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not assume how or in what context
the represented knowledge will be
used (Hayes 1977). Simply stated, logi-
cal inferences based on valid logical
statements never result in invalid
conclusions. The consistency of first-
order logic is appealing, but it comes
at a cost: All knowledge must be stat-
ed categorically; no possible occur-
rences or partially achievable goals
can exist. This consistency property
prevents the use of first-order logic to
represent and solve problems of plan-
ning under uncertainty, which inher-
ently involve incomplete, uncertain,
and inconsistent information.

In response to this limitation, sever-
al researchers have devised augment-
ed logical systems that allow a propo-
sition to be assigned a truth value
that signifies the proposition is con-
sistent with the existing set of facts
(true by default) even though these
propositions have neither been proved
nor disproved (for example, Reiter
1980). Because these default assump-
tions can be withdrawn based on new
information, it is conceivable that
new information will cause a retrac-
tion of an assertion and, therefore, a
reduction in the number of provable
logical statements about a particular
problem. Thus, in contrast to first-
order logic, the number of statements
provable from a set of default assump-
tions does not necessarily grow mono-
tonically with the addition of new
information. Thus, these systems are
called nonmonotonic logics.

To represent and solve a planning
problem using a nonmonotonic logic,
a system builder must acquire the rel-
evant beliefs and assertions from an

lanning consists of devising a
course of action that conforms as

well as possible to a set of goals. A
planner attempts to determine the
optimal action in a particular prob-
lem-solving situation. We are inter-
ested in automating decision support
for a particular set of planning prob-
lems distinguished by the following
characteristics: (1) the current situa-
tion is not known with certainty; (2)
the consequences of action are not
known with certainty; and (3) the
goals of the planning process are
conflicting and, therefore, are not
completely satisfiable. We refer to
problems of this type as planning
under uncertainty. Because these
planning tasks entail uncertainty and
tradeoffs, a purely deductive process
(such as state space search [Fikes and
Nilsson 1971] or skeletal plan re-
finement [Friedland and Iwasaki
1985]) is difficult to employ to select
the optimal plan (Langlotz et al.
1987). In the course of our investiga-
tion of viable alternative planning
methodologies, we evaluated the
applicability of two theoretical
approaches: nonmonotonic logics and
decision theory. In this article, we
establish a simple correspondence
between the two theories, describe
how each theory applies to the plan-
ning task, and offer several
suggestions based on the strengths
and limitations of the two approaches.

Nonmonotonic Logics

One of the most compelling reasons
for the use of logic as a representation
language is that first-order logic does

Decision theory and nonmonotonic logics
are formalisms that can be employed to

represent and solve problems of planning
under uncertainty. We analyze the useful-
ness of these two approaches by establish-
ing a simple correspondence between the

two formalisms. The analysis indicates
that planning using nonmonotonic logic

comprises two decision-theoretic concepts:
probabilities (degrees of belief in planning

hypotheses) and utilities (degrees of prefer-
ence for planning outcomes). We present

and discuss examples of the following
lessons from this decision-theoretic view
of nonmonotonic reasoning: (1) decision

theory and nonmonotonic logics are
intended to solve different components of

the planning problem; (2) when considered
in the context of planning under uncer-

tainty, nonmonotonic logics do not retain
the domain-independent characteristics of

classical (monotonic) logic; and (3)
because certain nonmonotonic program-

ming paradigms (for example, frame-based
inheritance, nonmonotonic logics) are

inherently problem specific, they might be
inappropriate for use in solving certain
types of planning problems. We discuss

how these conclusions affect several 
current AI research issues.
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expert and express them in the non-
monotonic logic. The system uses a
logical inference technique to con-
struct a proof that argues for a partic-
ular course of action to satisfy the
goals of the planning task. Because of
their ability to express inferential
uncertainty as explicit default rules,
nonmonotonic logics are attractive
formalisms for planning under uncer-
tainty.

Decision Theory

Decision theory is also intended to
formalize planning problems that
involve substantial uncertainty (Sav-
age 1972), but its axiomatic basis (Cox
1946; von Neumann and Morgenstern
1953) is distinct from nonmonotonic
logic. In contrast to nonmonotonic
logic, decision theory employs proba-
bilities—continuous measures of
belief in uncertain propositions. To
accommodate conflicting problem-
solving goals, quantities called utili-
ties are used to denote degrees of pref-
erence toward attaining planning
goals. A mathematical method for
combining these probabilities and
utilities is derived directly from the
axiomatic basis. The solution method
recommends the course of action with
the maximum expected utility score.
Expected utility is computed as fol-

lows for m outcomes:
where EU(Pi) is the expected utility of
the ith plan, p(Oj|Pi) is the probability
of the jth outcome after executing the
ith plan, and U(Oj) is the utility of the
jth outcome. To represent and solve a
planning problem using decision theo-
ry, a system builder must acquire
from an expert the probabilities, signi-
fying the likelihood of the potential
consequences of action, and the utili-
ties, signifying the degree to which
each potential consequence satisfies
the problem-solving goals. The proba-
bilities and utilities are then com-
bined to derive an expected utility
score for each plan. The plan with the
highest expected utility is considered
superior because its probable conse-

quences will best satisfy the goals of
the planning task. A thorough intro-
duction to this theory of decision
making is provided in von Winterfeldt
and Edwards (1986) and Holloway
(1979).

Limitations of the
Two Formalisms

In theory, both decision theory and
nonmonotonic logics can be used to
solve problems of planning under
uncertainty. In practice, however,
both formalisms have weaknesses
that restrict their use in planning sys-
tems.

Nonmonotonic Logics

By their very nature, proofs in non-
monotonic logics can later be invali-
dated. The temporary nature of these
proofs has two important conse-
quences for planning systems that use
nonmonotonic logics. First, these sys-
tems focus on the task of constructing
admissible (allowable) plans rather
than selecting the optimal plan (Char-
niak and McDermott 1985). Second,
because not all admissible plans are
optimal, much of the current work on
nonmonotonic logics focuses on for-
malizing the contexts in which non-
monotonic conclusions are appropri-
ate, thereby precluding the construc-
tion of suboptimal plans.

Because a set of logical statements
is called a theory, and because each
consistent set of statements provable
from this theory is called an extension
of the theory, this task is sometimes
called finding minimization criteria
that determine the preferred exten-
sion of a default theory (Etherington
1987). These criteria are represented
as logical axioms that place nonmono-
tonic conclusions in order of priority.
This prioritization is used to deter-
mine which nonmonotonic conclu-
sions should be considered valid in
particular problem-solving settings.
For example, Poole (1986) describes
criteria for finding the preferred exten-
sion by giving preference to the most
specific default theory. This technique
is analogous to the notion that objects
in a hierarchy should inherit proper-
ties from their closest ancestor.

When a nonmonotonic logic is used
to represent and solve a planning
problem, unintended logical infer-
ences can result (Hanks and McDer-
mott 1986). Several researchers
(Shoham 1986; Lifschitz 1986) have
developed formalizations of prefer-
ence criteria that in some situations
allow only intended inferences. Some
recently investigated ad hoc tech-
niques have similar goals (Cohen, et
al., 1987). Doyle (1985) suggests that
nonmonotonic inferences can be
interpreted as a manifestation of pref-
erences. Shoham (1987) makes this
notion explicit by formally defining
preference logics, which implicitly
capture a partial order of intended
inferences. He proposes this formal-
ism as a generalization of other non-
monotonic logic systems and argues
that the various formalizations of
nonmonotonic inference are simply
different methods to operationalize
preferences for some inferences over
others. We agree with this point and
return to it later.

This view of nonmonotonic logics
raises questions about their practicali-
ty. We find it counterintuitive that
preferences, which are essential to the
selection of intended inferences, are
not explicitly represented in non-
monotonic formalisms. In addition,
these formalisms offer little guidance
on how such preferences should be
obtained and used to influence the
design of a nonmonotonic system.
Finally, if new preference criteria
must be devised for new problem-
solving situations, this development
might compromise the problem inde-
pendence of the nonmonotonic logic.

Decision Theory

Whereas symbolic planning method-
ologies often concentrate on the con-
struction of plans, the decision-theo-
retic formalism concentrates on
choosing the best action from a pre-
enumerated set of plans. Thus, deci-
sion theory has been used to date only
as a tool to assist human planners
who have already generated a small
set of alternative plans to evaluate.
Furthermore, decision theory has not
yet been used as part of a consultation
system, in part because of its inability
to constrain the number of plans to
evaluate and in part because of its

EU(P )i =
m

j=1
j i jΣ p(O |P ) * U(O )
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data-hungry evaluation method. How-
ever, for problems limited in size,
knowledge engineering time for deci-
sion-theoretic systems can be compa-
rable to that for rule-based systems
(Henrion and Cooley 1987). The use of
even constrained decision-theoretic
problem-solving models sometimes
poses problems because the acquisi-
tion of probabilities and utilities is
subject to systematic inaccuracies and
biases (Tversky and Kahneman 1974;
Nutter 1987). Although the effect of
biases on problem-solving results can
be estimated using sensitivity analy-
sis (Downing 1987; Pauker and Kassir-
er 1980), these limitations of the
knowledge-acquisition process are
still a source of concern and a subject
of study (Wallsten and Budescu 1983).

Another practical limitation of deci-
sion theory is the difficulty in
explaining its inference procedure.
The mathematical nature of maximiz-
ing expected utility does not corre-
spond closely to human inference
techniques, making this formula
unappealing and unconvincing as a
justification for the results of plan-
ning. A few programs have produced
text explanations of quantitative prob-
lem solving (Kosy and Wise 1984;
Langlotz, Shortliffe, and Fagan 1988),
but this explanation process is sub-
stantially more difficult than the anal-
ogous task for symbolic reasoning pro-
grams.

In summary, we believe that deci-
sion theory is limited in its ability to
constrain the set of possible plans to a
tractable set of admissible plans. In
contrast, nonmonotonic logics are
restricted in their ability to select the
optimal plan from the admissible
plans. In the remainder of this article,
we delineate important limitations of
nonmonotonic logics with respect to
the plan-selection process.

A Decision-Theoretic Model
of Default Reasoning

In a previous article, we showed that
decision-theoretic notions of likeli-
hood and preference underlie rule-
based planning (Langlotz, Shortliffe,
and Fagan 1986). We now extend this
analysis by establishing a simple cor-
respondence between nonmonotonic

logics and decision theory, thereby
revealing the following characteristics
of nonmonotonic planning systems.
First, planning systems that employ
nonmonotonic logics make implicit
assumptions about problem-solving
goals. Second, because goals vary
among problems, nonmonotonic con-
clusions that are appropriate for one
problem can be inappropriate for
another. Third, because the appropri-
ateness of nonmonotonic conclusions
can vary, the ability of nonmonotonic
logics to represent problem-indepen-
dent commonsense knowledge is
restricted.

We analyze nonmonotonic reason-
ing using decision theory to represent
the decision of whether to make a
nonmonotonic conclusion. Figure 1
shows how a decision tree can be used
to represent decisions of this kind.1

The tree shows two choices: to assert
a nonmonotonic conclusion or not.
Regardless of whether the conclusion
is asserted, a probability (p) exists that
the conclusion is valid, and the possi-
bility (1 - p) remains that the conclu-
sion is invalid.

To facilitate an intuitive under-
standing of the correspondence illus-
trated in figure 1, we first consider the
example of TWEETY the bird, which
is used frequently to illustrate the

concept of nonmonotonic reasoning.
Figure 2 shows a simple formulation
of this problem in a nonmonotonic
logic.2 Initially, two propositions exist
in the knowledge base. Statement 1
expresses the fact that TWEETY is
known to be a bird. Statement 2
expresses if we know an object is a
bird and if it is consistent with the
rest of our knowledge the object can
fly (that is, we cannot prove other-
wise), then we are willing to add to
our knowledge base the fact the object
can fly. Thus, in statement 3, the con-
clusion is asserted that TWEETY can
fly, because no specific evidence
exists to the contrary.

Rich (1983) has observed that the
default rule (2) is reasonable because
it is highly likely that birds can fly.
Our decision-theoretic representation
of this problem brings up a specific
question: How large a probability of
error would make the nonmonotonic
conclusion about TWEETY unwise?
This question is addressed in detail in
the following section.

Preferences and
Default Reasoning

Our discussion thus far closely fol-
lows the analysis of several other
researchers who acknowledge that

Figure 1. A Decision Tree That Represents the Decision Whether 
to Make a Nonmonotonic Conclusion.

The square nodes are decision nodes. The branches emanating from decision nodes
represent plans among which a choice must be made. The circular nodes are chance
nodes whose branches represent all the possible scenarios that might occur. The state-
ments at the right dramatize how the problem solver might perceive each scenario in
hindsight. VW signifies valid wait, IA signifies invalid action, and so on. The proba-
bility of a valid nonmonotonic conclusion is represented by p.

Valid Conclusion

Invalid Conclusion

Valid Conclusion

Invalid Conclusion

Conclude & act

Wait

(p)

(p)

VA (“Appropriate action”)

IA (“Too aggressive”)

IW (“Asleep at the switch”)

VW (“Appropriate caution”)
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nonmonotonic inference is related to
notions of likelihood and probability.
Rich (1983) proposes a likelihood
interpretation of default logic using
the certainty factor (CF) calculus
(Shortliffe and Buchanan 1975).3

Michalski and Winston (1986) pro-
posed a similar framework for default
reasoning called variable precision
logic. The probabilistic interpretation
of this default logic also corresponds
to the likelihood notions we describe
here.

In contrast, we concur with other
researchers who propose that prefer-
ence plays an important role in non-
monotonic inference. For example,
Doyle (1985) identifies parallels
between economic theory and non-
monotonic reasoning. He proposes
that the selection of default inferences
can be interpreted as a reflection of
group preferences. Shoham (1987)
makes a similar argument by distin-
guishing between first-order logics,
which make conclusions because they
are valid, and nonmonotonic systems,
which make inferences because a rea-
son exists to do so. He discusses sever-
al reasons that an inference might be
preferred. For example, some are pre-
ferred because they represent default
assumptions that facilitate communi-
cation between the system and its
users. Similarly, inferences that are
likely to be valid might be preferable
to others; likewise, if the potential
incorrectness of an inference is incon-
sequential, the inference might be

preferable. Thus, he concludes, “One
must maximize one’s expected utility
when selecting a nonmonotonic infer-
ence” (Shoham 1987, p. 391).

We now explore the implications of
these intuitive discussions by provid-
ing a rigorous argument to support the
claim that nonmonotonic inference
comprises not only likelihood but also
preference when considered in the
context of planning problems. In plan-
ning, the task is to select or devise an
appropriate action, the consequences
of which are vital to the decision.
Thus, implicit in the assertion of a
nonmonotonic conclusion is the
belief that it is acceptable to act as if
the assertion were true. The desirabil-
ity of acting as if an assertion were
true depends not only on the likeli-
hood of the assertion’s truth but also
on the desirability of the conse-
quences of acting as if the assertion
were true. (The concept of desirability
is signified by the quoted statements
in figure 1). Therefore, even though
the likelihood that a statement is true
might not change, our willingness to
act as if it were true might vary.
These changes in our willingness to
act arise because the appropriateness
of an assertion depends in part on our
preferences for the potential conse-
quences of acting on this assertion.
The fact that utilities dictate the
appropriateness of nonmonotonic con-
clusions is a recurring theme in our
analysis.

This intuitive notion of utility
dependence is confirmed by a mathe-

matical analysis of the decision tree
shown in figure 1. Decision theorists
have derived a quantity for such trees
known as the threshold probability
(sometimes referred to as p*) (Pauker
and Kassirer 1980). This quantity
denotes the probability of making a
valid conclusion below which a non-
monotonic conclusion is suboptimal.
Similarly, the quantity 1 - p* repre-
sents the probability of error above
which a nonmonotonic conclusion is
suboptimal. The value of p* depends
on the relative preference for each
possible outcome of the problem.4

Consider the TWEETY example posed
in the context of a planning problem.
How would we feel if we assumed
TWEETY could fly when, in fact,
TWEETY could not? We might feel
comfortable with the default rule in
figure 2 if we were deciding whether
to buy a birdbath for TWEETY, but
would we feel equally comfortable if
TWEETY were a beloved pet, and we
were considering dropping him off a
cliff (see figure 3)? The more serious
the consequences, the less comfort-
able we feel making the default con-
clusion about TWEETY. This relation-
ship holds true even when the likeli-
hood TWEETY can fly is invariant.

The following medical example fur-
ther illustrates the implications of the
relationship between the threshold
probability and the utilities for the
problem. Consider the following ques-
tion: Does a patient with pain in the
right lower abdomen suffer from
appendicitis? This problem is illustra-
tive because like the birdbath exam-
ple, it is explicitly linked to action:
Because the consequences of untreated
appendicitis are extremely serious, all
patients with known appendicitis are
immediately referred for surgery.
However, the surgeon cannot know
with certainty before surgery whether
a patient has the condition. In fact, it
is considered acceptable medical prac-
tice if as high as 25 percent of patients
sent to surgery do not have appendici-
tis (Pieper, Kager, and Nasman 1982).
Thus, the threshold probability, p*, of
appendicitis above which surgery
should be recommended is at least
0.75. In other words, if it is evident,
based on the existing laboratory and
examination data, that a patient has at
least a 75-percent chance of an appen-

(1) Bird (TWEETY )

(2) Bird (x) and M [Fly(x)] ⊃ Fly (x)

(3) Fly (TWEETY )

Figure 2. A Simple Proof That TWEETY Can Fly, 
as Expressed in Non-monotonic Logic.

M can be interpreted as “consistent with all other known facts.” Therefore, M[Fly(x)] is
interpreted as “the fact that x can fly is consistent with the rest of the knowledge
base.” The facts above the line are in the knowledge base initially, and the assertion
below is proved using modus ponens.

Adapted from Reiter (1980).
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dicitis, the doctor should act as if the
patient has appendicitis and, thus,
should send the patient to surgery.

Would we feel equally comfortable
assuming all birds can fly if the proba-
bility of a bird flying were only 0.75?
The answer depends on what actions
might be taken based on the assump-
tion that a bird can fly. These actions
depend, in turn, on the problem-solv-
ing situation. Unfortunately, a likeli-
hood analysis of nonmonotonic rea-
soning would judge such a default
assumption about flying birds equally
acceptable to a default assumption
about surgery.

Thus, the likelihood view of non-
monotonic reasoning must be extend-
ed to include the notion of utility.
The general principle implied by
threshold analysis is as follows: As
the consequences of an invalid non-
monotonic conclusion become seri-
ous, p* increases, and the acceptable
probability of error decreases. Thus,
two nonmonotonic conclusions with
the same probability of being invalid
might not both be appropriate if the
consequences of error for one are seri-
ous, and those for the other are
insignificant. Consequently, we derive
the following lesson from the corre-
spondence between decision theory
and default reasoning:

The appropriateness of a nonmono-
tonic conclusion is, in part, dependent
on the (un)desirability of acting on an
incorrect conclusion.

A Practical View
of the Two Approaches

We showed how a single nonmono-
tonic default rule, used alone, can be
suboptimal. In theory, however, non-
monotonic planning systems would
contain many more logical statements
that, when used in concert, produce
the desired behavior. We now infor-
mally analyze how these complex log-
ical systems compare with their deci-
sion-theoretic counterparts.

Consider how the appendicitis prob-
lem might be implemented as a com-
plete system. Additional domain
knowledge would be encoded in
default rules to specify those cases for
which it is inappropriate to operate on
a patient. For example, a nonmono-

tonic assertion of higher priority
could be added that specified to refer
for surgery when the patient has two
features that suggest appendicitis:
fever and high white–blood-cell count.
Thus, patients would be referred to
surgery unless they lacked these two
indicators. This approach is oversim-
plified because many pieces of evi-
dence support (and detract from) the
hypothesis that the patient has appen-
dicitis, but it illustrates the imple-
mentation strategy. A set of non-
monotonic logic statements can be
constructed whose antecedents enu-
merate all combinations of symptoms
resulting in a probability of appendici-
tis above the threshold, p*, and whose
consequents conclude that referral to
surgery is the optimal plan. To view
this situation from a decision-theoret-
ic perspective—the “gold standard”
—is to conclude surgery only if the
probability of appendicitis is greater
than p*. As we showed, p* is comput-
ed from the undesirability of inappro-
priately referring a patient to surgery
(or inappropriately not referring a

patient to surgery).
As the number of relevant symp-

toms increases, the number of neces-
sary logical statements increases dra-
matically. In the worst case, O(2n) log-
ical assertions (all combinations)
must be written, where n is the num-
ber of relevant pieces of evidence.5 On
average, however, a few strong pieces
of evidence can dictate a decision
regardless of the presence or absence
of other symptoms, thereby reducing
the number of logical statements
required.

The computational properties of the
decision-theoretic approach are similar
to those of nonmonotonic logics. The
decision-theoretic approach entails the
use of an inference network (Pearl
1986) or influence diagram (Shachter
1986) to update the probability of
appendicitis based on additional evi-
dence. The worst case occurs when
each symptom is dependent on all oth-
ers: O(2n) logical statements (that is,
conditional probabilities) are needed in
this case. If all symptoms are indepen-
dent of one another, only O(n) state-

Figure 3. But, in Fact, TWEETY Can’t Fly.
The undesirable consequences of such actions underlie the appropriateness of nonmono-
tonic conclusions.

SPRING  1989   43



ments are needed, each rule encoding
an update in the belief in appendicitis
based on the presence or absence of
one symptom. In practice, the number
of dependencies is usually intermedi-
ate. Thus, the decision-theoretic and
nonmonotonic logic approaches have
similar combinatoric properties when
implemented.

Nonmonotonic Logics
and Modularity

We define a logical assertion as modu-
lar when its validity does not depend
on the validity of other assertions.
This definition is adapted from Heck-
erman and Horvitz (1987), where the
concept is defined and discussed in
the context of production rules.

We now analyze nonmonotonic rea-
soning and decision-theoretic reason-
ing from the standpoint of modularity.
As we discussed, the validity of each
nonmonotonic assertion depends on
the existence of other assertions in
the knowledge base. This dependency
is an explicitly nonmodular property
of nonmonotonic logics. For example,
the likelihood that TWEETY can fly is
a property of our knowledge about
TWEETY and rarely changes as the
problem-solving goals change. In con-
trast, as illustrated by our discussion
of the birdbath and cliff examples, the
utility of assuming conclusions about
TWEETY often varies among prob-
lem-solving situations (Keeney 1986).
Furthermore, this knowledge is not
explicitly represented. A nonmono-
tonic reasoning system constructed
for birdbath problems would need
substantial modification to ensure
adequate performance on cliff prob-
lems. The interdependence (nonmod-
ularity) among assertions makes
updating and augmenting of the
knowledge base far more difficult and
time consuming. Thus, the perfor-
mance of nonmonotonic systems is
highly dependent on the problem-
solving goals for which these systems
were designed.

In comparison, the decision-theoret-
ic approach maintains modularity
when possible through the use of rep-
resentations that explicitly encode
dependencies if they exist (Pearl 1986;
Shachter 1986). These representations

achieve further modularity by separat-
ing likelihood knowledge from prefer-
ence knowledge (that is, probabilities
from utilities). The relative modulari-
ty and explicitness of a decision-theo-
retic system can simplify knowledge
base updating. To modify a decision-
theoretic birdbath system to solve
cliff problems, the system builder
need not modify the knowledge about
TWEETY and about flying. The
knowledge base only needs to be aug-
mented with the preferences for the
consequences of dropping birds off
cliffs.

Implications for AI Research

As we showed, the combinatorics of
the decision-theoretic and default rea-
soning approaches are similar. Howev-
er, the default reasoning approach suf-
fers from a problem dependence that
complicates knowledge base mainte-
nance. Because nonmonotonic asser-
tions have been organized and ordered
to reflect accurately a particular plan-
ning situation with a particular p*,
the validity of these assertions is
inherently dependent on the goals of
the problem. Consequently, these
nonmonotonic assertions tend to be
specific to a particular planning prob-
lem. We now examine the implica-
tions of this conclusion for several
current AI research issues: planning,
commonsense knowledge, and analog-
ic reasoning.

Use of Nonmonotonic 
Logics for Planning

The appeal of nonmonotonic logics is,
in part, derived from the presumption
that they retain the same appealing
characteristic as first-order logic: The
representation remains independent
of the problem-solving task. As we
just showed, however, the validity of a
nonmonotonic assertion is inherently
dependent on other assertions in the
knowledge base and, thus, on the
problem-specific goals. This conclu-
sion undermines one of the frequent
justifications for the use of nonmono-
tonic logics in the implementation of
automatic problem solvers (Hayes
1977) because it shows that nonmono-
tonic logics have the same problem-
dependent features as other represen-
tations that perform the same func-

tion.
Some researchers argue that these

issues of problem dependence might
be immaterial, because the effect of
the (relatively problem-independent)
probabilities might far outweigh the
effect of the more problem-dependent
utilities. We find this argument
appealing. On the one hand, it advo-
cates distinguishing and analyzing the
probabilities and utilities of a problem
to determine the applicability of a par-
ticular problem-solving technique. We
agree with this point and view it as
one of the key lessons of our analysis.6
On the other hand, this argument
implies that nonmonotonic logics are
most appropriate when the utilities
are relatively unimportant (that is, in
low-stakes situations when the deci-
sion maker is relatively indifferent to
the consequences of action). We also
agree with this point; its frequent rep-
etition would ensure that caution is
exercised when nonmonotonic logic is
applied to high-stakes problem-solv-
ing situations.

Commonsense Knowledge

Attempts to encode large amounts of
problem-independent information
(sometimes called commonsense
knowledge [McCarthy 1986; Lenat,
Prakash, and Shepherd 1986]) are pred-
icated on the assumption that the
knowledge representation used is
problem independent (because it is
isomorphic to logic). As we discussed,
this property does not hold for non-
monotonic reasoning.

Consider the implications of this
observation for the CYC system
(Lenat, Prakash, and Shepherd 1986),
which employs frame-based inheri-
tance (a form of nonmonotonic rea-
soning) to encode commonsense
knowledge. For example, when a
knowledge engineer is encoding
knowledge about birds in CYC, a bird
frame might be constructed contain-
ing a can-fly slot with value true
(figure 4). Several other frames, such
as hawk and seagull, might inherit
information from the bird frame.
Other descendants of the bird frame,
such as the frames for penguin and
ostrich, would override the can-fly
slot with the value false. When the
system encounters a bird for which no
more specific frame exists, it assumes
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that the bird can fly because general
bird knowledge is assumed by default.
However, there are exceptions (such
as brain-damaged birds or roast
turkeys). Without additional knowl-
edge, a planning system would then
act as if these invalid assumptions
were true. As we noted earlier in our
discussion of appendicitis, the conse-
quences of such action can sometimes
be dire.7

One frequent counterargument to
this line of reasoning is that it ignores
other information which we might
have about the problem. More domain
knowledge might be needed, such as
frames that describe brain-damaged
birds. This additional knowledge
increases the number of problems for
which the system’s reasoning is
appropriate because it lowers the
probability of an unanticipated excep-
tion. The possibility for errors still
exists, however (What about the Mal-
tese falcon?). In fact, as long as we are
not certain that a bird can fly, we can
always imagine a problem-solving sit-
uation in which the consequences of
error are so undesirable that we still
do not want to make the default
assumption a rule. Of course, all
exceptions not explicitly represented
could be excluded from our definition
of bird. Then the inferences would no
longer be nonmonotonic inferences;
they would be logically valid.

As we saw, a knowledge engineer
who encodes knowledge in a system
that employs frame-based inheritance
must impose an estimate of the unde-
sirability of invalid conclusions about
birds (and many other things). These
judgments can represent an average of
the consequences of the problem-solv-
ing situations the knowledge engineer
can anticipate, or they can represent
an assessment of the utilities for one
particular problem. In either case, rea-
soning systems that might someday
use the knowledge base to solve par-
ticular problems can be led astray by
invalid default assumptions. Thus,
the knowledge in inheritance frames
in such a knowledge base cannot truly
be problem independent.

Analogic Reasoning

Many researchers have proposed that
the value of an analogy can be judged
in terms of the likelihood that a given

analogy can provide a correct solution
(Russell 1986). This statement, how-
ever, doesn’t consider the effect of
utility information. For example, a
wooden table is quite analogous to a
chair if the problem solver is looking
for a place to sit. However, an analogy
between the table and kindling is
especially valuable if the problem
solver needs warmth. The aptness of
these analogies might well be related
to the usefulness or utility of the pos-
sible solutions as well as to their like-
lihood. The utility-dependent nature
of analogic reasoning might be poorly
understood in part because most
empirical studies of analogy have
examined opinions about the similari-
ty of concepts essentially devoid of
utility information, such as colors
varying in lightness and saturation or
circles varying in size (Shepard 1981).

Conclusions

Decision theory is designed to main-
tain an explicit separation between
likelihood knowledge, which depends
on the characteristics of the world,
and utility information, which
depends on the problem-solving goals.
This separation provides modularity
and flexibility when a knowledge base
is adapted to a new planning situation
and indicates that likelihood knowl-
edge, because it is relatively utility

free, might be an appropriate knowl-
edge representation for use in com-
monsense knowledge bases. Thus,
decision theory represents an impor-
tant candidate for the implementation
of planning systems.

We view our conclusions as an
extension of Shoham’s in that he pro-
poses a logic formalism which iden-
tifies the preference-based nature of
nonmonotonic inferences (Shoham
1987). We provide a quantitative deci-
sion-theoretic basis for this conclu-
sion and argue that the preference-
based nature of these nonmonotonic
inference systems limits their utility.
These limitations suggest that alter-
native representations might offer
greater promise for the solution of
problems of planning under uncertain-
ty which require explicit representa-
tion of uncertainty and tradeoffs.

We envision decision-theoretic for-
malisms that can be used to guide the
selection of appropriate inferences
based on explicit encoding of prefer-
ences. For example, a knowledge engi-
neer would represent commonsense
knowledge in a probabilistic inference
network (Pearl 1986; Shachter 1986;
Lehmann 1988). Problem-specific
preferences would be used to repre-
sent particular planning situations
because these preferences describe the
problem-solving goals and the trade-
offs among them. This utility infor-

BIRD
CAN FLY:  YES
HAS FEATHERS:  YES

PENGUIN
CAN-FLY: NO
. . .

HAWK
EATS MICE: YES
. . .

SEAGULL

. . .

Figure 4. The Use of Frame-Based Inheritance 
to Represent Knowledge about Birds.

Inheritance occurs along the lines between frames. Inherited knowledge can be overrid-
den by specific knowledge in the local frame.
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mation would be combined with the
relevant likelihood-based common-
sense knowledge to solve the problem
at hand. Several researchers have
described instances in which the sepa-
ration of likelihood knowledge and
utility information can be incorporat-
ed into the design of an expert system
(Langlotz et al. 1987; Slagle and Ham-
burger 1985; Klein and Finin 1987;
Langlotz 1987).

Because decision theory provides a
mechanism for combining likelihood
and utility knowledge during problem
solving, it represents an important
tool that should be considered by
builders of planning systems. Used in
conjunction with nonquantitative
techniques to generate candidate
plans (Wellman 1986), the decision-
theoretic approach not only enhances
the ability of a system to select the
optimal plan when the explicit con-
sideration of tradeoffs is essential but
also provides a sound basis for knowl-
edge engineering decisions. The plan-
ning problems we address indicate the
continuing need to combine estab-
lished normative techniques with the
symbolic reasoning and representa-
tion techniques developed in AI. We
believe that these combinations are
fruitful and are likely to lead to
enhanced decision support for prob-
lems of planning under uncertainty.
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Notes

1. The term decision tree has sometimes
been used to denote a recursive structure
that represents a sequential classification
process (Quinlan 1987). We use the term in
its traditional sense—to represent the pos-
sible scenarios that arise when we plan
under uncertainty.
2.We illustrate our approach using a vari-
ant of Reiter’s default logic (Reiter 1980).
Our basic argument also applies to other
formalisms for default reasoning, including
circumscription (McCarthy 1980), McDer-
mott and Doyle’s nonmonotonic modal
logic (McDermott and Doyle 1980), and
several other formalisms.
3. Heckerman (1986) has subsequently
related the CF calculus to probability theo-
ry.
4. The derivation of p* is based on the
observation that at the threshold, the deci-
sion maker is indifferent between the two
choices. Consequently, Pauker and Kassir-
er derive p* by mathematically expressing
the expected utility of each choice in
terms of the probabilities and utilities
involved, then setting these expressions
equal to one another and solving for p.
5. For the purposes of this combinatoric
analysis, we assume that evidence is con-
strained to be either present or absent.
6. A formal framework for addressing these
issues was proposed by Horvitz (1988).
7. Shoham (1987) makes a similar point
when he discusses of the chances of being
stabbed while walking on the street.
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