart algorithm failed or how to fix it.
But what about practice? Do big data practitioners try to

predict what people will do againwithout a behavioral the-
ory? It seems so. Consider, for example, Nate Silver’s work,
and specifically how the result of the 2016 US presiden-
tial election was predicted (https://projects.fivethirtyeight.
com/2016-election-forecast/).
Silver stated that the probability of winning was 71.4%

for Hillary Clinton and 28.6% for Donald Trump. He also
broke down this prediction by state and gave the probabil-
ities of interesting scenarios, such as a landslide for each
candidate. Silver’s model took into account the accuracy

of election polls all the way back to 1972, plus demographic
and economic data.Numberswere adjusted,weighted, and
averaged in many ways, including by using linear regres-
sions, some of them regularized ones.
As far as we can tell from Silver’s documentation, there

is no political, economic, sociological, or psychological
theory driving these calculations. By theory we mean
a construction that goes beyond characteristics such as
including voter income as a predictor in a regression. It
is often argued that a statistical model, such as a linear
regression, is equivalent to theorizing about the ways in
which a voter’s politics, economics, and psychology affect
whom they vote for. At some formal level, of course, statis-
tics can be seen as descriptions of behavior. But describing
a human decision formally is not the same as providing an
explanation for how it came about, what goal it is serving,
and how it could be changed (Katsikopoulos 2011a; and ref-
erences therein). This point, a key one in the decision sci-
ences, has beenmade in legal research aswell. In thewords
of Vincent Chiao:

“Machine-learning techniques, neural net-
works in particular, raise a distinct set of
concerns. Machine learning is ‘atheoretical’,
in that a machine-learning algorithm ‘learns’
on its own to draw correlations between
outcomes and inputs, including inputs that
would not make much sense to a human. In
the case of aeroplanes, bridges, and pharma-
ceuticals, even if lay persons do not under-
stand how theywork, still experts do. . . In con-
trast, in the case of a machine-learning algo-
rithm, it may be the case that no one really
understands the basis upon which it is draw-
ing its correlations. Those correlations might
be quite reliable, but it might be that no one is
in a position to articulate quite why they are
reliable and this surely does raise distinctive
concerns about intelligibility.” (Chiao 2019, p.
136).

Chiao connects the lack of theory in big data analyt-
ics to its lack of intelligibility. Big data analytics can-
not help us understand why a person behaved a cer-
tain way. It cannot provide explanations of the reasons
and the process by which a decision came about. Since
the so-called cognitive revolution (Neisser 1967), describ-
ing the cognitive processes underlying observed behav-
iors is the pronounced goal of behavioral and decision
research. A cognitive process specifies the temporal order
inwhich information-processing events occur in themind,
and how those combine to produce a decision or another
outcome.
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For example, a voter might first consider the point that
Trump is a populist (some readersmight disagree with this
judgment). This might lead the voter to move closer to vot-
ing for Clinton, so that that only one more strike against
Trump will suffice to have her vote for Clinton. The voter
might search her memory for further information on the
two candidates. If she recalls that Trump has made racist
remarks (again some readers might disagree with this),
then shewould decide to vote for Clinton. No such process-
based explanations are provided by Silver’s algorithms for
the voting of a person or a group. It is hard to see how there
could be such explanations in these algorithms, since there
is no underlying theory about the politics, sociology, or psy-
chology of voting.
Postelection, Silver acknowledged the consequences of

his a-theoretic approach as he outlined a story of how
President Trump won the election (Silver 2017). First, Sil-
ver’s model ignored key contextual variables of the elec-
tion. The model did not account for the context of Clin-
ton trying to win a third consecutive term for her party,
amidst a mediocre economy, at a time of high partisan-
ship. Alternative models, which did focus on these types
of factors, showed that the election was a toss-up or per-
haps even slightly favored Trump. Second, Silver’s model
of voter preferences was not calibrated to the political cli-
mate. Themodel did not account for the instability of voter
preferences and the additional uncertainty added by the
large number of undecided and third-party voters. The
model simply did not capture the psychological reality on
the ground.
The workings of big data algorithms like Silver’s model

are not transparent and do not provide explainable theory.
Because of this, and other reasons discussed below, these
algorithms are unfit to support deliberation.

Supporting transparent and explainable
deliberation

Legal institutions as well as technical organizations rec-
ognize transparency and explainability as fundamental
tenets for achieving trust for the tools they use. Trans-
parency means making decision-making processes avail-
able for scrutiny, and explainability means being able to
convey those processes to different stakeholders in away in
which they can consume it. These two tenets are necessary
for trust because people, who are having decisions made
about them, need to understand enough of the decision-
making processes so that they feel they were treated fairly.
If not, they will reject the decision itself, and by extension
the legal institution and the technology.
The European General Data Protection Regulation pro-

vides rights to “meaningful information about the logic

involved” in automated decisions, in other words, a
right to explanation (Goodman and Flaxman 2017; Selbst
and Powles 2017). In the United States, the Constitution
requires procedural due process in government decision
making incorporating principles of transparency, accu-
racy, and political accountability—principles that could
be violated by opaque and inexplicable algorithms (Cit-
ron 2008). The Institute for Electrical and Electronic Engi-
neers requires that the “basis of a particular [algorithmic]
decision should always be discoverable” (IEEE 2019). The
Association for Computing Machinery encourages those
using algorithmic decision making “to produce explana-
tions regarding both the procedures followed by the algo-
rithm and the specific decisions that are made” (Garfinkel
et al. 2017).
The need for transparent and explainable algorithmshas

beenhighlighted in thewell-publicized case of State ofWis-
consin v. Loomis. We discuss it from an angle based on
legal theory. Eric Loomis denied involvement in a drive-by
shooting but pleaded guilty to a couple of lesser charges,
such as attempting to flee a traffic officer and operat-
ing a motor vehicle without the owner’s consent (Har-
vard Law Review 2017). The trial court, having accepted
the plea, ordered a report to inform sentencing, which
included a risk assessment based on the COMPAS algo-
rithm. Because the algorithm is proprietary, the defen-
dant was not given the chance to inspect its logic and
challenge it in court. The COMPAS algorithm suggested
that the defendant had a high risk of recidivism and the
court used this, along with other considerations, to sen-
tence Loomis to 6 years of imprisonment and 5 years of
extended supervision. The defendant made an appeal on
due-process grounds, which theWisconsin SupremeCourt
denied.
We do not discuss the technicalities of this case; for this,

see the analysis of Brownsword andHarel (2019). Belowwe
argue that this big data algorithm did not support trans-
parent and explainable deliberation, and that the Court’s
lack of access to a process-based decision model prevented
them from determining the appropriateness of using, or
not using, the algorithm.
Even though the Court upheld the use of the COMPAS

algorithm, it seemed uneasy about using a secret algorithm
to help send a man to prison (Liptak 2017). The Court
acknowledged the expert testimony at the trial court,warn-
ing about the risks of COMPAS, and cited a report by non-
profit organizationProPublica about COMPAS,which con-
cluded that black defendants in Broward County, Florida,
were far more likely than white defendants to be incor-
rectly judged as more likely to reoffend (Angwin et al.
2016). At the same time, the Court noted that Northpointe,
which had marketed COMPAS, had disputed ProPublica’s
analysis (Holsinger et al. 2018).
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The Court concluded that “if used properly,” the COM-
PAS algorithm does not violate the right of due process at
sentencing—yet nowhere did theCourt definewhat “prop-
erly” means. A process-based model as a decision support
aid would have enabled the Court to understand its own
goals and processes, and to understand enough about the
COMPAS algorithm to know how it can “properly” inform
the Court. Without understanding their own or the COM-
PAS algorithm’s processes, the Court could not meaning-
fully integrate the concerns about the algorithm into their
decision. Ultimately, the Court asserted that the COMPAS
algorithm report added valuable information, but that in
any case Loomis would have gotten the same sentence
based on other factors such as his criminal history and
his attempting to flee. Nevertheless, the Court required a
written disclaimer to be attached to any future COMPAS
report, but again without any explanation of how it should
or would affect future judicial decision making (Harvard
Law Review 2017).
This interaction of the legal experts with the COMPAS

algorithm was far from useful (Washington 2018). The
argumentation and counterargumentation seem strange.
If Loomis would have gotten the same sentence with-
out the COMPAS report, then the information added by
the report is beginning to appear to be less valuable
than claimed, or at least less impactful. If so, why was it
included? Especially, given that if used “improperly,” it
could violate Loomis’ constitutional rights. Perhaps there
is some unique insight that was provided by the algo-
rithm? Doubtful. Nobody in the trial had the chance to
benefit from knowing the logic of the algorithm since
nobody—except Northpointe—had the chance to interact
with the algorithm or have it explained to them. It is diffi-
cult enough to interact with nonprocess-based algorithms,
but in this case, where the algorithmwas also secret, it was
impossible to interact with it. Laypeople following the trial
must have been just as lost or more.
The lack of a process-based decision aid, paired with an

opaque COMPAS algorithm, allowed the Court to adopt
the big data algorithm expecting that it worked, without
any evidence that it worked. The Court never explained
whether or how theCOMPAS algorithm actually improved
judicial decision making, presumably by reducing recidi-
vism and bias in sentencing. Instead the Court relied on
statistical validation studies from other states or North-
pointe itself to infer that it would reduce recidivism and
bias.
It seems that no one knew then the systematic effect of

risk assessment algorithms in the United States because
the first empirical studies of judicial use of risk assess-
ments were published later (Stevenson 2018; Stevenson
and Doleac 2019). Stevenson and Doleac (2019) found
that Virginia “judges’ decisions are influenced by the risk

score, leading to longer sentences for defendants with
higher scores and shorter sentences for those with lower
scores. However, [they found] no robust evidence that this
reshuffling led to a decline in recidivism, and, over time,
judges appeared to use the risk scores less.” Given similar
results in Kentucky,Megan Stevenson explained that these
results challenge the belief that “actuarial tools outperform
human intuition in predicting crime. . . While there are
reasons to believe that the risk assessment tools provide
new and useful information, themargin of gain is unclear”
(Stevenson 2018).
In sum, it is difficult to see how algorithms such as

COMPAS can support transparent and explainable delib-
eration. But perhaps such complex algorithms can reliably
lead to accurate decision making?

COMPLEX BIG DATA ALGORITHMS AND
SIMPLE RULES: ACCURACY

Overview

How accurate are big data algorithms in predicting human
decision making? One way of answering is to compare
their accuracy with simple rules. Simple rules represent a
diametrically opposing philosophy to big data analytics.
The simple rules presented here, also called simple/fast-

and-frugal/psychological heuristics, process a few pieces
of information and do so in computationally simple ways
(Katsikopoulos 2011b; Gigerenzer and Gaissmaier 2011;
Şimşek 2013). Note that such heuristics are precise algo-
rithms, not verbal descriptions as elsewhere in psychol-
ogy. But in contrast to big data algorithms, in simple rules
the information used is available through knowledge that
people—laypeople or experts—often already possess or
can easily access, and the computations performed are
againwithin human reach, such as simply adding numbers
or comparing them. For instance, recall the Clinton voter
who decided based on just summing two binary pieces of
information widely available, Trump’s alleged populism
and racism. Of course, these rules, as all models, cannot be
perfectly accurate—for example, rules might have trouble
with exceptions—even if they are derived from the behav-
ior of experts.
At a first glance, such simple rules might appear to

be dangerously close to “expert systems” (Jackson 1998),
which were pursued and abandoned in applications of AI
in previous decades. The two approaches differ, however,
in three crucial aspects: First, instead of the emphasis of
the expert-systems approach on building a large base of
information, the simple-rules approach focuses on identi-
fying a fewkey pieces of information and studies how those
can be used to achieve superior performance. Second,
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F IGURE 1 Simple rules, such as fast-and-frugal trees and tallying, overall match the performance of more complex algorithms (CART)
and sometimes outperform them (reprinted from Katsikopoulos et al. 2020, with permission of the MIT Press)

the proposed simple rules are intentionally kept simple
and transparent, in order to increase user buy-in. Third,
the performance of the simple rules (and any competing
models) is evaluated based on machine-learning method-
ologies such as out-of-sample and out-of-population tests.
Simple rules have been discussed disciplines concerned

with decision making, such as psychology (Gigerenzer
and Todd 1999), economics (Rubinstein 1998; Katsikopou-
los and Gigerenzer 2008), business (Sull and Eisenhardt
2015), management science (Hogarth and Karelaia 2005;
Katsikopoulos, Durbach, and Stewart 2018), and, in fact,
also machine learning (Holte 1993; Şimşek 2013). In law,
Epstein (2009) has advocated simple rules, and the con-
cept of the “reasonable man” (Gardner 2015) can be seen
as a driver to simplicity in common-law methodology.
The comparative accuracy of simple and more complex

algorithms has been the subject of multiple studies, each
involving dozens of datasets across domains such as busi-
ness, economics, law, medicine, politics, psychology, soci-
ology, and transportation (Holte 1993; Czerlinski, Gigeren-
zer, and Goldstein 1999; Martignon, Katsikopoulos, and
Woike 2008; Şimşek 2013; Lichtenberg and Şimşek 2017;
Buckmann and Şimşek 2017). While these datasets are
not necessarily “big,” the statistical and machine learning
algorithms used were those that are employed in big data
analytics as well.
The results of such studies have been synthesized, and

there is consensus on two points (Martignon and Hof-
frage 2002; Gigerenzer and Gaissmaier 2011; Katsikopou-
los 2011b; Katsikopoulos, Durbach, and Stewart 2018): (i)
on the average, the predictive accuracy of simple rules and
more complex algorithms is similar, and (ii) each kind of
algorithms has regions of superior performance.
Figure 1 (from Katsikopoulos et al. 2020) provides an

illustration of these two points. In this figure, the perfor-

mance of Breiman et al.’s (Breiman et al. 1984) classifica-
tion and regression trees (CART), a classic family of algo-
rithms in statistics and machine learning that aim to be
transparent, is compared to that of two families of simple
rules, fast-and-frugal trees (left panel) and tallying (right
panel). Fast-and-frugal trees (Martignon, Katsikopoulos,
andWoike 2008) are a special case of decision trees that use
a small number of questions and allow a classification after
each question is asked; for an example see the granting-bail
case below. Tallying (Hogarth and Karelaia 2005) is a spe-
cial case of linear regression where the weights equal one;
see the election-prediction case.
Katsikopoulos et al. (2020) compared the classification

error of these three algorithms in 64 classification tasks,
containing 95 to 32,561 instances (median 904) and three
to 1418 cues (median 19). Each point in the figure shows
themean error of two algorithms, CART and a simple rule,
in one task. The vertical line in the cross around a point
shows two standard errors (on each side of the mean) of
CART and the horizontal line shows the same for the sim-
ple rule. For a point on the diagonal, the error is the same
for CART and the simple rule; if the point is above the diag-
onal, the simple rule made more accurate predictions; if
the point is below the diagonal, CART made better pre-
dictions. Across the 64 tasks, each simple rule predicted
nearly as well as CART, falling behind by only half a per-
centage point. There is an advantage for CART in prob-
lems where the error is small, that is, in easy tasks, and
an advantage for simple rules when the error is larger, that
is, in more difficult tasks.
In the remainder of this section, we will focus on partic-

ular cases where simple rules were compared with more
complex algorithms. We do so in order to give detail on
how simple rules work and show their transparency and
explainability. Beyond these goals, our focus is on accuracy.
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Predicting election outcomes

Nate Silver’s big data algorithms predicted a 71.4% chance
of Clinton winning the 2016 election. Other polls and pre-
diction markets made the same prediction about who had
the clearly better chance of winning.
Historian Allan Lichtman, on the other hand, predicted

that Trump would win. Lichtman (2016) developed a sim-
ple rule he derived based on his domain knowledge, blend-
ing theories of politics, economics, sociology, and psychol-
ogy. Lichtman’s 13 keys to the White House rule does not
deliver incredibly precise probabilities of winning but just
a prediction of who will win. It is based on a historical
analysis of voting behavior in US presidential elections
from 1860 to 1980. The keys were fixed once and for all
before the 1984 election. Each key is an issue that mat-
ters to US voters. Find below Lichtman’s 13 keys, each
stated so that it is either true or false in a particular elec-
tion (note that many of them are the factors that Silver
acknowledged were missing from his big data algorithm;
Silver 2017).

Key 1: Incumbent-party mandate. Incumbent party
holds more seats in the House of Representatives
after this midterm election than the previous one.

Key 2: Nomination contest. No serious contest for
incumbent-party nomination.

Key 3: Incumbency. Incumbent-party candidate is the
sitting president.

Key 4: Third party. No significant third-party or inde-
pendent campaign.

Key 5: Short-term economy. Economy not in recession
during campaign.

Key 6: Long-term economy. Real annual per capita eco-
nomic growth during the term equals or exceeds
mean growth during two previous terms.

Key 7: Policy change. Incumbent administration effects
major changes in national policy.

Key 8: Social unrest. No sustained social unrest during
the term.

Key 9: Scandal. Incumbent administration untainted
by major scandal.

Key 10: Foreign or military failure. Incumbent admin-
istration suffers no major failure in foreign or mili-
tary affairs.

Key 11: Foreign or military success. Incumbent admin-
istration achieves a major success in foreign or mil-
itary affairs.

Key 12: Incumbent charisma. Incumbent-party candi-
date is charismatic or national hero.

Key 13: Challenger charisma. The challenging-party
candidate is not charismatic or national hero.

How to combine these keys to reach a decision? Licht-
man proposed the following simple rule:

If six or more keys are false, the challenger will
win.

For example, consider the 2012 election, where Mitt
Romney challenged Barack Obama. Lichtman counted all
keys as true except 1, 6, and 12, and correctly predicted
that Obama would win. Some of the keys, such as whether
the candidate is the sitting president, require no judgment,
while others, such as charisma, do.
In late September of 2016, Lichtman considered the keys

to be settled and counted. Keys 1, 3, 4, 7, 11, and 12 turned
against Clinton, the incumbent-party candidate. Thus, the
prediction was that Trump will win. Now, there is one
important caveat. According to Lichtman, the keys pre-
dict the majority vote, which Trump did not get. Thus, the
13-keys rule got the president right, but not the majority
vote. No prediction rule is perfect, however, and the rule
was closer to the outcome than big data algorithms. Addi-
tionally, its predictions have been accurate for all elections
since 1984 when it was fixed.
The 13-key rule can be easily understood. The rule also

reveals an intriguing logic that contradicts campaign wis-
dom: The keys all refer to the party holding the White
House and their candidate, not to the challenger (with the
exception of the challenger charisma key). The keys deal
with the economy, foreign policy successes, social unrest,
scandals, and policy innovation. If people fared well dur-
ing the previous term, the incumbent candidate will win,
otherwise lose. The 13-key rule delivers a simple theory, a
process-based explanation for behavior, and creates a plat-
form for discussion.

Criminal profiling

The claim that crime-related predictions are more accu-
rate when made by a computer algorithm than the human
mind is not unique to the big data era. “Actuarial tech-
niques” have been proposed for decades (Dawes, Faust,
and Meehl 1989) and made available as software packages
similar to COMPAS. In geographical profiling, given the
geographical locations of a number of crimes and assum-
ing that those were performed by the same offender, the
goal is to identify the offender’s residence. CrimeStat is a
package by Levine and Associates (2000), which outputs
the probability that any location in a prespecified 2D-grid
is the residence of the serial offender. The description of
CrimeStat by Snook, Taylor, and Bennell (2004) is fairly
detailed and the underlying algorithm seems transparent
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assuming familiarity with basic mathematics. Real-world
data was used to calibrate the algorithm.
Brent Snook, Taylor, and Bennell (2004) tested the claim

that CrimeStat would be more accurate than people. They
recruited 215 prospective undergraduate university stu-
dents and their guardians, and trained them to a simple-
rules approach to geographical profiling, such as the circle
heuristic, which states:

Themajority of offenders’ homes can be located
within a circle with its diameter defined by the
distance between the offender’s two furthermost
crimes.

Note that, unlike the 13-keys rule, the circle heuris-
tic does not lead to a unique answer, but is more of a
guide to locating the offender’s residence. The participants
in the Snook et al. study had to solve 10 geographical
profiling problems (from real serial murder cases), repre-
sented on 2D-maps produced by CrimeStat based on the
location of three murders. One group of participants had
to work on their own, another group was provided with
the circle heuristic, and a third group was provided with
another heuristic. Whereas the unaided group performed
worse than the other two groups and CrimeStat, there
was no statistically significant difference between the two
groups supported with simple rules and CrimeStat’s actu-
arial technique. In fact, the laypeople provided with the
circle heuristic performed slightly better than the actu-
arial technique as measured by the mean map distance
between the predicted offender’s residence and her actual
residence.
In the field, the benefits of actuarial techniques and

their big data algorithm implementations for law enforce-
ment are similarly unclear. In 2010, the Los Angeles
Police Department (LAPD) developed PredPol, a predic-
tive policing software that predicts where future unlaw-
ful activities will occur. After initially being adopted by
departments across the country, numerous departments
have stopped using the software because “it did not help
reduce crime and essentially provided information already
being gathered by officers patrolling the streets” (Puente
2019). LAPD’s own internal audit concluded that there
was “insufficient data to determine if the PredPol software
helped reduce crime.” Surprisingly, the CEO of PredPol
rejected any claims that their big data algorithm should
address the very issue it was supposedly being used for:
“It’s virtually impossible to pinpoint a decline or rise in
crime to one thing. I’d be more surprised and suspicious
if the inspector general found PredPol reduced crime”
(Puentes 2019).
The criminal profiling case prescribes how decisions

should be made, while the next case describes how courts

of judges actually domake their decisions. Social, political,
and legal theory and practice need insight and accuracy in
both prescribing and describing human behavior.

Granting bail

Assume now that a suspect serial offender has been iden-
tified. While awaiting trial in jail, she may apply to be
granted bail (unconditional release). In the UK, such deci-
sions are made by magistrates. How should they decide
whether to grant bail or oppose it? The Bail Act of 1976 and
its subsequent revisions say that magistrates should con-
sider the nature and seriousness of the offense, the char-
acter, community ties, and bail record of the defendant, as
well as the strength of the prosecution case, the likely sen-
tence if convicted, and any other factor that appears to be
relevant. The legal ideal of due process is based on a thor-
ough analysis of the available information. However, the
law is mute on how exactly magistrates should combine
the various pieces of information.What domagistrates do?
Even though its status is weakening (Kahneman,

Slovic, and Tversky 1982; Gigerenzer and Todd 1999),
the ideal of “fully rational” standard economic ratio-
nality is still a dominant description of human behav-
ior. It has not been claimed that the human brain
implements the most sophisticated of big data algo-
rithms (for example, support vector machines or ran-
dom forests), but some other algorithms, such as lin-
ear regression, are routinely proposed. Dhami (2003)
tested empirically if magistrate bail-or-jail decision mak-
ing is better described by a linear model or a simple
rule.
Dhami observed several hundred hearings in two Lon-

don courts. The information available to the magistrates
included the defendants’ age, race, gender, strength of
community ties, seriousness of offense, kind of offense,
number of offenses, relation to the victim, plea (guilty,
not guilty, no plea), previous convictions, bail record,
the strength of the prosecution case, maximum penalty
if convicted, circumstances of adjournment, length of
adjournment, number of previous adjournments, prosecu-
tion request, defense request, previous court bail decisions,
and police bail decision. The magistrates also saw whether
the defendant was present at the bail hearing, whether or
not they were legally represented, and by whom.
Dhami evaluated algorithm accuracy by first calibrating

each algorithm on half of the whole dataset, and then by
testing it in the other half, repeating the process multiple
times to average out random variation. Across the two
courts, the family of algorithmswhichweighted and added
25 features achieved 79% predictive accuracy, whereas
the family of simple rules that only used three features
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predicted 89% of the unseen data points. An example of a
particular simple rule is the following:

Always oppose bail unless (1) prosecution
granted bail and (2) neither police nor previous
courts imposed conditions on bail.

Note that this simple rule explicates a fast-and-frugal
decision tree wherein three questions are asked in
sequence (has prosecution granted bail? has police
imposed bail conditions? have previous courts imposed
bail conditions?) and if the answer to any of those ques-
tions is “no,” then immediately bail is opposed without
moving to the next question.
This rule suggests a gap between descriptions of how

magistrates are deciding and the prescribed due process,
which magistrates claim to be following (Dhami 2003). To
understand this gap, one needs to think about the magis-
trates’ situation. Their task is to do justice to each defen-
dant and the public, by balancing the likelihood of the two
possible errors: amiss occurs when a suspect is released on
bail and subsequently commits another crime, threatens a
witness, or does not come to court. A false alarm occurs
when a suspect is imprisoned who would not have com-
mitted any of these offenses. Yet magistrates do not have
the information to balance the two errors. The law does not
give themany instructions. Even if therewere such instruc-
tions, the English legal institutions do not collect statistics
about the error rates of magistrates’ decisions. And even if
statistics were kept about how often misses occur, it would
be impossible to do so for false alarms; no method can
determine whether jailed individuals would have commit-
ted a crime had they been bailed.
In this situation, magistrates apparently focus on a task

they are more capable of solving than making the correct
decision: to protect themselves. Gigerenzer (2007) calls
this defensive decision making. Magistrates can be proven
wrong only if a released suspect fails to appear in court
or commits a crime while on bail. To protect themselves
against potential accusations by the media or the victims,
magistrates follow the defensive logic embodied in the sim-
ple rule above. The rule is transparent enough to allow the
magistrates to understand it and adjust it if necessary.

SIMPLE RULES AS BENCHMARKS AND
INSPIRATION FOR BIG DATA ANALYTICS

Benchmarking big data analytics

This article aims to provide arguments and evidence that
challenge sweeping assertions that big data analytics are
obviously superior for explaining and predicting human

behavior, and thus should be leading the development of
algorithmic standards in areas such as business or law.
Accepting such assertions uncritically is tantamount to
committing a big data hubris (Lazer et al. 2014), where
“small” data and simple rules are considered inherently
inferior to big data processed by complex models. In con-
trast, Lazer et al. (2014) found that using a few variables
publicly available on the website of the Centers for Dis-
ease Control (CDC) in simple linear models led to more
accurate predictions of the prevalence of flu-related doctor-
visits than the big data Google Flu Trends algorithm. Kat-
sikopoulos et al. (in press) showed that an even simpler
model, one that uses only the most recent observation
on the CDC website, was more accurate than Google Flu
Trends. One might note that the data on the CDC website
is also big. But there is no big data algorithm used at CDC
since the process is essentially just counting. Additionally,
Google Flu Trends was notoriously opaque as the variables
it used and the way it combined them were not revealed
publicly. In general, big data analytics is by design atheoret-
ical, which limits its support for processes we should hold
dear such as providing transparent explanations of human
behavior that we can understand and deliberate about.
Interestingly, decision research across multiple disci-

plines shows that theory-driven, simple rules of thumb
can, under some conditions, be bothmore transparent and
more accurate than complex algorithms. As Rudin and
Radin (2019) said, it is not clear why we use black-box
algorithms when we do not need to in order to be accu-
rate. This is the case in the prediction of election out-
comes, criminal profiling, granting bail, and in a host of
other high-stake situations such as identifying threats in
a security checkpoint while also trying to minimize civil-
ian casualties, or in monitoring and regulating investment
banks (Katsikopoulos et al. 2020). While a complete the-
ory of the situations in which transparency does not need
to be traded off with accuracy is still elusive, some condi-
tions have emerged. For example, the stable world princi-
ple (Katsikopoulos et al. 2020; Gigerenzer in press) holds
that tradeoffs are only necessary when the decision envi-
ronment is stable, that is, does not change or changes in
predictable ways that can be captured by well worked out
formalisms such as probability. Social interactions, how-
ever, are not stable situations (Makridakis, Hyndman, and
Petropoulos 2020). Such principles and conditions have
also been formalized (Hogarth and Karelaia 2005; Kat-
sikopoulos, 2011b; Lichtenberg and Şimşek 2019; Castle in
press).
We should pause and ask: Is there sufficient evidence

that the currently available theories of human behavior,
which are understandable and reasonably accurate, have
been now matched by “smart” big data algorithms in both
transparency and accuracy? There might be evidence for
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this in some cases, and there could soon be more. What
we should not do is rush to judge which algorithms can
form suitable models for supporting human decision mak-
ing without checking the scientific evidence. That would
not be smart.

Inspiring big data analytics

Some AI and machine learning researchers are pursuing
the development of accurate and at the same time trans-
parent models. These approaches seem to employ less
domain-grounded theory and more statistics. We find this
work intriguing and promising. We conclude this article
by commenting on these approaches and offering some
constructive suggestions about how they could be mar-
ried with the approach of simple, process-based, domain-
grounded theory.
Bourgin et al. (2019; for a similar idea, see Trafton et al.,

2020) start from a neural network and try to make it more
accurate at predicting people’s choices under risk through
the following procedure: (i) identify a model from psy-
chology that predicts the human data better than machine
learning models (Erev et al. 2017); (ii) generate synthetic
data from the psychological model and use it to train the
neural network; (iii) fine-tune the neural network with
natural human data, possibly also employing ensemble
(that is, combinations of) models. Indeed, the authors
were able to demonstrate that this procedure resulted in a
model with best accuracy among the models tested. Bour-
gin et al. (2019) also suggest that the same procedure could
be used to boost the neural network’s understandability
and explainability, although they do not show exactly how.
The simple-rules approach can enter in stages (i) and (ii)

of Bourgin et al.’s approach, by using a simple cognitive
rule for choice under risk such as the priority heuristic that
predictsmore accurately than behavioralmodels including
prospect theory (Katsikopoulos and Gigerenzer 2008), and
then testing the accuracy of the thus trained neural net-
work. We are unsure, however, about how the approach of
Bourgin et al. (2019) can improve transparency. To begin
with, the Erev et al. (2017) model used does not specify
the underlying cognitive processes, but only the resulting
choices. Even if a processmodel such as the priority heuris-
tic were used in Bourgin et al.’s procedure, it is not clear
how this would boost the transparency of the proposed
neural network. The use of ensembles might be an addi-
tional complication as Lessmann et al. (2015, p. 134) cau-
tion: “Using a large number ofmodels, a significantminor-
ity of which give contradictory answers, is counterintuitive
to many business leaders.” The idea of Peysakhovich and
Näcker (Peysakhovich and Näcker 2017), to examine the
match of the predictions between domain and machine

learning models in order to hypothesize mechanisms that
the latter might be implicitly expressing, could help here.
There is also a more direct approach to makingmachine

learning models more explainable. The idea is to construct
a newmodel that approximates the predictions of the orig-
inal one, and is easier to explain to stakeholders (Lundberg
and Lee 2017; Molnar 2020). An article in the AI Maga-
zine uses this approach in the context of life insurance—
first predictingmortality risk using randomsurvival forests
and then explaining the predictions to the customer using
a simpler model (Maier et al. 2020).
An issue with this approach is that it decouples expla-

nation and prediction because each one of these func-
tions is performed by a different model. This seems to
be causing all sorts of issues. Data scientists often have
trouble understanding the exact relationship between the
two models (Kaur et al. 2020) or explaining this relation-
ship to stakeholders (Passi and Jackson 2018), which is
ultimately undermining the value of both models and the
whole enterprise (Kumar et al. 2020). The regularization
method proposed by Lichtenberg and Şimşek (2019) in
order to derive accurate models that approximate tallying
might help if it could also be applied to other simple rules.
So,we finishwith a couple of rhetorical questions. Could

one try simple, process, grounded theory in order to build
a model that is at once explanatory and predictive? This
approach might not always work of course (for some prob-
lems, building good theory could be too expensive). But
could this be a place to look at first?
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