
A Framework for Representing
and Reasoning about Three-
Dimensional Objects for Vision
Ellen L. Walker, Martin Herman, Takeo Kanade

defined, the reasoning portion of the
3-D FORM system can apply the
model to real data, recognizing
instances of the defined objects and
hypothesizing their missing parts.

Figure 1 shows a portion of the
knowledge that might be represented
about a building. A BUILDING is a
3D-OBJECT; and a WALL, which is a
2D-OBJECT, is one of the building's
parts. The specific building, BLDG1,
has parts WALL1 and WALL2, whose
geometric features are the primitive
geometric objects PLANE1 and
PLANE2, respectively. In addition to
its geometric feature, WALL1 has the
photometric feature COLOR1. The
knowledge that a building's walls are
mutually perpendicular is represented
for BLDG1 by the instance PRPW12
of the PERPENDICULAR-PLANES
relationship. The arguments to
PRPW12 are PLANE1 and PLANE2,
the geometric features of BLDG1's
walls. The geometric feature PLANE1
is supported by the data object
REGION1, which came from an
image whose projection between 2-D
and 3-D is CAM1.

In the current implementation,
only 3-D objects, geometric features,
and geometric relationships are repre-
sented. The 3-D FORM system was
applied to model-based interpretation
of 3-D data and to solutions of sets of
geometric constraints. This article
discusses some of the issues in geo-
metric reasoning for knowledge-based
vision systems and how some existing
systems have addressed them. Next, it
describes the representations of primi-
tive geometric objects, geometric rela-
tionships, and composite objects in
the 3-D FORM system. Finally, it pre-
sents examples of the system's appli-
cation to geometric reasoning tasks.

e are developing the Frame-
based Object Recognition and

Modeling (3-D FORM) System, a
framework for representing and rea-
soning about three-dimensional (3-D)
objects. This framework incorporates
representations of objects, representa-
tions of the relationships between
them, and a geometric reasoning capa-
bility. Such a representation and rea-
soning capability is essential for
knowledge-based, 3-D photointerpre-
tation systems that combine domain
knowledge with image processing, as
demonstrated by 3-D Mosaic (Her-
man, Kanade, and Kuroe 1984; Her-
man and Kanade 1986) and AC-
RONYM (Brooks 1981). It is also
required for other applications, such
as robot navigation, 3-D change detec-
tion, and the simulation of a scene's
appearance from arbitrary viewpoints.
The 3-D FORM system uses frames to
represent objects such as buildings
and walls, geometric features such as
lines and planes, and geometric rela-
tionships such as parallel lines. Active
procedures attached to the frames
dynamically compute values as need-
ed. Because processing is controlled
by slot access, the system can hypoth-
esize new objects or compute and ver-
ify relationships between existing
objects, depending on the currently
available knowledge.

The 3-D FORM system can include
knowledge about model and data
objects organized into IS-A and PART
hierarchies, along with relationships
between object features, and projec-
tions used to convert between model
objects and data objects. The knowl-
edge includes both generic object
models and specific instances of
objects. Once the generic objects and
the relationships between them are

The capabilities for representing and rea-
soning about three-dimensional (3-D)

objects are essential for knowledge-
based, 3-D photointerpretation systems
that combine domain knowledge with

image processing, as demonstrated by 3-
D Mosaic and ACRONYM. Three-dimen-
sional representation of objects is neces-

sary for many additional applications,
such as robot navigation and 3-D change

detection. Geometric reasoning is espe-
cially important because geometric rela-
tionships between object parts are a rich
source of domain knowledge. A practical
framework for geometric representation
and reasoning must incorporate projec-
tions between a two-dimensional (2-D)

image and a 3-D scene, shape and surface
properties of objects, and geometric and

topological relationships between objects.
In addition, it should allow easy modifi-

cation and extension of the system's
domain knowledge and be flexible

enough to organize its reasoning efficient-
ly to take advantage of the current avail-
able knowledge. We are developing such

a framework—the Frame-based Object
Recognition and Modeling (3-D FORM)

System. This system uses frames to repre-
sent objects such as buildings and walls,

geometric features such as lines and
planes, and geometric relationships such

as parallel lines. Active procedures
attached to the frames dynamically com-
pute values as needed. Because the order
of processing is controlled largely by the
order of slot access, the system performs

both top-down and bottom-up reasoning,
depending on the current available

knowledge. The FORM system is being
implemented with the Carnegie-Mellon
University-built Framekit tool in Com-

mon Lisp (Carbonell and Joseph 1986). To
date, it has been applied to two types of

geometric reasoning problems: interpret-
ing 3-D wire frame data and solving sets

of geometric constraints.

W

SUMMER  1988    47

AI Magazine Volume 9 Number 2 (1988) (© AAAI)



Geometric Reasoning in
Knowledge-Based 

Vision Systems
Domain knowledge was used by earli-
er vision systems to compensate for
the inadequacies of low-level image
processing as well as generate reason-
able assumptions to make it possible
to recover 3-D shape from 2-D data.
Because shape is one of the most
important cues for object recognition,
a knowledge-based vision system
must be able to represent and reason
about geometric objects. Geometric
reasoning helps both data acquisition
(bottom-up reasoning) and model
matching (top-down reasoning). The
overall control of the system should
be flexible enough to allow these two
processes to be combined to achieve
the best results based on the current
state of the knowledge base. In addi-
tion, the system itself should be
domain independent, with the
domain-dependent portions collected
into a separate replaceable module so
that the domain knowledge can easily
be modified or extended. Each of the
systems described in this section met
some of these goals, but no system
adequately addressed all of them.

The 3-D Mosaic system (Herman,

Kanade, and Kuroe 1984; Herman and
Kanade 1986) used 3-D geometric rea-
soning in the domain of polyhedral
building aerial images to acquire a
scene description from images from
multiple points of view. Using a poly-
hedral boundary geometric representa-
tion, the system hypothesized missing
parts of objects in the first view
according to a weak model of the
urban domain encoded in the pro-
gram. With the domain models
implicit in the system's code and no
explicit representation of generic
objects, it would be difficult to modify
or extend 3-D Mosaic's domain
knowledge. For example, it would be a
major programming effort to extend 3-
D Mosaic to make use of the colors of
buildings or the textures of their sur-
faces. Because it was designed as a
model-acquisition system, the 3-D
Mosaic system was limited to bot-
tom-up reasoning. When new infor-
mation invalidated one of the
hypotheses generated for missing
parts, a complicated network of back-
pointers was followed to eliminate
the effect of the failed hypothesis.

Unlike the 3-D Mosaic system,
ACRONYM (Brooks 1981) used
explicit representations of generic
objects, representing its geometric

objects in a hierarchy of frames. Geo-
metric relationships between objects
were represented as quantified alge-
braic inequalities, and interpretation
was done by an external graph match-
ing procedure. To perform the match-
ing, ACRONYM needed strong
domain models. The graph matching
procedure was primarily top-down,
with special low-level objects (ribbons
and ellipses) for its generalized cylin-
der representation of objects. Because
the matching procedure was indepen-
dent of the data, ACRONYM could
not organize its search to match the
most certain or most complete data
first and restrict the search for the
remainder of the data. The use of
quantifiers removed the constraints
one level from the data, making them
difficult to read, modify, and extend.

Mundy and others (Barry et al. 1986;
Kapur et al. 1985; Mundy 1985) are
developing a system that combines
algebraic methods for geometric rea-
soning with a hierarchical organiza-
tion of knowledge (both object knowl-
edge and knowledge about geometric
reasoning). Algebraic constraints from
the perspective projection are com-
bined with additional constraints
from the model to derive equations
describing families of object interpre-
tations. Inequalities from line labeling
(Huffman 1971) are then used to con-
strain the solutions to these equa-
tions. Because the relationships, as
well as the objects, are represented in
a concept hierarchy, the geometric
reasoning component should be flexi-
ble and extensible. The disadvantage
of using algebraic methods is their
inefficiency for handling inequalities,
an important component of real-world
geometric relationships.

Although the SIGMA system
(Hwang 1984; Davis and Hwang 1985)
used only 2-D geometric reasoning, its
method for representing relationships
was unique. Each relationship was
represented as two procedures
attached to its arguments: one for top-
down hypothesizing and the other for
bottom-up verification. Representing
the relationships as active compo-
nents of the object representation
allowed both top-down and bottom-up
reasoning, although not at the same
time. Only a restricted class of binary
relationships was implemented.

Figure 1. Portion of Knowledge Base for Buildings.

48    AI  MAGAZINE



Like ACRONYM and SIGMA, the 3-
D FORM system uses frames to repre-
sent its objects. The frames are orga-
nized into a hierarchy within which
parts and relationships can be inherit-
ed. The hierarchical representation
also simplifies matching new objects
because only objects of the same type
can match. The reasoning process used
by the 3-D FORM system is an exten-
sion and generalization of SIGMA's use
of relationships. Frames are used to
represent relationships between objects
and have active procedures (demons)
attached to their arguments so that
they are hypothesized or computed as
needed. Primitive objects also have
demons to compute missing informa-
tion from known object information.
For example, a line has a demon to
compute its vector from the known
points on the line. Because both object
and relationship knowledge are explic-
itly represented, extending the system
to additional domains involves adding
new frames but not modifying the code
that manipulates the frames. The rea-
soning process is controlled largely by
accessing objects, which are computed
as needed; therefore, the representation
is equally amenable to top-down and
bottom-up processing. In addition, no
need exists for an external ordering
mechanism such as a focus of atten-
tion. Instead, the dynamically comput-
ed COMPLETENESS value for each
object is used to next select the most
complete object to match or relation-
ship to evaluate.

Representing Primitive
Geometric Objects

Geometric representation in the 3-D
FORM system has three parts: (1) rep-
resenting primitive geometric objects
such as points, lines, and planes; (2)
representing primitive geometric rela-
tionships between these objects such
as parallel lines and perpendicular
planes; and (3) combining this infor-
mation with a part hierarchy to repre-
sent composite objects such as faces
and buildings. All objects and rela-
tionships are represented using
frames. The slots of the frames are
used to store parameters of the object
or relationship. Each slot can have
demons associated with it to compute
or recompute the slot when necessary.

In addition, some slots have facets,
which contain constraints on the val-
ues that can fill these slots. Frames
representing generic objects are
arranged in an IS-A hierarchy, and
each specific object has an
INSTANCE slot pointing back to its
generic object. Slots left empty in a
particular instance of an object are
inherited from the generic object
across the INSTANCE link and by
means of the IS-A hierarchy.

The primitive geometric objects rep-
resented in the current system are
points, lines, and planes. For example,
the generic line frame shown in figure
2 has slots for points on the line, the
line's vector, vectors of lines perpen-
dicular to the line, and the error in
fitting a line to the points. The slots
PT1, VEC, ERR, and COMPLETENESS
have if-needed demons (designated by
N in the figure) to determine the value
from other slots, as needed. In addi-
tion, the slots PT1 and PTS have if-
added demons to propagate the new
information to other slots in the frame.
For example, when additional points
are added to a line, the line's old vector
and error values are invalidated; so,
they are deleted. When one of these
values is needed later, it is recomputed
by fitting a line to the set of points.
Often, the value of an object's slot can
be computed in more than one way
from other slots of this object. For
example, the vector of a line can be
computed either by fitting a line to its
points or taking the cross-product of its
normal vectors. The if-needed demons
take into account the available infor-
mation in choosing a method to com-
pute their results. The use of redun-
dant slots, such as PT1 in the line
frame, allows each relationship to
choose the most convenient parame-
terization of the object to work with.

In addition to the slots for the
parameters of the object, every geo-
metric object has slots to represent
knowledge used in computing its rela-
tionships and matching its instances.
Currently, we have defined three slots
for this purpose: ERR, CON-
STRAINTS, and COMPLETENESS.

ERR contains the error in applying
the geometric primitive to the given
constraints (for example, the error in
fitting a line to a set of points). This
value is used to constrain matches.

The 3-D FORM system
uses frames to represent

objects such as buildings
and walls, geometric 
features such as lines

and planes, and geomet-
ric relationships such as 

parallel lines. Because
shape is one of the most

important cues for
object recognition, a 

knowledge-based vision
system must be able to

represent and reason
about geometric objects

SUMMER  1988    49



CONSTRAINTS contains geomet-
ric constraints that cannot be repre-
sented by filling in any other slot.
These constraints allow relationships
to affect later matching. Each value
consists of a function to compute the
constraint and a pointer to the rela-
tionship that caused it. An object's
constraints are evaluated whenever
sufficient information is added to the
object. For example, if two lines are
supposed to intersect, but neither has
any points specified yet, a constraint
is placed on each line consisting of a
function to compute the distance
between the lines and a pointer back
to the intersection relationship. When
one line is further specified, the dis-
tance function is executed. If the dis-
tance is small enough, the constraint

of intersection is satisfied and there-
fore, removed. If the distance is too
large, an error is returned to the pro-
cess that changed the line. If the other
line is not yet specified, the original
relationship is reevaluated to put a
new constraint on the other line.

COMPLETENESS contains a user-
defined measure of the information
stored in the object. This value is used
for sorting relationship computation
and matching operations so that the
most complete items are tried first.
For example, the completeness of a
line is greatest if two or more points
are known, but it is greater if one
point and the vector are known than
if only one point or the vector is
known.

Representing Primitive
Geometric Relationships

Like geometric objects, primitive geo-
metric relationships are represented
by frames. The system currently con-
siders relationships between pairs of
lines, pairs of planes, lines and the
planes they lie in, and points and the
lines they lie on. Each frame repre-
senting a primitive geometric rela-
tionship has slots for two or more geo-
metric objects for which the relation-
ship is defined, one or more numeric
ranges for parameters of the relation-
ship, a COMPLETENESS slot, and a
COMPUTE slot. In the related-2-lines
relationship shown in figure 3, the
slots L1, L2, and INTPT contain
objects, and slots DIST and ANGLE
contain parameters of the relationship
between the objects.

The COMPLETENESS slot and the
COMPUTE slot are computed only
when needed. A demon attached to
the COMPLETENESS slot of each
relationship computes the average
completeness value of the geometric
object arguments of the relationship.
A demon attached to the COMPUTE
slot of each relationship evaluates the
relationship. The evaluation function
first attempts to fill in any missing
slots by hypothesizing geometric
objects or computing numeric ranges.
When objects are hypothesized, only
the slot values that are known are
filled in. After attempting to hypothe-
size each missing argument, the eval-
uation function adds constraints
derived from the relationship to each
geometric object. For example, the
perpendicular-lines relationship adds
the vector of L1 to the norms of L2,
the vector of L2 to the norms of L1,
and the coordinates of INTPT to both
lines. If the geometric arguments of
the relationship are not fully
specified, as much constraint as possi-
ble is applied to the remaining geo-
metric objects. Finally, the evaluation
function computes the true values for
the numeric arguments of the rela-
tionship and determines whether they
fall within the specified ranges.

The related-2-lines relationship has
several specializations, also shown in
figure 3. The parallel-lines relation-
ship is a related-2-lines relationship
specialized to have the angle between

Figure 2. Representation of a Line.

Figure 3. Relationships Between Two Lines.

50    AI  MAGAZINE



Figure 4. Representation of a Generic Polygon.

Figure 5. Representations of a Wall, a Rectangle, a Vertical Edge, and an Edge.

SUMMER  1988    51



the lines near zero and a positive dis-
tance between the lines. Similarly, a
perpendicular-lines relationship is a
specialization of an intersecting-lines
relationship, which, in turn, is a spe-
cialization of a related-2-lines rela-
tionship.

Representing 
Composite Objects

Primitive geometric objects and their
relationships are combined with a
part hierarchy and other features to
create composite objects. The slots of
a composite object fall into three
classes: features, which describe the
object as a whole; parts, which are
lower-level objects; and constraints,
which relate the features of an object
and its parts. For example, figure 4
shows the representation of a generic
polygon. Its parts are a list of edges; a
list of vertices; and a list of ring ele-
ments, which link the polygon's edges
and vertices in order. Its geometric
feature is a plane. Its constraints are
an intersecting-lines relationship
between every edge, the following ver-
tex, and the following edge in the ring
representation. Figure 5 shows the
representation of two specializations
of a polygon: a rectangle and a wall. A
rectangle inherits its features and
parts from a polygon. The constraints
for a rectangle are a perpendicular-
lines relationship between each pair
of adjacent edges and a parallel-lines
relationship between each pair of
opposite edges. A wall is a further spe-
cialization of a rectangle; its GEOM-
FEATURE is a vertical plane, and it
has additional parts TOP and BOT-
TOM that are horizontal edges and
SIDES which is a list of vertical edges.
One additional constraint for a wall is
that its GEOM-FEATURE intersects
the ground plane at its BOTTOM
edge.

Like primitive objects and relation-
ships, all objects have COMPLETE-
NESS and COMPUTE slots. The com-
pleteness of an object is computed by
averaging the completeness values of
its features and parts. Accessing an
object's COMPUTE slot causes a con-
junction of the object's constraints to
be evaluated. As a side effect of com-
puting an object, hypotheses for the
object's parts and features can be

derived. If any of the object's con-
straints were not met, the conjunc-
tion returns NIL, and no changes are
made to the object. The value of the
COMPUTE slot is not stored because
the primary purpose of accessing the
slot is to cause the object's con-
straints to be evaluated.

Features

Object features include shape, color,
texture, reflectance, and other object
characteristics useful for matching
world objects to their sensor represen-
tations. Currently, only shape is repre-
sented, with the GEOM-FEATURE
slot of each object pointing to its
underlying primitive geometric
object. The INSTANCE facet of a fea-
ture points to the frame that must be
instantiated to fill it in. Its value is
used for type checking in matching
and for instantiating new hypotheses
for features. In figure 5, for example,
the geometric features of a wall, a ver-
tical edge, and an edge, respectively,
are a vertical plane, a vertical line,
and a line. Each feature has its own
primitive frame representation.

Parts

Objects are organized into a part hier-
archy to allow the system to focus on
an appropriate level of detail for the
current evaluation (for example, to
ignore windows until the walls are
completed). Each object part is an
instance of another object according
to its INSTANCE facet. For example,
the TOP and BOTTOM of a wall are
instances of horizontal edges. The
parts of an object participate in the
object's constraint relationships, and
objects are matched by recursively
matching their parts.

In some objects, sets of parts have
exactly the same INSTANCE values
and relationships, such as the edges of
a polygon. These parts are represented
in a list slot, identified by the pres-
ence of a LIST facet in the slot. In the
polygon frame (see figure 4), POLY-
EDGES and POLY-VERTS are the list
slots. List slots can contain a fixed or
variable number of parts. For example,
a polygon can have any number of
edges, but an edge always has exactly
two vertices. The order of elements in
list slots does not matter. When an

object's parts must be ordered to
determine its constraints (for exam-
ple, the edges and vertices of a poly-
gon), an additional list slot must be
created to contain pointers to the
ordered elements. Each element of the
ordered slot is a ring element (see
figure 4), which has a FILLER slot
pointing to one of the object's parts
and NEXT and PREV slots pointing to
the adjacent ordered slot elements.

When ring elements are used to
enforce ordering in a slot, consistency
must be maintained between the set
of ring-element FILLERs, and the
respective list slots of the object. To
enforce consistency between such
equivalent parts, the EQUIV facet of
an object points to any other objects
with which it must maintain consis-
tency. Each element of the EQUIV
facet is a path of slots to follow to get
to an equivalent object. For example,
the EQUIV facets for ring elements of
a polygon are shown in figure 4. The
FILLER of a ring element is equivalent
to a member of either the POLY-
EDGES or POLY-VERTS slot of the
frame that the ring element is PART-
OF. In the case of a vertex of a poly-
gon, equivalence must also be main-
tained with the vertices of the poly-
gon's edges, denoted by the VERTS
slot of the FILLER of the NEXT and
PREV ring elements. EQUIV facets
can also be used to maintain consis-
tency between different names for the
same part of the same object. For
example, the TOP of a WALL (see
figure 5) can also be referred to as the
first POLY-EDGE of the wall for use
in relationships inherited from the
rectangle or polygon frames.

Constraints

Constraints on an object relate its fea-
tures and its parts, allowing each to be
hypothesized or verified from the
other. Each object currently has two
sets of constraints: geometric con-
straints and inclusion constraints.
Geometric constraints relate an object's
parts, its geometric feature, and proto-
type frames. Figure 5 shows some of
the geometric constraints of a wall.
Inclusion constraints are points-on-
line or lines-in-plane relationships
between the object's geometric fea-
ture and its parts. Each constraint is a

52    AI  MAGAZINE



template for a relationship specifying
its arguments in one of three ways.

1. (value <slot-path>): If slot-path is
a single slot, use the value of the slot
in the current frame. If it is a list of
slots, follow the path as if it were an
EQUIV facet element, using the value
of the final slot in the path.

2. (local <var>): Use the value of the
local variable var, initializing to NIL if
necessary. Local variables persist
throughout the conjunction they are
defined in.

3. <expression>: Evaluate the
expression, usually a prototype frame.

Thus, the constraint of the wall in
figure 5 specifies that the wall's
GEOM-FEATURE is perpendicular to
the ground plane (a prototype frame),
intersecting in the line that is the
GEOM-FEATURE of the BOTTOM of
the wall.

Relationships affecting variable-
length list slots are represented by a
template preceded by the word every
and the name of the slot. When such a
template is instantiated, a distinct
copy of the relationship is made for
each element of the named slot at the
time of instantiation. In each copy,
any reference to the named slot is
replaced by a reference to the particu-
lar slot element for which the copy
was made. List elements are related
explicitly using the NEXT and PREV
slots of ring elements so that refer-
ences to other slots do not need to be
changed. For example, the constraint
on an edge (see figure 5) would be
expanded to two points-on-line con-
straints, one between the GEOM-
FEATURE of the edge and the GEOM-
FEATURE of the first element of its
VERTS slot and one between the
GEOM-FEATURE of the edge and the
GEOM-FEATURE of the second ele-
ment of its VERTS slot.

Example: Interpreting 
3-D Wire Frame Data 

with 3-D FORM
A model of a particular domain is cre-
ated by defining the generic objects
found in this domain. In addition, fea-
tures and relationships between the
objects are defined using the facilities
described in the previous three sec-
tions. The 3-D FORM system applies
the domain model to real-world data

to recognize objects and hypothesize
their missing parts. Top-down and
bottom-up reasoning are combined to
take the best advantage of the avail-
able data, controlled by the procedural
component of the knowledge repre-
sentation. Given the domain model of
polygonal, flat-roofed buildings, the 3-
D FORM system interprets a set of 3-
D edges and vertices (such as the wire
frames produced by the stereo and
monocular components of the 3-D
Mosaic system) as buildings, hypothe-
sizing missing edges, vertices, and
faces, as necessary. First, appropriate
initial edge, line, vertex, and point
frames are created from the input.
The initial frames are then grouped
into generic 2-D and 3-D objects, and
the relationships between them are
determined. Finally, the IS-A hierar-
chy is followed by means of a special-
ization procedure to find the most
specific possible interpretation for
each object and to fill in its slots.
Once all input features are placed into
object slots, the top-level objects are
computed. The result is a completed
building for each wire frame, includ-
ing hypotheses for any previously
missing parts. New 3-D data can be
used to verify these hypotheses.

Acquiring Object
Frames from Wire Frames

The first step in data interpretation is
to create initial object frames from
the input points and lines. For each
point, a point frame is instantiated,
and the coordinates of the point are
added to the new frame. If the point is
a vertex between two lines, a vertex
frame is also instantiated, and its
GEOM-FEATURE is set to the point.
For each line, a line frame is instanti-
ated, and its PTS slot is filled in. In
addition, an edge frame is instantiated
with its GEOM-FEATURE set to the
line, and the edge's vertices, if any, are
filled in.

Next, the initial object frames are
grouped into complex objects, and the
relationships between them are deter-
mined. The dual space (Mackworth
1973) is used to efficiently find paral-
lel and coincident lines and planes.
Each new line is added to a dual-space
database. For each pair of parallel or
coincident lines found in the dual

space, an appropriate relationship is
instantiated. In addition, each pair of
lines intersecting at a vertex is stored
according to the dual of the plane
spanned by the lines. The dual-space
database is then searched to group all
sets of coplanar edges into faces and
determine parallel relationships
between faces. Initially, each set of
connected edges is grouped into a
face. Additional edges or connected
edge groups can be merged into a face
as long as the greatest distance
between any point on the face and the
centroid of the face is within a dis-
tance threshold.

Finally, an intersection relationship
is instantiated for each vertex and the
pair of lines it intersects and for each
edge and the pair of planes it inter-
sects. The angle of intersection for
each of these relationships is auto-
matically computed when it is needed
or when the relationship itself is com-
puted.

Specializing Objects and Relationships

After initial object creation and group-
ing, all objects are of the most general
type, such as 3D-OBJECT. The next
process in data interpretation is to
search the IS-A hierarchy to find a
specialized interpretation for each
object. An object can be specialized in
one of three ways: (1) fill in a slot of
the object with a more specific value,
(2) add a relationship constraining a
feature of the object, or (3) add new
parts to the object or new relation-
ships between the object's parts
(recursively specializing the object's
parts and relationships).

The first method of specialization is
the easiest to test for. The values in a
frame's slot are matched with those of
its possible specializations. For exam-
ple, in figure 3, the intersecting-lines
relationship is specialized to a perpen-
dicular-lines relationship by filling its
angle slot with the value 90°. Special-
ization by slot value is used for rela-
tionships as well as objects.

To test whether objects can be spe-
cialized by the second method, a con-
junction of the constraints for each
feature of the new type is computed
using the current object's feature val-
ues. If this conjunction computes suc-
cessfully for all features of the new

SUMMER  1988    53



type, the object can be specialized.
Thus, in figure 5, an edge is special-
ized to a vertical edge by adding a
relationship constraining its GEOM-
FEATURE to be parallel to the proto-
type vertical line.

To specialize an object by the third
method, a correspondence between
the parts of the candidate object and
the parts of the specialized object is
determined so that each part is an
instance of the right object, and all
constraints are satisfied. For example,
to specialize a rectangle to a wall, the
slots TOP, BOTTOM, and SIDES and
the relationships between them are
added. The correspondence of parts to
slots is done in two phases. First, a
list of matches using only local con-
siderations is made; then, this list is
pruned by propagating relationship
information. The considerations for
local matching are (1) For each part,
which slots have the right
INSTANCE value? (2) If a slot is filled
in, can the part be successfully
matched with the slot's current
value?

For example, when specializing the
face 2D-OBJECT161 in figure 6 to a
wall, the local match for EDGE343 is
SIDES (see figure 5) because EDGE343
is a vertical edge. Although EDGE344
(a horizontal edge) has the right
INSTANCE value for both TOP and
BOTTOM of the wall, the BOTTOM
slot is already filled with the intersec-
tion of the wall plane and the ground
plane. Because EDGE344 lies above
the ground, its only possible local
match is TOP.

If at least one possible match exists
for each part, then relationship infor-
mation is propagated by assigning one
part to one of its possible slots and
pruning the possibilities for the other
parts according to its relationships.
This pruning is done by matching the
relationships of the current part with
the relationship templates of its
assigned slot. For example, when spe-
cializing 2D-OBJECT158 to a polygo-
nal roof, any of the edges of 2D-
OBJECT158 can match any of the
edge slots of the roof after local
matching. However, once EDGE344 is
assigned to an edge of the roof,
EDGE342, which intersects it at VER-
TEX336, must be assigned either to
the NEXT of the NEXT of the edge or

to the PREV of the PREV of the edge,
with VERTEX336 as the NEXT or the
PREV, respectively. From the remain-
ing possibilities, a new assignment is
chosen, and the propagation process is
repeated until all parts are matched,
all slots are filled, or a part cannot be
matched. If there is an unmatched
part, and not all the slots were filled,
the specialization fails. Otherwise,
hypotheses for missing parts of the
object can be generated by accessing
its COMPUTE slot. Two facets in the
PARTS slot of the object are used to
store information in case computing
the object fails: The MATCHES-
TRIED facet contains matches already
tried, and the LOCAL-MATCH facet
contains the original set of local
matches for each part.

Controlling the Matching Process

Because matching is expensive, it is
advantageous to limit the number of
object pairs to be matched. One way
the 3-D FORM system limits the num-
ber is to specialize each data object as
much as possible before any matching
is attempted. Because only instances of
the same generic objects can possibly
match, specializing an object limits its
possible matches. A second method of
limiting the number of object pairs to
match is to consider the relationships
between the parts being matched,
eliminating object pairs with conflict-
ing relationships. These two methods
of eliminating matches correspond to
the two conditions for local matching
used in specialization. However, even
after local matching, multiple possibil-
ities often remain.

Once it is determined that general
matching must be done, processing is
limited by ensuring that if a match
eventually fails, it fails as early as pos-
sible, cutting off the recursion tree
near the top. Because empty objects
match anything, the more complete
an object is, the less likely it is to
match a given object. Therefore,
whenever a list of possible matches to
be tried exists, the matches are sorted
by the object's COMPLETENESS val-
ues, and the pair with the greatest
average completeness is tried first. In
the case of parts being matched to
slots, these heuristics are applied by
doing the local matches first; choos-

(c) Recovery procedure that
eliminates EDGE1 and its ver-

tices.

Figure 7. Two Recovery 
Procedures for Polygons.

Figure 6. Object to be Specialized.

54    AI  MAGAZINE



ing the object with the smallest num-
ber of possibilities; and finally, choos-
ing the possibility with the greatest
average completeness.

Recovering from Constraint 
Failures in Object Completion

Ordinarily, failure of a constraint dur-
ing the completion of an object causes
the completion to fail. However, some
objects can be dynamically
reconfigured during completion to sat-
isfy the failed constraint. Recovery
procedures for these objects are stored
in the RECOVERY facet of their
GEOM-CONSTRAINT slot. Each
recovery procedure determines the
reason for constraint failure and then
applies the appropriate reconfigura-
tion technique. For example, in the
POLYGON frame, a constraint pre-
vents the angle of intersection at each
vertex from being too near 180°. A
polygon that fails this constraint is
shown in figure 7a.

Two recovery procedures for poly-
gons were defined. One procedure
eliminates the vertex at which the
constraint fails, merging the edges
that intersected to form the vertex.
This method is illustrated in figure
7b. The second recovery method elim-
inates one of the edges at the vertex,
forming a new vertex at the intersec-
tion of the preceding and following
edges. In figure 7c, EDGE1 is elimi-
nated this way. Either procedure can
create an acceptable polygon from one
that fails the vertex angle constraint.
The recovery procedure that elimi-
nates an edge is also appropriate when
a polygon edge fails the length con-
straint by being too short.

Examples of 3-D 
Wire Frame Interpretation

This section describes experiments in
which 3-D wire frames, generated
from image edges by hand, were read
into the frame database, specialized,
and evaluated to generate hypotheses
for missing edges. In the first experi-
ment, a new edge was then entered
manually, and the system matched it
to one of the hypothesized object
edges. The initial wire frame for the
first experiment consisted of 12 edges,
7 horizontal and 5 vertical (see figure
8a). During the initial processing, the

horizontal edges were combined into
one face (2D-OBJECT158), and six ver-
tical faces, including 2D-OBJECT161,
were created from the vertical edges
and the horizontal edges that they
intersected. Because each face inter-
sected at least one of the other faces
at an edge, a 3D-OBJECT was created
with all seven faces as its parts.

In the specialization process, the
edges were divided into horizontal
and vertical edges, and 2D-
OBJECT161 was found to be a wall
because it was a vertical face. Because
2D-OBJECT158 is above the ground
plane, it was found to be the roof
rather than the floor of the building.
The parts of each of these objects
were assigned to slots, as discussed in
Specializing Objects and Relation-
ships. The final result of specializa-
tion was an incomplete polygonal
building with 2D-OBJECT158 as its
roof.

Next, the building's constraints
were evaluated, providing hypotheses
for its missing slots. The result of this
evaluation is shown in figure 8b.
Some details of the completion of 2D-
OBJECT158 as a polygonal roof are
shown in figure 9.

Figure 9a shows the roof after spe-
cialization. Because it was found to be
a general polygon, a vertex was
hypothesized for each free endpoint.
In figure 9b, EDGE576 is hypothe-
sized to extend from VERTEX531 to
VERTEX532, using the points-on-line
relationships from the EDGE frame.
The intersecting-lines relationship at
VERTEX531 failed; so, the polygon
recovery procedure deleted VER-
TEX531, merging EDGE576 with
EDGE341, as seen in figure 9c. The
final result of completion is shown in
figure 9d. Notice that VERTEX528,
which also failed the angle constraint,
was eliminated, as was EDGE661,
which was too short.

Once the building's constraints
were evaluated, the capability of the
system to revise its knowledge based
on new data was tested. A new 3-D
edge, EDGE865, was entered and
matched to the current building
hypothesis. The algorithm involved
taking the new data, specializing it as
much as possible, and attempting to
match the top-level object to all other
instances of the same object until a

Figure 8. (a) Initial Wire Frame; (b)
Visible Faces of Completed Building.

SUMMER  1988    55



match was found. The new edge was
found to match the hypothesized
edge, EDGE667. Figure 10a shows the
building and the new edge, and figure
10b shows the result of merging the
new edge with the old using this algo-
rithm. Because the vertices of the new
edge were close enough to it by the
tolerances given to the system, the
vertices were not moved.

The second experiment evaluated a
realistic set of wire frames using a
rectangular building model. Three
buildings were found in the image,
and two objects were rejected because
they did not fit the rectangular build-
ing model. Figure 11 shows the results
of evaluating these wire frames. The
bold lines are the initial wire frames;
the remaining lines were hypothe-
sized when the buildings were evalu-
ated. Objects 1 and 6 were rejected as
buildings because each had a nonper-
pendicular vertex. Objects 3 and 4
were considered too small. The
remaining objects were successfully
completed.

Example: Solving Sets 
of Geometric Constraints 

with 3-D FORM
The model-based reasoning done by
the 3-D FORM system is not limited
to physical geometric models. Any set
of geometric constraints can be mod-
eled as a single object whose con-
straints are given and whose parts are
the variables for the constraints. The
constraints are applied to a given situ-
ation by instantiating the model,
filling in the known parts, and com-
puting the object. The known parts
can be partially specified objects.
Missing information in the resulting
object is computed when needed by
evaluating the constraints.

For example, consider the basic
shadow problem, as defined by Shafer
(1983), illustrated in figure 12a. A sin-
gle intersecting pair of edges (Eo1 and
Eo2, intersecting at Io12) on an object
surface (So) casts corresponding shad-
ow edges (Es1 and Es2, intersecting at
Is12) on a shadow surface (Ss). Two
illumination surfaces (Si1 and Si2,
shown in figure 12b) are defined by
the planes of light through corre-
sponding object and shadow edge
pairs. The illumination surfaces inter-

Figure 10. (a) Building from Figure 8 with New Edge; 
(b) Revised Building after Merging New Edge.

Figure 9. Steps in the Completion of a Polygonal Roof.

Figure 11. Wire Frames and Hypotheses for a Group of Buildings.

56    AI  MAGAZINE



sect in the line through Io12 and Is12,
which is the illumination vector from
the light source L. This set of con-
straints is represented as the frame
BASIC-SHADOW-PROBLEM, with
slots EO1, EO2, IO12, SO, ES1, ES2,
IS12, SS, SI1, SI2, ILLUM, and L (see
figure 13). Some of the constraints of
the basic shadow problem are inter-
sect-lines between EO1 and EO2
intersecting in IO12, intersect-lines
between ES1 and ES2 intersecting in
IS12, and points-on-line with L on
ILLUM.

Figure 12 shows the solution of two
instances of the shadow problem. The
first (figure 12c) instance has the
object and shadow edges given and
must determine the surfaces, the illu-
mination vector, and the location of
the light source. All are determined
exactly except for the light source,

which is represented as a point with
unknown coordinates but constrained
to lie on the illumination vector. Fig-
ure 12d shows the second instance,
with the object edges and shadow sur-
face given. In this case, the shadow
edges, the object and illumination sur-
faces, and the illumination vector are
determined. The final result for both
instances of the problem was the
same as the initial definition shown
in figures 12a and 12b.

Although basic-shadow-problem
objects do not correspond to any
objects in the real world, they could
be created and evaluated along with
real objects to add constraint to an
image interpretation. For example, the
low-level procedures that now provide
wire frames could also provide
marked shadow edges. The shadow
edges would be used as the seeds in a

grouping procedure to create basic-
shadow-problem objects. The basic-
shadow-problem objects, when evalu-
ated, would constrain their parts,
which, in turn, would constrain real
objects, and so on.

Conclusions
Experiments to date with the 3-D
FORM system have shown that frame-
based modeling with constraints pro-
vides a powerful and flexible geomet-
ric reasoning system. The system was
demonstrated using two problems: the
interpretation of 3-D wire frames as
polygonal or rectangular flat-roofed
buildings and the solution of the con-
straints in the basic shadow problem.
In each case, both the prediction and
the verification of information were
automatically done, as needed, by

Figure 12. Solving Instances of the Basic Shadow Problem.

SUMMER  1988    57



evaluating the object frames. The use
of demons attached to relationship
frames for computation allows for the
intuitive specification of constraints
that can easily be used for prediction
and verification.

The availability of the COMPLETE-
NESS slot and its associated demons
eliminates the need for external con-
trol such as a focus of attention. In
both relationship instantiation and
matching, each frame's completeness
is dynamically determined and used
to determine which frame to process
next. Instantiating the most complete
relationship at each time forces the
maximum amount of knowledge to be
used in making each hypothesis.
Matching the most complete objects
first enhances the possibility of either
a quick failure or a complete success
for each match.

Because of the hierarchical nature of
the model, objects to be matched could
be specialized first, then matched to a
smaller number of possible objects of
the more specialized type. The hierar-
chy also allows a form of incremental
interpretation. For example, because a
wall is a specialization of a rectangle, no
object will even be tried as a wall unless
it has already passed the qualifications
for a rectangle. The inheritance allowed
by the IS-A slot simplifies the process of
creating new frames because only the
differences from an existing frame must
be specified.

Future enhancements to the 3-D
FORM system can be divided into
three categories: enhancements to the
system itself, new features for all
models, and application to new
domains. In the first category, the
most important enhancement still to
be done is to improve error recovery.
For example, if two buildings are
incorrectly grouped together, and the
resulting object does not fit any mod-
els, an alternative grouping should be
tried. In the second category, new fea-
tures that could be added include
descriptions of viewpoints, projec-
tions, and photometric features. The
models defined for the current system
could be expanded by adding objects
that contain multiple buildings (such
as city blocks) or creating representa-
tions for curved surfaces.

Acknowledgments

This research was sponsored by the
Defense Advanced Research Projects Agen-
cy (DARPA), ARPA Order No. 4976, and
monitored by the Air Force Avionics Labo-
ratory, under contract F33615-84-K-1520.
Ellen Walker is also supported by a fellow-
ship from the AT&T Bell Laboratories
Graduate Research Program for Women.
The views and conclusions contained in
this document are those of the authors and
should not be interpreted as representing
the official policies, either expressed or
implied, of DARPA or the U.S. govern-
ment.

References

Barry, M.; Cyrluk, D.; Kapur, D.; and
Mundy, J. 1986. A Multi-Level Geometric
Reasoning System for Vision. Paper pre-
sented at the Workshop on Geometric Rea-
soning, Keble College, Oxford University,
June 30-July 3.

Brooks, R. A. 1981. Symbolic Reasoning
among 3-D Models and 2-D Images.
Artificial Intelligence 17:285-348.

Carbonell, J. G., and Joseph, R. 1986. The
FrameKit+ Reference Manual, Internal
Paper, Computer Science Dept., Carnegie-
Mellon Univ.

Davis, L. S., and Hwang, V. S. S. 1985. The
SIGMA Image Understanding System. In
Proceedings of the Third Workshop on
Computer Vision: Representation and Con-
trol, 19-26. Washington D. C.: IEEE Com-
puter Society.

Herman, M., and Kanade, T. 1986. Incre-
mental Reconstruction of 3-D Scenes from
Multiple, Complex Images. Artificial
Intelligence 30:289-341.

Herman, M.; Kanade, T.; and Kuroe, S.
1984. Incremental Acquisition of a Three-
Dimensional Scene Model from Images.
IEEE Transactions on Pattern Analysis
and Machine Intelligence 6(3):331-340.

Huffman, D. A. 1971. Impossible Objects
as Nonsense Sentences. In Machine Intelli-
gence 6, eds. B. Meltzer and D. Michie,
295-323. New York: Elsevier.

Hwang, V. S. S. 1984. Evidence Accumula-
tion for Spatial Reasoning in Aerial Image
Understanding. Ph.D diss., Dept. of Com-
puter Science, Univ. of Maryland.

Kapur, D.; Mundy, J.; Musser, D.; and
Narendran, P. 1985. Reasoning about
Three-Dimensional Space. In Proceedings
of the 1985 IEEE International Conference
on Robotics and Automation, 405-410.
Washington D. C.: IEEE Computer Society.

Mackworth, A. K. 1973. Interpreting Pic-
tures of Polyhedral Scenes. Artificial
Intelligence 4: 121-137.

Mundy, J. L. 1985. Image Understanding
Research at General Electric. In Proceed-
ings of the Image Understanding Work-
shop, 83-88. Washington D. C.:  Science
Applications International Corporation.

Shafer, S. A. 1983. Shadow Geometry and
Occluding Contours of Generalized Cylin-
ders. Ph.D. diss., Dept. of Computer Sci-
ence, Carnegie-Mellon Univ. Also Techni-
cal Report CMU-CS-83-131 

basic-shadow-problem

face SO — object surface

SS — shadow surface

SI1 — illumination surface

SI2 — illumination surface

EO1 — object edge

EO2 — object edge

ES1 — shadow edge corresp. to EO1

ES2 — shadow edge corresp. to EO2

IO12 — object vertex

IS12 — shadow vertex

ILLUM — illumination vector

L — location of light source

CONSTRAINT
S
intersect-planes

intersect-lines

points-on-line

PL1:  (value (geom-feature SO))

PL2:  (value (geom-feature SI1))

INTPT: (value (geom-feature EO1))

L1:  (value (geom-feature EO1))

L2:  (value (geom-feature EO2))

INTPT: (value (geom-feature IO12))

LINE:  (value (geom-feature ILLUM))

POINT:  (value (geom-feature L))

face

face

face

edge

edge

edge

edge

verte
x

verte
x

edge

verte
x

.

.

.

Figure 13. Basic Shadow Problem Represented as an Object.

58    AI  MAGAZINE




