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Design within Information-
Processing Theory:

The Design Problem Space

The notion of generic design, although it
has been around for 25 years, is not often
articulated; such is especially true within

Newell and Simon’s (1972) information-

processing theory (IPT) framework. Design
is merely lumped in with other forms of
problem-solving activity. Intuitively, one
feels there should be a level of description
of the phenomenon that refines this broad
classification by further distinguishing
between design and nondesign problem
solving. However, IPT does not facilitate
such problem classification. This article
makes a preliminary attempt to differenti-
ate design problem solving from nonde-
sign problem solving by identifying major
invariants in the design problem space.
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The term generic design denotes two
related ideas. It suggests that design as
an activity has a distinct conceptual
and cognitive realization from nonde-
sign activities and that it can be
abstracted away from the particulars
of the knowledge base of a specific
task or discipline and studied in its
own right. It has its origins in the
design methodology research of the
1960s (Cross 1986). At this time, the
observation was made that the vari-
ous design methods, although they
differed in particulars, shared a com-
mon pool of assumptions which con-
ceived the design process as moving
through the following sequence of
steps: (1) an exploration and decompo-
sition of the problem (that is, analy-
sis); (2) an identification of the inter-
connections between the components;
(3) the solution of the subproblems in
isolation; and, finally, (4) the combi-
nation (taking into account the inter-
connections) of the partial solutions
into the problem solution (that is,
synthesis). On the basis of this obser-
vation, many researchers concluded
that “the logical nature of the act of
designing is largely independent of the
character of the thing designed”
(Archer 1969, p. 76). However, they
did not go on to develop the concept
to any significant extent.
Subsequently, these assumptions
were questioned by other researchers
(Akin 1979; Lawson 1979) working in
the different framework of Newell
and Simon’s (1972) information-pro-
cessing theory (IPT).1 Although the
concern of the design methodology
researchers was with the development
of systematic design methods to help
designers (often working in teams)

deal with the increasing amount and
complexity of project information
(Cross 1986), information-processing
theorists are concerned with explicat-
ing the internal structures and proce-
dures individual cognitive systems
use during design activity with what
Eastman (1969) called intuitive
design.

The study of intuitive design, with-
in an IPT framework, has become a
dominant mode of research in design
activity.2 However, this research is
moving in two directions which are
rather dissatisfying from the perspec-
tive of developing a cognitive theory
of design. First, the research tends to
be discipline specific and even task
specific (Kant and Newell 1984; Kant
1985; Steier and Kant 1985; Jeffries et
al. 1981; Ullman, Stauffer, and Diet-
terich 1986; Akin 1979, 1986). Sec-
ond, a proliferation of disciplines and
activities are being labeled as design.
For example, Perkins (1986) labels the
process of knowledge acquisition as
design. Thomas (1978) analyzes com-
munication as a design process.
Thomas and Carroll (1979) assume
that letter writing, naming, and
scheduling are all design activities.
The first of these research trends flies
in the face of the intuition lying
behind the notion of generic design.
The second trend threatens to drain
the word design of all meaning.

One reason for these trends is the
nature of IPT itself. Within IPT,
design is a problem-solving activity.
However, problem solving encom-
passes a wide range of cognitive activ-
ity; indeed, according to some theo-
reticians, all symbolic cognitive activ-
ity (Newell 1980). Intuitively, one
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feels a description of design problem-
solving activity must exist that both
captures the similarities in the prob-
lem-solving process across the various
design disciplines and recognizes the
differences between design and nonde-
sign problem solving. This level is the
one that the term generic design infor-
mally tries to characterize. In the
vocabulary of IPT, a design problem
space (DPS)—a problem space with

major invariant characteristics across
all design situations—must exist.
However, as has been observed by a
number of researchers (Greeno 1978),
the theory does not easily facilitate
such classification. We see three
interrelated reasons for this shortcom-
ing.

First, in some ways, the vocabulary
provided by IPT seems to be missing a
layer. At the top level of the theory,
one can talk about information-pro-
cessing systems (IPSs), task environ-
ments, and problem spaces. However,
the next level down takes one directly
to the implementation details of
specific programs where one must
talk about states and transformations
at the level of the elementary infor-
mation processes. Differentiation of
problem types is readily possible only
at this lower level. There is a gap in
the middle where one intuitively feels
there should be several intermediate
levels of psychologically interesting
concepts, such as generic design.

Second, the structure of the IPS is
underdeveloped. Except for the size of
short-term memory (STM) and read-
write times, it does not impose many
significant constraints on the problem
space. Thus, the problem space tends
to be substantially task determined.

Third, the notion of task environ-
ment has not been fully explored and
exploited within the theory. Although
the theory does say that the task envi-
ronment consists of (1) the goal or
desire to solve the problem, (2) the
problem statement, and (3) any other
relevant external factors, the fact
remains that historically the goal or
motivation of the problem solver has
simply been assumed, and the “other
relevant external factors” have been
effectively ignored.3 The emphasis has
been on how the problem statement
gets mapped onto the problem space.
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Within IPT are two possible sources
of invariants on the DPS. One source
is the structure of the task environ-
ment, the other is the structure of the
IPS. One way of motivating a DPS is
to identify task environments and
information-processing structures
that are particular to design situa-
tions. This strategy is pursued here.
However, we will have little new to
say about the structure of the IPS.
Most of the article is concerned with
explicating the structure of the design
task environment (DTE) and specify-
ing its impact on the DPS.

In this article, we play out the intu-
ition that says the DPS is an interest-
ing and natural categorization of prob-
lem spaces. Our strategy is to (1) char-
acterize design as a radial category
and flesh out the task environment of
the central or prototypical cases, (2)
take the DTE seriously, (3) explicate
the impact of the task environment
and IPS structures on the problem
space of subjects from three different
design disciplines, (4) suggest the fea-
tures noted in these problem spaces
will not all occur in a problem space
where the task environment is vastly
different, and (5) claim these features
are invariants in the problem space of
design situations and collectively con-
stitute a DPS. Two aspects of our
strategy differentiate this work from
much of the current design research:
(1) we take the structure of the DTE
very seriously, and (2) we examine
data from three different design disci-
plines.

Descriptive protocol studies are
used to explore the problem spaces of
three prototypical design tasks from
the disciplines of architecture,
mechanical engineering, and instruc-
tional design. The following eight
significant invariants are identified:
(1) extensive problem structuring, (2)
extensive performance modeling, (3)
personalized and institutionalized
evaluation functions and stopping
rules, (4) a limited commitment mode
control strategy with nested evalua-
tion cycles, (5) the making and propa-
gating of commitments, (6) solution
decomposition into leaky modules, (7)
the role of abstractions in the trans-
formation of goals to artifact
specifications, and (8) the use of
artificial symbol systems. The article

concludes by drawing some morals for
the development of computer-aided
design (CAD) systems, noting some
methodological limitations and sug-
gesting avenues for further research.
We begin by characterizing design and
the DTE.

Characterizing Design and the
Design Task Environment

In this section, we would like to
claim that design is not a ubiquitous
activity. We no more design all the
time than we read all the time, play
chess all the time, or engage in scien-
tific research all the time. However,
the characterizations of design in the
cognitive science literature would
have us believe that most of us do
engage in design activity most of the
time. We briefly review some of this
literature and conclude by offering our
own, rather different, analysis.
Perhaps the most encompassing
characterization of design is from
Simon (1981, p. 130):
Everyone designs who devises cours-
es of action aimed at changing exist-
ing situations into preferred ones. . .
The intellectual activity that pro-
duces material artifacts is no differ-
ent fundamentally from the one that
prescribes remedies for a sick patient
or the one that devises a new sales
plan for a company or a social wel-
fare policy for a state.

On this account, anyone dissatisfied
with existing states of affairs and
attempting to transform them into
“preferred ones” is engaged in design
activity. The domain of design would
seem to be coextensive with the
domain of problem solving.4

An early attempt at circumscription
was made by Reitman (1964). In a
paper on ill-defined problems, he sug-
gested a categorization of problems
into six types based on the distribu-
tion of information within a problem
vector. A problem vector is a tuple of

the form [A, B, =>], where components
A and B represent the start and termi-
nal states, respectively, and the com-
ponent => denotes some transforma-
tion function. Reitman’s Type2 prob-
lems correspond to our intuitive
notion of design. Typical Type2 prob-
lem statements are as follows:



Research is moving

in two directions which are
rather dissatisfying from
the perspective of develop-
ing a cognitive

theory of design.

compose a fugue

design a vehicle that flies
write a short story

design a building

make a paper airplane.

Although these statements encom-
pass widely varying activities, Reit-
man observed that they constitute for-
mally similar problems by virtue of
the amount and distribution of infor-
mation among the three components
of the problem vector. In the case of
the Type2 or design problems, the
invariant characteristic is the lack of
information, for example:

1. The start state A is unspecified
(for example, Design a vehicle. . . .
With what? Putty? Cardboard? Prefab-
ricated parts from GM?).

2. The goal state B is incompletely
specified (for example, How long
should a story be? What should the
plot be? How should it end?).

3. The transformation function => is
unspecified (for example, How should
the airplane be made? . . . By folding
the paper? By cutting and pasting?).
After this seminal paper, design prob-
lems became identified with ill-
defined problems.

Continuing the investigation of ill-
defined problems, Simon (1973)
argued that problems in the world do
not come prelabeled as well defined or
ill defined. Furthermore, according to
Simon, well defined and ill defined are
not mutually exclusive categories;
they constitute a continuum. Where a
given problem falls on this continuum
is a function of the stance the prob-
lem solver takes to the problem; that
is, the problem solver can ignore
existing information or supply miss-
ing information from long-term mem-
ory (LTM) or external aids. The con-
clusion which follows from Simon’s
discussion is that what constitutes a
design problem is determined by the
intentions and attitudes of the prob-
lem solver. This is an interesting posi-
tion that has found some acceptance
in the literature (Thomas and Carroll
1979). It does, however, once again
open up the flood gates about what
constitutes design activity.

Each of these attempts at delimiting
or characterizing design comes from
cognitive science researchers. Design-
ers typically offer different defi-

nitions. A rather well-accepted defi-
nition among designers is from East-
man (1981, p. 13): “Design is the
specification of an artifact that both
achieves desired performances and is
realizable with high degrees of
confidence.” This statement empha-
sizes that the product of design is an
artifact specification and that consid-
erations of performance and realizabil-
ity are integral to the process.
Although each of these definitions
is interesting in its own right and has
a role to play in our understanding of
design, none of them is sufficient for
our purposes here. Design is too com-
plex an activity to be captured in a
one-line definition, particularly a one-
liner that purports to specify neces-
sary and sufficient conditions. As
such, our characterization of design
starts with the observation that
design as a category exhibits what
Rosch (Lakoff 1987) calls prototype
effects. Furthermore, it is what Lakoff

calls a radial category, a category in
which a central, ideal, or prototypical
case exists as well as some unpre-
dictable but motivated variations. On
this assumption, if one shows people
a list of professions—for example,
medicine, legal work, architecture,
teaching, engineering, research—and
asks them which are the best exam-
ples of design professions, they will
all invariably and consistently pick
the same few cases. In this list, we
believe the best examples are archi-
tecture and engineering. We propose
to call these “good,” “central,” or
“prototypical” examples of design
professions.

Having made this observation, we
propose to take a serious look at the
task environment of these prototypi-
cal design professions. In so doing, we
use the term task environment much
more broadly than it is generally con-
strued in IPT. We want to use it to
encompass much of what is relevant
and external to the problem space and
the IPS. The danger with this move is
that either it results in a theoretically
uninteresting term—because in some
sense everything is relevant—or one is
obliged to say what matters and what
doesn’t. We go the latter route and
attempt to specify some of the more
important aspects of the DTE.
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Figure 1. Structure of a Prototypical Design Task Environment.

The structure of the DTE as we
construe it is depicted in figure 1. As
a first approximation, one can note
the following overt features: (1) Many
degrees of freedom exist in the prob-
lem statement. (This statement is just
a positive reformulation of Reitman’s
[1964] earlier point about a lack of
information in design problem state-
ments.) (2) Feedback from the world is
limited or delayed (on the order of
many hours to many months) during
problem solving. (3) The input to the
design process substantially (though
not completely) consists of goals and
intentions. The output is a
specification of an artifact. (4) The
artifact must function independently
of the designer. (5) The specification
and delivery of the artifact (with
specification preceding delivery) are
temporally separated. (6) Costs are
associated with each and every action
in the world (that is, there are penal-
ties for being wrong). (7) Answers are
neither right nor wrong, only better or
worse. (8) The problems tend to be
large and complex.5

We claim these are significant
invariants in the task environments of
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prototypical design situations, and we
can use them as a template to identify
other cases of design. To the extent
that the task environment of a given
problem situation meets or conforms
to this template, this problem situa-
tion is a good or prototypical example
of a design situation. To the extent
that a task environment varies from
this template—by omission of one or
more of the requirements—it is a less
central case of design activity.

Some problem-solving situations
that fit well into the schema are
instructional design, interior design,
textbook cases of software design, and
music composition. Some tasks that
deviate slightly are writing and paint-
ing; there is usually no separation
between design and delivery. The
problem solver actually constructs the
artifact rather than specifying it.
Some activities that radically deviate
are classroom teaching, spontaneous
conversation, and game playing.

Note that we are not stipulating
what is and is not a design activity. To
make such a stipulation, we would
have to insist that the eight task envi-
ronment characteristics—or some

subset of them—constitute necessary
and sufficient conditions for design
activity. We make no such claim.
Rather, all we suggest is that we have
a template of some salient character-
istics common to the task environ-
ment of problem situations which are
consistently recognized by people as
good design activity examples. Prob-
lem situations in which the task envi-
ronment fails to conform to this tem-
plate on one or more accounts are
deviations from the central case. In
this article, we are only interested in
central cases and, thus, have no inter-
est in saying how far one can deviate
from the prototype and still really be
designing. Thus, we use the label
“design” to refer to situations that
closely conform to the prototypical or
central cases.

There are two reasons why this
characterization of design might be
reasonable for our purposes. First, it is
descriptive. We look at the task envi-
ronment of some designers and try to
take it seriously. The task environ-
ment of an activity is usually overtly
visible with minimal theoretical com-
mitments (though it does require




Design is too complex an
activity to be captured in a
one-line definition . . . our
characterization of design
starts with the observation
that design as a category
exhibits what Rosch calls
prototype effects.

some immersion in the activity and
the ability to specify the more rele-
vant factors). Second, in IPT, the IPS
structure is relatively underdeveloped,
leaving the task environment as the
major tool or resource for structuring
the problem space. Furthermore, the
theory asserts that people “are severe-
ly stimulus-bound” (Hayes and Simon
1974, p. 197) with respect to represen-
tation and construct a naive or trans-
parent model of the problem based on
“the surface features of the external
environment” (Newell 1980, p. 714).
Thus, given the accessibility and the
importance of the task environment
to IPT, it seems like a good basis for
classification. In the next section, we
examine each of the invariant features
of the DTE and hypothesize about
their impact on the DPS.

A Case for Generic Design:
The Design Problem Space

In the previous section, we identified
eight interesting invariants in the
structure of the DTE. These invari-
ants are external features of design
activity that have been noted by vari-
ous researchers at differing times and
places in the design methodology lit-
erature. However, we are unaware of
any studies in the IPT literature in
which these factors are taken serious-
ly and their cognitive implications
sketched out. We undertake this task
in this section.

Our strategy is to examine a num-
ber of designers at work and to (1)
reconstruct their problem space, (2)
make an “explanatory connection”
between the features evident in their
problem spaces and the noted invari-
ants of the DTE, and (3) make the
standard argument that the problem
space is as it is because of the struc-
tures of the DTE and the IPS. This
last point implies that taking the
structure of the IPS as a constant, the
features noted in the task problem
spaces will not all occur in a problem
space where the task environment is
vastly different. This implication
leads to the claim that these features
are invariants in the problem spaces
of design situations and collectively
constitute a DPS. We are actually able
to identify eight interesting invariants

in the problem spaces of three differ-
ent design disciplines. As an
overview, we claim the following:

(1) The many degrees of freedom in
design problem statements entail
extensive problem structuring.6

(2) The delayed or limited feedback
from the environment, coupled with
the cost of action, and the indepen-
dent functioning requirement on the
artifact entails extensive performance
modeling of the artifact in the prob-
lem space. This modeling is made
possible by the fact that the
specification and delivery phases are
temporally separated.

(3) The fact that no right or wrong
answers exist to design problems
entails the use of personalized evalua-
tion functions and stopping rules.

(4) The requirements of extensive
performance modeling, along with the
constraints of sequential processing
and STM capacity entail a limited
commitment mode control strategy
(LCMCS) with nested evaluation
loops. This strategy is enabled by the
temporal separation of specification
and delivery.

(5) The necessity of having to
specify an artifact means that design-
ers must make and propagate commit-
ments. A tension exists between the
LCMCS and the need to make com-
mitments.

(6) The size and complexity of
design problems, combined with the
limited capacity of STM, require solu-
tion decomposition. However, the
decomposition is not complete. The
modules are “leaky.”

(7) A phenomenon closely related to
solution decomposition is the media-
tion of goal and artifact by abstraction
hierarchies. It is entailed by the com-
plexity of the problem, STM capacity,
and the fact that the input to the
design process substantially consists
of goal statements, although the out-
put is an artifact specification. It is
also related to the phenomenon of per-
sonalized or institutionalized stopping
rules and the making and propagating
of commitments.

(8) The last problem space invariant
we note and discuss is the use of
artificial symbol systems. It is entailed
by the limitations on the expressive
power of the “language of thought,”
STM capacity, sequential processing,
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Figure 2. The Design Problem Space, as Structured by the Design Task Environment

and problem complexity. It is related
to, and has consequences for, the phe-
nomenon of solution decomposition,
abstraction hierarchies, the making
and propagating of commitments, and
performance modeling.

All these invariants, their intercon-
nections, and their connections to the
invariants of the DTE and the IPS are
explicated in figure 2. Although no
claim of completeness is made for this
list, it is our contention that collec-
tively these invariants differentiate
DPSs from nondesign problem spaces.
However, before actually presenting
and discussing each invariant, a word
about methodology is in order.

Methodology

The method of investigation adapted
here is that of protocol analysis (Eric-
son and Simon 1984). The database
consists of 12 protocols from 3 differ-
ent design disciplines—architecture,
mechanical engineering, and instruc-
tional design. To illustrate and sub-
stantiate our claims for the purpose of
this article, we draw on one protocol
from each of the three design disci-
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and the Information-Processing System.

plines. The decision about which
three of the protocols to use was made
as follows: In the case of mechanical
engineering, only one protocol exists.
There are multiple protocols for
instructional design and architecture.
The decision among them was made
on the basis of the completeness of
the artifact specification and the
fluency of the verbalization.

The architecture task involved the
design of an automated post office
(where postal tellers are replaced by
automated postal teller machines
[APTMs]) for a site on the University
of California at Berkeley campus. The
mechanical engineering task was to
design the APTM for the post office.
The instructional design task was
unrelated. It called for the design of
some stand-alone text-based instruc-
tion to prepare the secretaries of a
medium-sized company for a transi-
tion from typewriters to the View-
point computer environment.” In each
case, the subjects were given a design
brief that stated the client’s require-
ments and were encouraged to probe
the experimenter for further informa-

tion and clarification. They were
asked to talk aloud as they proceeded
with the task. The sessions were
taped on a video recorder.

Each of the tasks are complex, real-
world problems requiring weeks to
months for a complete specification of
the artifacts. We asked the architec-
ture and mechanical engineering sub-
jects to restrict their sessions to
approximately two hours and gave the
instructional designers approximately
three hours. As a result, we received
solutions specified to an incomplete
level of detail.

Each of the three subjects volun-
teered to participate in the study. The
architect (Subject-A) is a Ph.D. stu-
dent in the Department of Architec-
ture at UC Berkeley. He has had six
years of professional experience. The
mechanical engineer (Subject-M) is a
Ph.D. student in the Department of
Mechanical Engineering at Stanford
University. His professional experi-
ence is more restricted than Subject-
A’s, but it includes the design of auto-
mated bank teller machines. The
instructional designer (Subject-1) is a




professional with over ten years expe-
rience in designing industrial training
material.

The analysis of the protocols to date
has been qualitative and descriptive.
We are still identifying the major
components of the DPS and arranging
them in an explanatory fashion so as
to build a model of the design process.
We are not at a stage where we can
engage in any quantitative or predic-
tive analysis. However, we are not
limited to noting and relating every-
thing we see. We have a rather explic-
it and constrained agenda: We want to
know how the identified aspects of
the DTE impact the DPS.

Extensive Problem Structuring

As noted earlier, many degrees of free-
dom exist in a design problem state-
ment (or to put it in Reitman’s terms,
there is a lack of information). This
lack of information impedes the cre-
ation of a problem space. Problem
structuring is the process of finding
the missing information and using it
to construct the problem space
(Simon 1973b). It is the first step in
any design activity. Large projects can
require alternating between problem-
structuring and problem-solving phas-
es. Although some structuring is
required in all problem situations, one
of the hallmarks of design problems is
that they require extensive structur-
ing. The extent to which problem
structuring is necessary and success-
ful determines the nature and extent
of the problem solving that occurs.
Each subject in our experiment
began by articulating and fleshing out
their respective problem statements.
This process proceeded through the
following steps: (1) gathering informa-
tion from the design brief, (2) solicit-
ing information and clarification from
the experimenter through questions,
(3) applying knowledge of legislative
constraints (for example, building
codes, in-house company standards),
(4) applying knowledge of technical
constraints (for example, laws of
structural soundness, laws of learn-
ing), (5) attending to pragmatic con-
straints (for example, time, money,
resources at hand), (6) bringing to bear
self-imposed constraints or personal
knowledge, and (7) negotiating con-

straints. Although each of these steps
can bear considerable discussion, only
the latter two are addressed here.
With respect to the sixth step, two
guestions are raised: (1) what is the
form and structure of this personal
knowledge and (2) how and when is it
brought to bear on the construction of
the problem space? Although we have
no definitive answers to these ques-
tions, we do offer some preliminary
observations. In the case of the sev-
enth step, we illustrate the process of
negotiation and comment on when
and why it might occur.

Form and Organization of Personal
Knowledge. The personal knowledge
our subjects used to construct their
problem spaces was organized in rich,
intricate chunks or schemas. Two
types were discernible: general
schemas and domain-specific
schemas. Generally, neither schema
surfaces explicitly in protocols, but
both are easily inferred from the situa-
tion-specific statements the subjects
make.8

General schemas contain knowl-
edge about the way the world is. They
are acquired over the course of a life-
time and are our primary means of
dealing with the world. They consist
of at least procedural knowledge,
abstract conceptual knowledge, and
knowledge of thousands of patterns
(pictorial, linguistic, musical, and so
on). Procedural knowledge is not open
to introspection (Anderson 1982) and,
thus, does not surface in the proto-
cols. However, both the abstract con-
ceptual knowledge and some of the
patterns are visible.

Abstract conceptual knowledge is
the generalized knowledge—princi-
ples, laws, heuristics—that we extract
and carry away from the totality of
our worldly experience. Although
much structure and coherency exists
in the organization of this knowledge,
it does not necessarily constitute a
theory. It is perhaps better character-
ized as knowledge fragments or
“knowledge in pieces” (diSessa 1985).
It is instantiated and discernible in
the problem space as situation-
specific conceptual knowledge. For
example, here is an excerpt from Sub-
ject-A’s protocol:

(PF1) S-A: You, after all, you proba-

bly have your parcel or your pre-
cious letter and you want to get it
out, stamp it, or ah, have a dialogue
with a machine and see what, how
much you have to pay. Your proba-
bly have to take it out from your
bag, or whatever. So you do need a
sort of protection . . . | don’t want
them to get wet.

Underlying this verbalization are two
knowledge fragments at the abstract,
conceptual level—beliefs about the
use of post offices and beliefs about
when and where people do and do not
like to get wet.

Knowledge of patterns is knowledge
stored in such a direct way that much
of the original pattern or form is pre-
served (that is, there is little general-
ization or abstraction). This failure to
generalize might be voluntary, such as
when students of poetry memorize
lines of text or when architecture stu-
dents draw and commit to memory
the forms of specific buildings, or it
might be involuntary, as in the case of
a stimuli that the cognitive system is
unable to fully comprehend. Instances
of specific patterns are visible in all
the protocols. Subject-A, for instance,
in attempting to reason about an auto-
mated postal interface, immediately
retrieved and repeatedly used the
image of an automated bank teller
machine. However, the image was not
some general conception of an auto-
mated bank teller but the specific
Bank of America Versateller on Tele-
graph Avenue that he regularly uses:

(PF2) S-A: | don’t want to have one
booth after the other and having the
lines, ah, like it were a Versateller,
ah, kind of a service. Bank of Ameri-
ca has that kind of approach, here
on Telegraph. You have two, two
Versatellers and usually have this
long lines on the, ah, walk path.
And whoever, ah, leaves first in one
of the two, ah, then. So you have
one single line for two machines. |
am trying to avoid that.

Domain-specific schemas are built
on top of the general schemas. They
constitute the knowledge acquired
during the years of professional train-
ing. They also consist of procedures,
abstract conceptual knowledge, and
patterns. Again, the procedures are
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not visible in the protocol. The
abstract conceptual knowledge here
seems to be less fragmentary and
more theoretical than with the gener-
al schemas. ¢ (This fact is not surpris-
ing considering that it was acquired as
an organized, systematic body of
knowledge.) For example, Subject-A
had an elaborate minitheory about the
use and organization of space between
buildings. His first sentences on view-
ing the site were as follows:

(PF3) S-A: Well, what comes to my
mind immediately, as | told you
before when | was waiting [for] you,
I was looking at, how this is set by
pathways, this, this open space in
between the sports court yard and
these three buildings. And in think-
ing about the missed opportunity
that people had here, of having a
sort of more relaxed plaza, instead
of being just a cross between these
two directions. Which makes it very
efficient, ah, but for sure it didn’t,
ah, give any contribution to the
urban open space.

Similarly, Subject-l1 had a minitheory
about motivating, teaching, and
imparting knowledge:

(PF4) S-1: The first thing we want to
do with these people is try and sell
them on a system. Any time you
change somebody from an old sys-
tem to a new system, or from what
they are doing to what they’re going
to be doing, or what you’re expect-
ing them to be doing, you’ve got to
give them a good positive reason.
Why do | really? What’s in it for me,
you know. . . . This is positive rein-
forcement.

Several of these protocol fragments
(PF1, PF2, PF3) are also examples of
what we call scenario immersion.
Scenarios are frequently occurring
episodes in which designers recall and
immerse themselves in rich, intricate
images from their past experience.
The experience in question could
have been acquired directly or vicari-
ously through some symbolic medi-
um (for example, reading, watching
television). These episodes seem to
play an absolutely crucial role in the
process of generation and evaluation.
For instance, the scenario in PF1 is
used to generate the functional
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requirement “protection from rain.”
In PF2, the scenario is used to evalu-
ate a proposed spatial configuration of
APTMs. We say more about scenario
immersion in Extensive Performance
Modeling.

Application of Personal Knowledge.
Personal knowledge structures and
procedures are stored in LTM. Their
indexing and retrieval are not well
understood. Problem structuring is
the process of finding and retrieving
relevant schemata and instantiating
them into the problem space. By
instantiation, we mean nothing more

than the process by which a proposi-
tion of the content “All public build-
ings are required to have a ramp
access for the handicapped” is trans-
formed into the proposition that
“This building requires ramp access.”
As it is construed here, problem struc-
turing is not itself a problem-solving
activity. However, the extent to
which it is successful does determine
the amount of problem solving that
needs to occur.

Subject-1 was able to find, retrieve,
and instantiate a single powerful
schema for designing training pro-
grams. The template came with slots
marked for lessons, sections, subsec-
tions, and so on. He merely had to fill
in the blanks with the content of the
particular course. He generated the
required content by (1) asking the
client (experimenter) for a list of tasks
the secretary would be required to
perform, (2) drawing on his own per-
sonal knowledge of Viewpoint, and (3)
consulting the Viewpoint manuals.10
Finally, the selection of content was
guided by an idealized cognitive
model (ICM) (Lakoff, 1987) of what a
secretary is; for example:

(PF5) S-I: All this isn’t going to stay
in this create and edit documents
[lesson]. This is just looking at
what’s available, and what we are
going to have to do. Because within
this table of contents [of viewpoint
manual] we’ve got related informa-
tion—hardware requirements and so
forth that has nothing to do with
the secretaries, and foundation and
environment. Secretaries couldn’t
care less. . . . And the logoff sheet
properties, I, | wouldn’t even teach
the secretaries. That’s none of their

business. They have no need for
that information. That | would
teach your systems administrator.

Subject-A, however, seemed to find
his design problem more of a chal-
lenge and exhibited somewhat differ-
ent behavior. His initial structuring
process took 20 minutes and resem-
bled a brainstorming session. If the
protocol for this phase is recorded as a
directed graph, with the nodes form-
ing individual ideas as they are
uttered in temporal sequence and the
arcs connecting related nodes, then
the result is a lattice structure. The
density and distribution of the links
suggest there are really four smaller
structures. First are some site-related
constraints:

(PF6) S-A: You plotted those trees
and that would really be a sin to
touch them, | think. At least, the
evergreens. . . . As far as seating
space goes, the one just below the
evergreens, | wouldn’t touch all that
corner.

Second is a kernel idea: 1t

(PF7) S-A: And what | thought is |
shouldn’t necessarily think of an
enclosed building. Cause, | am in
the middle of an open space. It
would be a contradiction to place a
formal building there.

Third are some ideas about the inte-
gration of site and structure:

(PF8) S-A: Since this is the view
toward the sports field, things hap-
pen over there after 5:00 p.m. | have
seen people playing softball and ah,
frisbee, and a lot of spectacular kind
of activities. And | might take the
opportunity of using this. So that
people can be out there looking at
the field. The sunset is going to be,
ah, watched. Ah, my guess is that it
would be a good opportunity to use
it. And then now that | think of it, |
am saying, well, | could even, ah,
sort of think of something, some
structure that might use the roof of
my post office to be on a sort of more
privileged position toward the field.

Fourth are some functional ideas
about the flow of mail:

(PF9) S-A: | have to be concerned



about the pick up service. . . . Ah, |
need to be able to service the
machine from behind and to have
enough space to do so.

Thus, he was unable to retrieve a sin-
gle unified plan or schema to guide
his subsequent problem solving. He
had to start his problem solving with
at least four schemas and integrate
them as he proceeded. This situation
was much more challenging than that
encountered by Subject-I.

Sometimes the domain-specific
knowledge of the designer is
insufficient to structure the problem.
In such a case, the designer first tries
to use general world knowledge; if
this method fails, the problem might
be avoided, abandoned, or not even
recognized. For example, the architect
(Subject-A) had no experience in
designing user-transaction interfaces,
but he was explicitly requested to do
so in the design brief. He chose to
assume a “Versateller-type interface.”
When pressed by the experimenter to
provide further details, he gave the
following explanation for avoidance:

(PF10) S-A: The philosophy of it is
that | hate an interface which is not
human. . . . Let’s leave it open. It
might be through a keyboard,
through a menu where you have a
multiple selection and you have a ah,
sort of Versateller mode to answer.

Negotiation of Problem Space Bound-
aries. Constraints as they occur are
not always desirable. Negotiation of
problem space boundaries is an inter-
esting resultant phenomenon exhibit-
ed by most of our subjects. It is an
attempt to shift problem space bound-
aries. Often, it is done to minimize
search effort by transforming the
problem to fit an existing plan or tem-
plate. This seems to be the motiva-
tion behind Subject-I's attempt. Sub-
ject-1, based on past experience,
believed that training programs need
some minimal instruction interac-
tion. The instruction he was request-
ed to design on this occasion was to
be completely self-contained (that is,
no instructor interaction). He
attempted to make the current task
conform to his normal mode of opera-
tion:

(PF11) S-1: Ok. We can’t negotiate
you, ah, considering bringing these
people in, ah, in possibly two groups
of five, after hours, paid overtime or
something, or is this already.

Sometimes negotiation is also used
to enlarge and complicate the prob-
lem. Subject-A attempted to do this
type of negotiation. On viewing the
small triangular site he was given for
the proposed post office, he was not
content to just build a post office. He
wanted to redesign the whole area:12

(PF12)

S-A: So, given the fact we have that
triangle [that is, the site for the post
office] over there as a limit. And |
cannot exceed that | suppose?

E: Right, that, that. . . .

S-A: | have to take that for granted?
E: I, I would think so.

S-A: That’s the boundary of. You do
not allow me to, to exceed in, in my
area of intervention?

E: No, | think you should restrict it
to that.

S-A: So, | am constrained to it and
there is no way | can take a more
radical attitude. Say, well, look, you
are giving me this, but | actually, I,
I'd come back to the client and say
well look, | really think that you
should restructure actually the
whole space, in between the build-
ing. I’d definitely do that, if that
was the case. You come to me as a
client, and come to me with a trian-
gle alone, | will give you an answer
back proposing the whole space.
Because, I, | think the whole space
should be constructed. So, that
there is an opportunity to finally to
plan and that space through those,
ah, this building, open up Anthro-
pology and, and plan the three
buildings together. So, as to really
make ah, this ah, a more communal
facility.

The motive here is more difficult to
speculate about. It could be a belief
that this enlarged scope will result in
a more effective artifact, a desire for a
larger fee, exuberance and enthusiasm
for rebuilding the world in one’s own
image, and so on.

Extensive Performance Modeling

Four important aspects of the DTE
converge to necessitate extensive per-
formance modeling of the artifact (in
its intended environment) in the DPS.
The first is the penalty for being
wrong: It is a fact about the world that
every action occurs in real time, con-
sumes real resources, and has real
consequences. In other words, it is
impossible to set the world back as it
was before the action. At best, one
can only take additional action (at
additional cost) to remedy the situa-
tion, but traces of the original action
will invariably remain. This fact is
equally true of bending one’s little
finger, uttering a sentence, walking to
the grocery store, building a house or
a freeway, or putting a man on the
moon. The difference in each of these
cases is in the cost and residue—the
penalty for error. As the penalty for
error increases, we respond by think-
ing through and anticipating as many
consequences of an action as possi-
ble—before acting.

The second aspect is the autonomy
of artifact: The artifact has an inde-
pendent existence from the designer
and must make it on its own. The
designer cannot be there to explain its
significance or perform its function.
For example, in the case of the stand-
alone instruction, the instructional
designer is not in the classroom to
respond to difficulties and questions
of comprehension. He must anticipate
the necessary interaction and respond
to it in the structure of the artifact.
Such anticipation or prediction
requires extensive models of the arti-
fact interacting in its intended envi-
ronment.

The third aspect is delayed or limit-
ed feedback from the world: Feedback
from the environment is a major
mechanism used by adaptive systems
to enhance goal achievement in the
face of variable environmental factors.
One of the most dramatic conse-
guences of the DTE structure is that
the feedback loop is delayed. The
design is being developed between
times t and t + 1 (see figure 1), but it
does not interact with the world until
time t + 3. However, this stage, for all
practical purposes, is a point of no
return. Resources have been
expended, and the damage has been
done. The feedback from this point
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Designers are adept at negotiating this tension between keeping

options open for as long as possible and making commitments.

can not guide the designer in the cur-
rent project but only the next similar
project. To guide the current problem
solving, the designer must simulate or
generate his own feedback between
timestandt+ 1.

The fourth aspect is the temporal
separation of specification and deliv-
ery: There is a linear, temporal separa-
tion between artifact specification
and delivery. In figure 1, the
specification is complete at time t + 1
and the artifact constructed in the
world at time t + 3. Ideally, the arti-
fact is completely specified before
construction begins.13 This temporal
separation enables the designer to
model artifact performance—in the
problem space or some external medi-
um—to minimize damage and the
expenditure of more substantive
resources.

Performance modeling is necessitat-
ed by the first three aspects and
enabled by the fourth.

Modeling is both internal and exter-
nal to the problem space. Some of the
possibilities—and the sequence in
which they are used—are as follows:
(1) entailments of the designer’s
ICMs, (2) scenario immersion, (3) pic-
torial models, (4) mathematical mod-
els, (5) mock-ups, (6) surveys, and (7)
computer simulations. Our subjects
did not have the time or resources to
make use of all these modeling
devices—though they all pointed out
when they would normally use them.
They were basically restricted to their
problem space and paper and pencil.
This restriction allowed them to take
advantage of only the first four types
of models. We restrict our discussion
to a few comments about the first two
models.

The designer’s ICM of the world
allows for quick and automatic infer-
ences. We have already encountered
an example in PF5 where Subject-I
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uses his “secretary ICM” to quickly
evaluate whether to include certain
material in the lessons. Such infer-
ences do not seem to require any
effort. They fall out automatically
from the designer’s idealized cognitive
model of the world.

Scenario immersion is a more elab-
orate process whereby the designer
pulls out a relatively concrete sce-
nario from his past experience and
immerses himself in it. Knowing how
the scenario actually transpired, he
draws on similarities between the sce-
nario and the current situation to cal-
culate the entailments of the current
situation. It is a strategy of both first
and last resorts. For example, we saw
in PF2 how Subject-A evaluated one
possible spatial configuration of
APTM machines by doing a mapping
between it and a previously encoun-
tered similar situation, the conse-
guences of which he had first-hand
experience. Subject-M, in determining
the size and height of APTM
machines, wanted to do a formal
study to see how people would use
the machine. However (perhaps
knowing he can’t have a formal
study), he immediately and without
prompting indulged in scenario
immersion.

(PF13) S-M: Ok. | think [we need]
user group studies about how . . .
they would do the transaction. |
think there is something about how
. .. they’re going to use it. Maybe,
most students maybe riding bikes
sometimes. Or most people, we
expect them to walk, walk in. But
sometimes maybe students [are]
kind of lazy, or maybe they ride
their bike or moped.

Although their external models varied
according to task demands and their
preexisting notational systems, the
scenario immersion strategy was com-

mon across all subjects.14

Personalized or
Institutionalized Evaluation
Functions and Stopping Rules

It has been noted by many people (Rit-
tel and Webber 1974) that there are no
right or wrong answers in design situ-
ations, only better and worse ones.
This observation has two interesting
consequences at the level of the prob-
lem space. First, it means that evalua-
tion functions are often personalized
or at least institutionalized.15 This
personalization is quite apparent in
the earlier uses of ICMs and scenario
immersion. Second, the point at
which a design is complete is a func-
tion of cognitive and personal
resources. Subject-1 asked to stop
because he was tired. Subject-M
reported he could not proceed any fur-
ther without doing a mock-up of the
APTM; because we did not have the
resources there for him to do so, he
used this reason to terminate the ses-
sion.

Limited Commitment Mode
Control Strategy with
Nested Evaluation Cycles

In Extensive Performance Modeling,
we discussed the importance of per-
formance modeling. Ultimately, its
purpose and value is to enable the
designer to anticipate the performance
of the artifact and the consequences of
releasing it in the world. Because
what matters is the performance of
the final, complete artifact (at time t +
3), one possible strategy is to delay
evaluation until the specification is
complete (at the end of time t + 1).
Evaluation at this point would cer-
tainly yield as good a value as possible
short of direct feedback at time t + 3.
However, given the time, cost, and
complexity involved in the design
phase itself, it is neither optimal nor



feasible. Quite apart from the time
and costs involved in generating a
complete design and then having to
scrap it and start all over again, it is a
fact about adaptive systems that they
require continual feedback when
engaged in any goal-seeking endeavor.
It is simply not possible for people to
work for months on end without hav-
ing any indication about the value and
status of the work with respect to the
goal. Thus, not surprisingly, we found
that our subjects did not wait until
the artifact was completely specified
to evaluate its performance.

Because the design unfolds in a
quasi-linear sequence, generally start-
ing with a kernel idea that is trans-
formed and augmented until the final
form emerges, another possible strate-
gy is to evaluate components of the
artifact as they are being generated.
This strategy would result in a linear
sequence of short generate-evaluate
cycles. Although this is cognitively
tractable, it can arrest design develop-
ment by requiring strict adherence to
earlier decisions. That is, a decision
made at one point, although attractive
in the local context, might be inappro-
priate in a later, more complete con-
text. With this strategy, one would be
stuck with the earlier decision. Our
subjects did not use this control strat-
egy either.

Instead, all our subjects used a lim-
ited commitment mode control strat-
egy (LCMCS), which incorporates the

best of both worlds: It is cognitively
tractable, enhances design develop-
ment, and gives good evaluation
results. It is necessitated by the essen-
tially sequential nature of symbolic
processing and made possible by the
fact that the design phase is separate
from, and prior to, the delivery phase.

If one looks at the design process at
any given time, one finds that there
are at least three contexts that the
designer needs to attend to: (1) the
component of the artifact currently
being generated or focused on, (2) the
complete artifact in its current state
(that is, the design so far), and (3) the
projection of the artifact in its com-
plete state (that is, the final design).
The LCMCS allows the designer to
take each of these contexts into con-
sideration.

As a first option, the designer can
evaluate a generated or focused com-
ponent on its own and make a deci-
sion to accept or reject it. For exam-
ple, the instructional designer thought
of including the component “start
with basics and finish with more
complex” in a subsection entitled
“What Will Be Trained.” He rejected
it even before verbalizing it. (It sur-
faced only when the experimenter
intervened with his question):

(PF14)

S-1: Ok, we’ve overviewed the
course now just as far as the selling
features. Now we’re going to do a
little bit of overview of what to
expect. [writing: “What Will be
Trained”] Ah, now what we will
train. Ok, and we put that over. . . .
[writing: “Six 1-hour Sessions™].
We’'re going to, oh hell, that’s bull-
shit.

E: What was bullshit?

S-I: Start with basics and finish with
more complex. Well of course. What
in the hell else would you be doing?
I am not going to step you right off
the end of the Titanic and ask you
to swim.

What matters for present purposes is
that the evaluation of the component
was not done in the context of the
design but strictly locally, on its own
terms.

Second, the designer can evaluate a
generated or focused component in
the current context (that is, the con-
text of the design so far). This practice
results in a better evaluation and an
increase in the number of options. He
can choose to reject or accept the cur-
rent component, or he can choose to
reject or modify some previous deci-
sion to make the current one accept-
able. For example, at one point, Sub-
ject- made a decision to the effect
that secretaries don’t need to know
about “wastebaskets™ (an icon used to
delete computer files). A little further
down he decided that they should
know how to recover deleted icons.
Then he realized that the only way
they can do this is if they know how
to use wastebaskets. At this point, he
could simply reject the later decision
of teaching the secretaries about
recovering deleted icons, but instead
he decided to undo the previous deci-

sion and include a section on waste-
baskets. It was then possible to adhere
to the second decision of teaching
about the recovery of deleted icons.

Finally, the designer can evaluate
the generated or focused component
in a later, more complete context (at a
later time), further increasing accura-
cy and options. In this situation, he
can accept or reject the current com-
ponent, as in the first case; modify
some previous decision to make the
current one acceptable, as in the sec-
ond case; or modify some future deci-
sion to make the current one accept-
able. For example, Subject-A during
his initial structuring phase had an
idea for using the roof structure of the
post office as a seating platform for
viewing the sports field:

(PF15) S-A: | could even, ah, sort of
think of something, some structure
that might use the roof of my post
office to be on a sort of on more
privileged position toward the field.

However, when he calculated the size
of the structure and realized how
small it would be (that is, reevaluated
it in the current, more complete con-
text), he abandoned the earlier idea:

(PF16) S-A: The thought that | had
before, that | might use, the enve-
lope itself, the form, the roof, ah,
the walls, to, to implement some
sort of, ah, landscape element, so as
to have a major view toward the
sports field. That | am denying now.
... I really am coming back to this
and seeing that, after all, | won’t
have huge lines. After all | just have
three booths and a roof. That’s what
I really have here. So, I'm sort of
seeing the extent, ah, to which this
problem will be heading to.

Making and Propagating
Commitments

A design task is not complete until
the artifact is completely specified. A
specification is a complete, procedu-
ral, and declarative description, which
when executed by an external agent
results in the construction of the arti-
fact. It is not sufficient to wave one’s
hands and talk about the artifact in
some general terms. One must actual-
ly make, record, and propagate deci-
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sions while proceeding; otherwise,
one will have nothing to show at the
end of the session. Each of our sub-
jects did explicitly record and propa-
gate their decisions.

An interesting tension exists
between the LCMCS and the need to
make commitments—between not
acting and acting rashly, between
being Hamlet and being Laertes.
Designers are adept at negotiating this
tension between keeping options open
for as long as possible and making
commitments.

Solution Decomposition
into Leaky Modules

A major cognitive strategy for dealing
with large complex problems is
through decomposition. Decomposi-
tion was a major step in the norma-
tive models of the design methodolo-
gy movement (Alexander 1964). It has
since been questioned and discredited
as overly simplistic and even harmful
to the design process. As Alexander
(1965) subsequently noted,“A city is
not a tree; it is a semi-lattice.” In
Simon’s (1962, 1973a, 1977) vocabu-
lary, the world is only nearly decom-
posable. What is to be made of the
“nearly”? Some interpret it to mean
that one can not talk about solution
decomposition in any significant
sense. Others assume it can be
ignored and continue to do clean, tree-
like decompositions (Brown and
Chandrasekaran 1985).

Our data show extensive decompo-
sition. Each of our subjects quickly
and automatically decomposed their
problem and developed their solution
in a dozen or so modules. Subject-M’s
modules were items such as a key
pad, screen, stamp dispensary, parcel
depository, and weighing mechanism.
The decompositions were discipline
specific. They were not invented
anew for the problem but seemed to
be part of the designer’s training and
practices. However, equally impor-
tant, the subjects did not treat the
modules as strictly encapsulated but
rather as leaky modules. A decision
made in one module could have con-
sequences in several others. The sub-
jects seemed to have some sort of
ongoing monitoring process that
looked for interconnections across
modules.
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Figure 3. Conceptual or Logical Structure of the Transformation
of Goals to Artifact Specifications.

The subjects dealt with the problem
of leaks in one of two ways. One
method was to plug the leaks by mak-
ing functional level assumptions
about the interconnecting modules
(see Abstraction Hierarchies Mediate
Transformation of Goals to Artifact).
This method enabled them to bring
closure or encapsulation to a module
and make it cognitively tractable. For
instance, in designing the first lesson,
Subject-I did not have to attend to the
details of the third lesson. It was
sufficient to make some high-level
functional assumptions about the les-
son. Similarly, in considering the
height and angle of the APTM key
pad, Subject-M did not attend to the
details of the stamp dispensary. A sec-
ond method of dealing with leaks was
to engage in opportunistic behavior
—to actually put the current module
on hold and attend to some of the
interconnecting modules right there
and then.

Abstraction Hierarchies Mediate
Transformation of Goals to Artifact

The input to the design process is gen-
erally a set of goals or intentions. The
output of the process is generally a
specification of an artifact. The goals
come substantially from the client
(though are elaborated in discussion

with the designer) and are a statement
of the behavior he wants the artifact
to support. The artifact specifications
are substantially generated by the
designer (though the client’s brief
might provide some guidelines at the
level of the artifact) and specify those
aspects of the artifact which he con-
siders to be causally relevant in the
given circumstances. Conceptually, or
logically, it is tempting to say that the
transformation from goals to artifact
specifications is mediated by func-
tional specifications (see figure 3). On
this account, one gets a story where
the intentions are carried out by
means of the functioning of the arti-
fact, and the function is carried out by
means of the causal structure of the
artifact. Both function and causal
structure have to fit the intentions,
but they are only constrained, not
determined, by them. In fact, the
intentions constrain (underdetermine)
function, and function constrains
(underdetermines) causal structure
(see figure 3).

Such explicit mediation is some-
times visible in our data. For example,
Subject-M, when determining the
components and configuration of the
APTM, began with an explicitly func-
tional vocabulary.

(PF17) S-M: | think that function-



ing-wise we have some criteria. Ah,
it’'s supposed to fulfill the require-
ment of user to purchase the
stamps, mail the letters, and weigh
parcels and mail it. Certainly there
also will be register, should be
something that can do the function
for registering letters. And ah, cer-
tainly we expect it to be user-friend-
ly and without requiring any train-
ing, and transparent to user.

At this point, there is no indication
of how these functions will be real-
ized. A few minutes later they are
mapped onto device components on a
one-to-one basis:

(PF18) S-M: So | would assume there
is input and output devices . . . and
we got to also have depository . . .
for letters and parcels, and some-
thing for . . . delivering device for
stamps. . . . And we also need some
device to weigh.

Generally, though, the story that
emerges from the data is not quite so
clean and is closely connected to the
near-decomposability phenomenon
noted in the previous section. The
functional specifications and the
causal structure specifications are not
two distinct ontological categories but
the same category under different
descriptions. Functional specifications
treat the artifact—or some component
of it—as a black box and attend only
to the input and output. These
specifications basically answer the
guestion “What function will this
artifact, or this part of it, accom-
plish?”” Artifact specifications detail
the causally efficacious structure of
the artifact. They answer the question
“How is the function to be accom-
plished?” For example, during the
course of designing the first lesson in
the training package, Subject-l worked
with several different modules, inter-
connected in various ways. Some of
these modules are lessons, sections,
subsections, paragraphs, sentences,
and the choice and arrangement of lex-
ical and grammatical elements. These
modules correspond to what we called
solution decomposition in the previ-
ous subsection. In addressing each of
these modules, the designer can
choose to do it at various levels of
abstraction or detail. The functional-

causal structure distinction is just a
special case of this abstraction process.

The status of any module vis-a-vis
the functional-causal structure dis-
tinction depends on whether a what
or how question is asked of the mod-
ule. For example:

* What is the function of this lesson?
* How is it going to achieve this func-
tion? (by means of these sections)

 What is the function of these sec-
tions?
« How are they going to achieve their
function? (by means of these subsec-
tions)

* What is the function of these sub-
sections?

« How are they going to achieve their
function? (by means of these para-
graphs)

In asking the different questions, the
designer chooses to attend to different
levels of detail. Ultimately, this
regress must bottom out at a level
where the artifact is completely
specified. Some interesting observa-
tions can be made about where it bot-
toms out and the number of levels a
designer explicitly considers.

Our data indicate the number of
levels explicitly attended to by a
designer is a function of his experi-
ence and familiarity with the task,
availability of relevant knowledge,
and personal preferences. The more
routine a task is, the more quickly
and directly the designer can get to
the low-level details, if he so chooses.
He knows by experience what type of
artifact supports what type of goals
and does not have to reason through it
using “first principles.” Of our three
subjects, Subject-1 found the task
quite routine and traversed the
abstraction hierarchy quickly. Sub-
ject-M, as noted earlier (PF17 and
PF18), did cascade down several levels
of function-artifact specifications.
Subject-A, when confronted with
designing the automated mail-han-
dling system for the post office, dealt
with it in strictly functional terms.
He simply did not have the knowl-
edge to specify lower-level details.

However, Subject-A consciously did
something that was rather interesting.
In determining the configuration and
location of the post office building, he

purposefully stayed at a highly
abstract level for an extended period
of time so as not to crystalize or com-
mit himself too soon to low-level
details:

(PF19) S-A: I am constantly referring
to that sketch by the way. As you
can see it’s ah, although its the
lousiest of them all, it still, still
something that I, I, I, and | am not
willing to do any other sketch at the
moment. Because |, | am really, try-
ing to figure it out and | am doing it
at an abstract level. So, that, that . . .
flow is not affected by the crystaliza-
tion of an idea.

Thus, training, personal prefer-
ences, style, and a number of pragmat-
ic factors can affect the number of
abstraction levels that are considered
and how quickly one descends the
hierarchy. This point is tied to the
personalized evaluation function and
stopping rules observation discussed
earlier. Descending too soon or not
descending at all is a common mis-
take of novice designers.16 This point
relates to the earlier point about the
tension between the LCMCS and the
making of commitments.

The level of detail at which the
designer chooses to bottom out
depends on professional conventions
and standards, personal preferences,
style, and a host of pragmatic factors.
Subject-I, for example, did not stop at
the specification of the actual words
and sentences but went on to also
specify page layout and typeface. How-
ever, he did not have to stop there. He
could also have specified the chemical
composition of the ink or the tensile
strength of the paper. He chose not to.
He left it as someone else’s responsi-
bility. He simply assumed they would
function in the “normal way”—that
the ink would not dissolve and the
paper would not fall apart—and did
not feel the need to provide any
specifications for them. Every design
profession has some conventions in
this respect, and there is always some
freedom either way that the designer
can exercise at his discretion.

Use of Artificial Symbol Systems

Designers often use artificial symbol
systems to filter and focus informa-
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Natural Language
(Design Brief)

Topology
(Bubble Diagrams)

Similarity Geometry
(Rough Sketches)

Artificial Symbol Systems

Euclidean Geometry
(Plans, Elevations, Sections)

Affine Geometry
(Isometrics)

—>

Projective Geometry
(Perspectives)

—>

——p Mockups/Models

Figure 4. Symbol Systems Used in Architectural Design.

Figure 5. First Rough Sketch of Floor Plan of Post Office.

tion and augment memory and pro-
cessing. These systems are so crucial
for the problem-solving process that if
they do not pre-exist they have to be
invented before the design can pro-
ceed.l” Their use and importance can
be seen most dramatically in the case
of architecture. It is possible to recog-
nize at least seven different symbol
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systems (six of them artificial) in the
architect’s repertoire (see figure 4).
They are (1) natural language, (2)
topology (“bubble diagrams™), (3) sim-
ilarity geometry (rough sketches), (4)
Euclidean geometry (plans, elevations,
sections), (5) affine geometry (isomet-
rics), (6) projective geometry (perspec-
tives), and (7) models or mock-ups.

(Admittedly, the correspondence
between the formal geometries and
the architect’s various drawings is
only approximate, but it does serve to
highlight the richness and variety of
artificial symbol systems that are
actually used.)

The symbol systems from topology
to Euclidean geometry form a sort of a
hierarchy. In fact, they map onto and
support the abstraction hierarchy dis-
cussed earlier. It is possible to make
and represent distinctions at the
lower levels that the higher levels do
not support. Similarly, it is possible to
make and represent distinctions at the
higher, abstract levels that can only be
made at the lower levels in a hidden
or obscure fashion. For example, met-
ric distinctions are preserved in
Euclidean geometry but not in topolo-
gy, and although every proposition of
topology is trivially true in Euclidean
geometry, topology does not come
into its own until one abstracts away
from metric and other details.

Subject-A in his two-hour session
used the symbol systems of natural
language and similarity geometry.
Two interesting comments can be
made about his use of these systems.
(1) Moving between the systems auto-
matically commits him to a level of
detail by selectively highlighting and
hiding information. (2) Within a single
symbol system, he constructs multi-
ple representations of the artifact. In
both cases, we want to note that these
external representations are not for
communicating something after the
fact. They serve an indispensable role
in the generation, evaluation, and
decision-making process. Once deci-
sions are made, symbol systems serve
to record and perpetuate them.

As an illustration of the first point,
consider the following sequence of
protocol fragments and the accompa-
nying diagrams in which Subject-A
determined the form and configura-
tion of the post office building:

(PF20) S-A: But | could eventually
have one single space, where all the,
ah, mail is, is delivered. Which
eventually would open up in a sin-
gle way and have the booths orbit-
ing around it. So that a given line
might occur here, another one here,
and another one there. . .. Now



what | see is a more enclosed to
itself structure. By that | want to
say is that there is an inner core and
then this roof extending around it.

Along with this verbalization was the
concurrent realization of the geomet-
ric form in figure 5.18

The relationship between the ver-
balization and the diagram is a one-to-
many mapping. The diagram contains
several elements that the verbaliza-
tion does not. It contains and makes
explicit information on the rough size
(relative to users) and shape of each
unit, the configuration of the units,
and how the designer envisions the
waiting lines forming. This explica-
tion of information is not an accident.
It is simply not possible to draw the
artifact in similarity or Euclidean
geometry without making commit-
ments on these issues, regardless of
whether you are ready to.1° In fact, a
few minutes later, while examining
figure 5, Subject-A expressed surprise
when he realized the full extent of his
commitment and began to modify it.

(PF21) S-A: | don’t want to, to affect
the type of line that might happen.
Why did | draw this, ah, like some-
thing that sticks out? Ah, no. I actu-
ally want to minimize even more.
So, the way | see it now is I'll have
to, ah, the booths [are] conceived,
probably in such a way that, the ele-
ment itself is, is really minimized
as, as, ah, formal or volumetrical
type of ah, intervention. We have a
main structure and 1, 2, 3 inter-
faces, and the main axis. . . . This
seems to work well.

Accompanying this verbalization is
the diagram in figure 6. Although sub-
stantially different from figure 5,
figure 6 is consistent with the original
verbalization in PF20.

Each sketch highlights information
not explicit in the verbal description.
As the information is explicated, it can
be attended to in subsequent generate-
evaluate cycles. Much of Subject-A’s
problem solving involves traversing
abstraction levels using the corre-
sponding symbol systems. Learning to
traverse this hierarchy has some seri-
ous consequences for design develop-
ment and crystallization. One must
know when to use which system so as
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Figure 6. Second Rough Sketch of Floor Plan of Post Office.

not to commit oneself too soon, there-
by prematurely arresting design devel-
opment. At the other extreme, one
must learn not to stay at the higher
abstract levels for an overly extended
period of time and thereby produce
nothing. This observation is, of course,
related to the earlier mentioned ten-
sion between the LCMCS and the
necessity to make commitments.

To illustrate the second point, we
note that Subject-A constructed four
distinct representations of the artifact
within the system of similarity geom-
etry: site plans, floor plans, elevations,
and sections. Furthermore, he attend-
ed to the various aspects of the build-
ing as they were being drawn; for
example, he calculated the vertical
dimensions of the structure when
drawing the elevation (see figure 7),
not when working on the plan:

(PF22) S-A: So, maybe, ah, | should
go on to a section now and see how
this is ah, happening, with more
precise measures [meaning roof
overhang and the glare on the moni-
tors]. . . . Ah, 6 feet. | envisioned
this to be very low anyway . . . prob-
ably 2.4 meters, 2.2 meters even. . . .
So I'd say that 8 feet will be the
maximum height . . . Ah, probably
we need about 2 or 3 feet to have all
the equipment. . . . And the lower

part of the display monitor and, and
keyboard will be perhaps 3 feet, 3.5
feet perhaps from the ground level.

Conclusion

This study identified eight significant
invariants in the DTE and character-
ized their impact on the DPS. Figure 2
serves as a succinct summary of both
our strategy and findings. Our major
empirical findings are the following
characteristics of the DPS: (1) exten-
sive problem structuring, (2) extensive
performance modeling, (3) personal-
ized or institutionalized evaluation
functions and stopping rules, (4) a
LCMCS, (5) the making and propagat-
ing of commitments, (6) solution
decomposition into leaky modules, (7)
the role of abstractions in the transfor-
mation of goals to artifact
specifications, and (8) the use of
artificial symbol systems. In addition
to noting these features, we made
explanatory connections between
them and the invariant features of the
DTE.

We make no claim for completeness
and fully expect our characterization
to grow and evolve as we examine
more of our data. However, we do
expect our strategy of viewing design
as a radial category, taking the DTE
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seriously, and examining data from
several design disciplines to be of con-
tinuing value. At this stage, we cau-
tiously suggest that although singular-
ly these features might be found in
nondesign problem spaces, collective-
ly they are the invariant hallmarks of
the DPS. We conclude now by indicat-
ing some implications for CAD sys-
tems, noting some methodological
shortcomings and suggesting direc-
tions for future research.

Implications for
Computer-Aided Design Systems

Typically, CAD systems provide
designers with a variety of tools for
modeling the anticipated performance
of an artifact during the design pro-
cess. Our characterization of generic
design and our empirical observations
suggest there are several ways in
which such systems could be
enhanced.

We noted that design characteristi-
cally involves problems with many
degrees of freedom, requiring substan-
tial information collection, problem
structuring, and negotiation. Much of
this information comes from external
sources or the prior experience of the
designer. At first blush, hypertext
tools seem to be appropriate for such
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activities. However, as noted by
Halasz (1988), making hypertext sys-
tems that permit cheap input and
restructuring is still a major research
issue.

Design inherently involves the use
of design abstractions, nested generate
and evaluate cycles, and a LCMCS.
These design features suggest that
designers should be able to inexpen-
sively specify design abstractions and
evaluate designs at any level of
abstraction. The CLU language for
software design is an attempt along
these lines (Liskov and Guttag 1986).
It is essentially a variant of an object-
oriented programming language that
allows software designers to develop
procedural and data abstractions and
specify the preconditions and entail-
ments of these abstractions without
immediate concern for their imple-
mentation. The fact that designers
appear to mix formalisms in their rep-
resentations of artifacts suggests that
we have substantial work to do in this
area.

Representation is an important
issue in itself. First-generation CAD
systems viewed the designer’s notes
and drawings only as communicative
devices. Our studies confirm the
findings of Ballay et al. (1984) and UlI-
man, Stauffer, and Dietterich (1986)

that this conception of notes and
drawings is simply false. The design-
er’s notes and drawings play a crucial
role in design development by selec-
tively focusing and filtering informa-
tion and augmenting memory and
processing. These findings speak for
the need to develop computational
environments that can support a wide
range of symbol systems.

Finally, we should remark on the
potential role of Al in CAD systems.
Al is especially appropriate for propa-
gating the entailments of closed-world
models, as is typically done in theo-
rem-proving programs or problem-
solving programs that deal with well-
structured problems. It does not fare
as well in tasks with changing world
models, ones that are continually
influenced by knowledge brought in
from the external world or past expe-
rience. This limitation seems to
imply that we should not expect Al to
provide highly automated design sys-
tems for anything but the most rou-
tine and well-structured problems
which arise during design. However,
research on hierarchical planning
could provide tools for representing
and evaluating abstract design plans.
Research in knowledge-acquisition
tools could influence the development
of CAD systems that acquire new
design abstractions and evaluations.
Research in case-based retrieval and
reasoning could provide tools to aug-
ment the designer’s use of prior
knowledge in design. Intelligent
advice or help systems that use
knowledge of particular design tasks
and on-line “pattern books” might be
particularly useful as aids to novice
designers or as warehouses for the
design knowledge of particular disci-
plines or institutions.

Principle Shortcomings
and Limitations

As the work currently stands, there
are three principle shortcomings. The
first is that the whole analysis is
based substantially on three protocols,
one each from three of many design
disciplines. In the short term, we jus-
tify our experiment design by noting
that the methodology is qualitative
rather than quantitative. It does not
require large numbers of subjects. As



has been argued by Anzai and Simon
(1979), much can be gained by the
detailed analysis of a single protocol.
Over the long term, we recognize the
shortcoming and are continuing to
analyze additional protocols.

The second shortcoming is that we
have not used a formal procedure for
coding the protocols, nor has there
has been any independent coding of
the protocols. Again, over the long
term, we recognize this shortcoming
as serious. In the short term, we note
that the categories and conclusions
were arrived at through much argu-
mentation and compromise with col-
leagues with first-hand knowledge of
the data.

The third shortcoming is that only
design problem protocols have been
examined. This limitation only allows
us to make the weak claim that we
have identified certain invariants in
the DPS. It does not permit the addi-
tional claim that these invariants are
not (collectively) found in nondesign
problem spaces. This latter claim is
desirable for the motivation of generic
design as a useful theoretical con-
struct. However, it requires the exam-
ination of nondesign protocols. The
comparison of non-DPSs with DPSs is
a matter of ongoing concern.

Future Work

This investigation has been a first-
pass, breadth-first look at design prob-
lem solving. We have tried to lay out
the major pieces of the DPS and
explain or justify them by an appeal to
the DTE and the IPS structure. A logi-
cal extension of this work would be to
push the analysis further toward a
process model of design.

In concentrating on the big picture,
we have had to resist the temptation
to delve deeply into any single feature
of the problem space. Of particular
interest to us are the phenomena of
scenario immersion, leaky modules,
and the use of artificial symbol sys-
tems. Each of these promises to be a
rich and intricate field of study.

Finally, we have not said anything
about the differences in the problem
spaces of our three subjects. We have
noticed some interesting differences
in their knowledge bases, the external
symbol systems they use, and their

cultural and professional values and
practices. However, any conclusions
in this regard must wait until we
gather and analyze additional data.
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Notes

1. This discussion assumes considerable
familiarity with IPT as presented by
Newell and Simon (1972). The uninitiated
reader is referred to this original work.

2. Two major reasons exist for this domi-
nance: First, there is a realization by indus-
try that the development of effective com-
puter-aided design tools requires a model
of the user’s (designer’s) cognitive process-
es (Ballay et al. 1984). Second, there is the
hope that the study of human designers
will lead to insights into the automation of
the design process (Kant and Newell 1984).

3. Neglect of the other relevant external
factors is undoubtedly a result of the
influence of game-playing problems on the
theory.

4. Problem solving, in turn, is coextensive
with thinking in IPT.

5. No attempt is made to be exhaustive.

6. Throughout, we make contingent causal
claims, not logical necessary claims, with
the use of the terms “entail” and “necessi-
tate.”

7. Viewpoint is an icon-based computer
environment for Xerox Stars. It supports
such functions as electronic mail, filing,
word processing, and graphics.

8. Neither schema surfaces in the proto-
cols unless the subject stops to explain or
rationalize, as one of our architects fre-
qguently did. Here is a typical excerpt from
him: “Now, every building fitting into a
site should be harmonious with that site.
Nobody argues with that. The next thing,
and compatible with the other buildings.
Ah. We are going from a very antisocial
period, where buildings were very antiso-
cial and withdrawn, and aggressive, and
impolite, such as the one we are standing
in, to, ah, buildings which are pleasant,
outgoing, gentle, ah, sophisticated and cul-
tured.”

9. By “theoretical” we mean only that the
knowledge is more elaborate, complete,
consistent, and organized.

10. Some of the instructional design sub-
jects actually used the Viewpoint manual
to structure the task.

11. The early generation and faithful devel-
opment of a kernel idea is an intriguing
phenomenon. It has been reported by sev-
eral researchers, including Kant and
Newell (1984) and Ullman, Stauffer, and
Dietterich (1986). We do not have the
space to pursue it here.

12. The subject is standing on a ninth-floor
balcony and has a bird’s-eye view of the
site.

13. Of course, this is not always true. Fast
tracking is a case of substantial parallel
processing. However, even here, significant

self-contained modules exist, and errors
are expensive.

14. Not only does the scenario immersion
phenomenon play a crucial role in perfor-
mance modeling, it also seems to be
instrumental in generation. However, we
do not discuss this aspect of it here.

15. By “institutionalized” we mean accept-
ed by a group or organization with which
the designer associates himself. For exam-
ple, in the case of Subject-l, this associa-
tion means in-house company standards
and practices. In the case of the architect,
it might be some movement such as
Bauhaus or Postmodernism.

16. One of our instructional designer sub-
jects stayed at a high abstract level and
refused to come down. The result was that
he had no artifact specifications to show at
the end of the period.

17. One of our subjects realized that he did
not have an appropriate symbol system for
the development and specification of the
artifact and tried to develop one as he went
along. The development of symbol systems
can be seen on an institutional scale in the
development of the scripting and mazing
systems for interactive videodiscs.

18. Figures 5, 6, and 7 are not copies of the
subject’s actual sketches. They are redrawn
versions intended to facilitate comprehen-
sion. The original sketches (especially fig-
ures 5 and 6) are much less articulate in
terms of preserving and communicating
shape.

19. In actual similarity geometry, size, of
course, is not preserved.
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