
VT (vertical transportation) is an expert 
system for handling the design of elevator 

systems that is currently in use at West- 
inghouse Elevator Company Although VT 
tries to postpone each decision in creating 

a design until all information that con- 
strains the decision is known, for many 

decisions this postponement is not possi- 
ble In these cases, VT uses the strategy of 

constructing a plausible approximation 
and successively refining it VT uses 

domain-specific knowledge to guide its 
backtracking search for successful refine- 
ments The VT architecture provides the 

basis for a knowledge representation that 
is used by SALT, an automated knowl- 

edge-acquisition tool SALT was used to 
build VT and provides an analysis of VT’s 
knowledge base to assess its potential for 

convergence on a solution 

VT: An Expert 
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Uses Knowledge-Based 
Backtracking 
Sandra Marcus, Jeffrey Stout, John McDermott 

I n some cases, plausible guessing 
combined with the ability to back- 

track to undo a bad guess can be the 
most efficient way to solve a problem 
(Stefik et al. 1983). Even least com- 
mitment systems such as MOLGEN 
(Stefik 1981a, 1981b) are sometimes 
forced to guess. In the course of 
designing genetics experiments, MOL- 
GEN tries to avoid making a decision 
until all constraints that might affect 
the decision are known. In some 
cases, this postponement is not possi- 
ble, and the system becomes stuck; 
none of the pending decisions can be 
made with complete confidence. In 
such a case, a decision based on par- 
tial information is needed, and such a 
decision might be wrong. In this case, 
a problem solver needs the ability 
either to backtrack to correct bad 
decisions or to maintain parallel solu- 
tions corresponding to the alterna- 
tives at the stuck decision point 
However, if alternative guesses exist 
at each point, and there are many 
such decision points on each solution 
path, a commitment to examine every 
possible combination of alternatives 
proves unwieldy. Such complexity 
exists in the VT task domain. 

VT performs the engineering task of 
designing elevator systems. It must 
use the customer’s functional specifi- 
cations to select equipment and pro- 
duce a parts configuration that meets 
these specifications as well as safety, 
installation, and maintenance require- 
ments. Because of the large number of 
potential part combinations and the 
need for customizing the layout to the 
space available in individual build- 
ings, VT must construct a solution. 
Like MOLGEN, VT tries to order its 
decisions so that they are made only 
when all relevant constraints are 
known; it guesses only when stuck. 

Unlike MOLGEN, VT’s decisions 
about part selection and placement 
are so interdependent that plausible 
reasoning (guessing) is a major feature 
of its search for a solution Thus, VT’s 
problem-solving strategy is predomi- 
nantly one of constructing an approxi- 
mation and successively refining it. 

Systems that use plausible reason- 
ing must be able to identify bad guess- 
es and improve on these decisions in a 
way which helps converge on a solu- 
tion. VT is similar to AIR/CYL 
(Brown 1985) and PRIDE (Mittal and 
Araya 1986) in that it uses a knowl- 
edge-based approach to direct this 
search; that is, it uses domain-specific 
knowledge to decide what past deci- 
sions to alter and how to alter them. 
This approach contrasts with EL 
(Sussman 1977; Stallman and Suss- 
man 1977), an expert system which 
shares many architectural features 
with VT but which uses domain-inde- 
pendent strategies to limit the search 
during the backtracking phase. As 
with EL, the VT architecture makes 
clear the role that domain-specific 
knowledge plays in the system and 
the interconnections among decisions 
used to construct and refine a solu- 
tion. This architecture provides the 
basis for VT’s explanation facility, 
which is similar to that of EL and the 
related CONSTRAINTS language 
(Sussman and Steele 1980), with some 
extensions. We have exploited the 
structure provided by this architec- 
ture even further by using it to man- 
age VT’s knowledge acquisition. 

VT’s architecture provides structure 
for a representation of its domain-spe- 
cific knowledge that reflects the func- 
tion of the knowledge in problem 
solving. This representation serves as 
the basis for an automated knowl- 
edge-acquisition tool, SALT (Marcus, 
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Wdcomc to VT -- The Elevator Desigu Expert System 
1. JNPUT Eutcr coutract iuformatioe 
2. RUN Process the input data 
3. SHOW 1)ispiay output information 
4. EXPLAIN Explaiu the results of a ruu 
5. SAVE Save data for the currcrlt contract 
6. EXIT Eud this sessiou with VT 
Enter your command [ INPUT ): <CT> 

Figure 1 VT’s Top Level Menu 

INPUT GD JWTY GR 24364 
Car:1 
1. Type of loading 
2. Machine 
3. Machine Iocatiou 
4. Polver supply 
5. Capacity 
6. Speed 
7. Travel 
8. Platform width 
9. Platforut depth 
10. Couutexwcight locntiou 
11. Couutcrweight safety 
12 Compensation specified 
Action [ EXIT I: 

AJ1MJNISTRATION CENTER 

PASSENGER 
GEAREJ) 
OVERHEAD 
208-3-60 
3000 
250 
729 
70 
84 
REAR 
NO 
NO 

L 
Figure 2 Completed Sample input Screen. 

McDermott, and Wang 1985; Marcus 
and McDermott 1986, Stout et al. 
19871, which has been used to build 
VT. SALT elicits from experts all the 
knowledge VT needs in order to 
design elevators and represents that 
knowledge in a way which enables 
VT’s problem-solving method to use 
it. SALT’s knowledge representation 
can also be used to assess the adequa- 
cy of the knowledge base for conver- 
gence on a solution. 

VT is used by Westinghouse Elevator 
engineers to design elevator systems 
to customer specifications. VT has 
enough domain knowledge to perform 
the design task unaided. VT also has 
an interactive capability which allows 
a user to directly influence its deci- 
sions. 

The Engineer’s Task 

The next section, “What VT Does,” Westinghouse Elevator design experts 
presents VT mainly from a user’s receive data collected from several 
point of view. “The VT Architecture” cont.ract documents. These data are 
describes the VT architecture in transmitted to the engineering opera- 
detail, with respect to problem-solv- tion by the regional sales and installa- 
ing, explanation, and knowledge tion offices. Three main sources of 
acquisition. “Management of Knowl- information exist. (1) customer 
edge-Based Backtracking” describes requirement forms describing the gen- 
how SALT’s knowledge base analysis eral performance specifications, such 
supports VT’s domain-dependent as carrying capacity and speed of trav- 
backtracking. “Comparison to Other el, and some product selections, such 
Constructive Systems” compares VT as the style of light fixture in the cab; 
to other expert systems that perform (2) the architectural and structural 
design, planning, or scheduling tasks drawings of the building, indicating 
“VT’s Performance” reports some of such elements as wall-to-wall dimen- 
VT’s performance characteristics. sions in the elevator shaft (hoistway) 

What VT Does 

and locations of rail supports; and (3) 
the architectural design drawings of 
the elevator cabs, entrances, and fix- 
tures. Because all this information is 
not necessarily available at the start of 
a contract, the engineer must some- 
times produce reasonable guesses for 
incomplete, inconsistent, or uncertain 
data to enable order processing to ten- 
tatively proceed until customer verifi- 
cation is received. (These guesses are 
in addition to whatever guesses might 
be required during a problem-solving 
episode based on these data.) 

Given this information, experts 
attempt to optimally select the equip- 
ment necessary and design its layout 
in the hoistway to meet engineering, 
safety code, and system performance 
requirements. This task is a highly 
constrained one. A completed elevator 
system must satisfy constraints such 
as the following: (1) there must be at 
least an 8-inch clearance between the 
side of the platform and a hoistway 
wall and at least 7 inches between the 
platform side and a rail separating two 
cars; (2) a model 18 machine can only 
be used with a 15, 20, or 25 horsepow- 
er motor; and (3) the counterweight 
must be close enough to the platform 
to provide adequate traction but far 
enough away to prevent collision with 
either the platform or the rear hoist- 
way wall (by an amount dependent on 
the distance of travel) 

The design task also encompasses 
the calculation of the building load 
data required by the building’s struc- 
tural engineers, the reporting of the 
engineering and ordering data required 
for the field installation department 
and regional safety code authorities, 
and the reporting of the mechanical 
manufacturing order information. 

A Quick Look at VI’ in Action 

VT is comprised of several distinct 
parts, described briefly in the sample 
interactions which follow. VT 
prompts appear in boldface. User 
replies appear in bold italics 

Figure 1 illustrates the top menu, 
where the user indicates what VT is to 
do. The INPUT command allows the 
user either to enter data on a new job 
or to modify data from an existing job. 
The other modes use previously input 
data. VT displays a defauh command 
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in brackets at the bottom of the 
screen that the user can issue by hit- 
ting a car 
also issue single or multiple com- 
mands by typing only a portion of a 
command word or the number in 
front of it. 

VT’s input is menu driven, allowing 
entire screens of questions to be 
answered at once by providing 
defaults wherever possible. The input 
mode also provides consistency 
checking of data and a general ques- 
tion-asking mechanism that is used 
throughout VT. A completed sample 
input screen is shown in figure 2. 
Prompts for data appear on the left, 
defaults and input on the right. 

Using a simple command language, 
the user can confirm some or all val- 
ues shown, enter or modify values, or 

Fourteen of these data menus cur 
ly exist in the INPUT portion of VT. 
Once all the data have been entered, 
the user returns to the top menu, at 
which point the data can be saved for 
future use [SAVE) or used immediate- 
ly in the design task (RUN). 

As VT runs, it tentatively con- 
structs an elevator system by propos- 
ing component selections and rela- 
tionships. At the same time, VT spec- 
ifies constraints with which to test 
the acceptability of the resulting 
design and tests each constraint 
whenever enough is known about the 
design to evaluate it. Whenever con- 
straints are violated, VT attempts to 
alter the design (for example, by 
selecting more expensive equipment) 
in order to resolve the problem. We 
refer to these alterations as fixes. VT 
reports any such constraint violation 
and the fix that is made, as in figure 3 

There are two types of fix reports. 
The report shown for MAXIMUM- 
TRACTION-RATIO is the more com- 
mon version. It mentions the con- 
straint that was violated, describes 
the degree of the violation, and lists 
the car 

RUNBY is a special case. This version 
is used when VT makes an initial esti- 
mate for a value in order to calculate a 
precise value for it. The value of the 
constraint is the precise value; the 
estimate is simply changed to this 
value. 

The CAR-RUNBY (estimated to be 6) has been changed to 6.125. 
The MACHINE-SZIEAVE-Z-IEIGWT (estimated to be 30) has been changed to 
26. 
The CWT.STACK-WEIGHT (estimated to be 4316.25) has been changed to 
4287.36. 
The MAXIMUM-TRACTION-RATIO coltsmint was violated. The TRAC- 
TION-RATIO was 1.806591, but had to be <= 1.783873. The gap of 
0.2272000L01 was eliminated by the following action(s): 

Decreasing CWT.TO-PLATFORM-FRONT from 4.75 to 2.25 
IJpgrading CO~~V-CABLE-UNIT-WEIGIIT ftom 0 to 0.50000OOE-01 

The MINIMlJM-MAX-CAR-RAIL-LOAD constraint was violated. The MAX- 
CAR-RAIL-LOAD was 6000, but had to be >= 6722.295. The gap of 722.3 was 
eliminated by the following action(s): 

Uygrading CAR-RAIL-UNIT-WEIGHT from 11 to 16 
The MININIUM-PLI1’I’FOBM-TO-CLEAR-HOISTWAY-RIGHT constraint 
was violated. The PLATFORM-TO-CLEAR-HOISTWAY-RIGHT was 7.5, but 
had to be >X 8. The gap of 0.5 was eliminated by the following action(s): 

Decreasing CAR-RETURN-RIGHT from 3 to 2.5 
The MINIMUM-PLATFORM-TO-CLEAR-HOISTWAY-LEFT constraint was 
violated. The PLATFORM-TO-CLEAR-HOISTWAY-LEFT was 7.5, but had to 
be >a 8. The gay of 0.5 was eliminated by the following action(s): 

Decreasing CAR-RETURN-LEFT from 25.5 to 25 
The MAXIMUM-MACHINE-GROOVI?-I!RESSIJRI? constraint was violated. 
The MACHINE-GROOVE-PRESSURE was 149.5444, but had to be <a 119. 
The gap of 30,544 was clhninatcd by the following action(s): 

Increasing HOIST-CABLE-QUANTITY from 3 to 4 
The MINIMUM-HOIST-CABLE-SAPETY-FACTOR comtcaint was violated. 
The HOIST-CAf3LJ?-SAFETY-FACTOR was 8.395078, but had to be >- IO. 
The gap of I .60492 was eliminated by the following action(s): 

Upgrading HOIST-CABLE-DIAMETER from 0.5 to 0.625 
The MINIMUM-MACHINE-BEAM-SECTION-MODULUS constraint was 
violated. The MACHINE-BEAM-SECTION-MODULUS was 24.7, but had to 
be >= 24.87352, The gap of 0.1735 was eliminated by the following action(s): 

Upgrading MACHINE-REAM-NLODEL from SlOX25.4 to SlOX35.0 
The CHOICE-SET-HOIST-CABLE-DIANIETER coastraitlt was violated. The 
IJOIST-COLE-I)IAMETER was 0.625, but was constrained to be 0.5. The 
HOIST’-CALILE-DIAMETEH became a member of the set by the following 
action(s): 

Upgradiq MACHINE-MODEL from 28 to 38 

5gure 3. Constraint Violation and Fix Report 

During a noninteractive run, VT 
uses its own knowledge base to decide 
how to remedy constraint violations. 
This knowledge base represents engi- 
neering practices that Westinghouse 
plans to make standard. The RUN can 
also be done interactively, in which 
case VT asks for confirmation of each 
fix before it is actually implemented. 
If a particular fix is rejected by the 
user, VT can either find another fix or 
provide a list of all possible fixes and 
ask the user to suggest a particular 
one. Records are kept of user over- 

consideration by the system maintain- 
ers when modifying the knowledge 
base The over 
fix by the user might indicate that a 
standard does not yet exist on a deci- 
sion VT makes. It might also be the 
result of outside factors that were too 
transitory to make it into the VT 
knowledge or data base, such as a tem- 
porary surplus or a shortage of a par- 
ticular equipment model. 

On completion of the run, control 
returns to the top menu, at which 
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SHOW LAYOUT SPECS GR 24364 ADMINISTRATlON CENTER 
Loading: PASSENGER Governor: B5B Support: STEEL 
Capacity: 3000 Goveruor Cable: 0.375 

Length: 2130 
Speed: 250 Hoist Cables: (3)-1X5 

Length: 1089 
Operation: IC-2BC-ERL Compensation: 3/16-CHAIN 

Length: 993 
lhvel: 729 Car sling: 2.5B-18 
Stops: 6 Openings: 6 Crosshead Beam: 1~8x18 
Machine: 28 Sheave: 30 Platform Thickuess: 6.625 
Deflector Sheave: 20 Sling Weight.,.. . . . . . . 292 
Groove: K3269 pressure: 90.03 Platform Weight....... 738 
Angle of Contact: 159.09 Safety Weight......... 465 
Traction Ratio: 1.79 Cab Weight............1668 
Machine Load: 11691 Misc. Weight ..,.,.,.., 434 
Motor H.P.: 20 Total Car Weight.,.,.,3609 
Power Source: - Counterweight Weight: 4824 
Power Supply: 208-3-60 Subweight Weight: 
6287 Rails........ Car: 16 Cwt: I I Buffer Reaction Car: 26437 

Cwt: 19296 
Guide ShoesXar: 6-R Cwt: 3-R Machine Weight: 1700 
Uuffer....... Car: OH-1 Cwt: OH-l Heat Emission in M.R.: -- 
Stroke . . . . . . *Car: 8.25 Cwt: 8.25 Cable Haugcr -- 
Safety....... Car: HI Cwt: -- Safety to Pit: 42 
Press RETURN to coutiuuc [ MENU 1: show layout cwt 

‘igure 4. Show Screen for Layout Specs 

SHOW LAYOUT CWT GR 24364 ADMINISTRATION CENTER 
-------_____-- 85 5 .----_____ 

----_-__ 
I-L 7-l 

Cwt Assembly Weight 537 Overall Cwt Height 138 
Cwt Subweight Weight 4287 Maximum Subweight Weight 5273 
Total CWT Weight 4824 Cwt Stack Height 87 

Maximum Stack Height 107 
Maximum Buildiug Tolerance: 1 Stack Percent 8X 
Press RETURN to coutiuuc 1 MENU ]: 

igure 5 Show Screen (Layout CWT) 

point the user normally goes into such a review, and others are intended 
SHOW mode. SHOW allows users to as input data for other Westinghouse 
view data a screenful at a time. Some systems (such as manufacturing-ori- 
of the screens are intended for just ented programs, cost estimators, and a 

computer-aided drawing system). Fig- 
ures 4 and 5 are representative of the 
sixteen SHOW screens that cur 
exist; the user accesses these screens 
by a tree of menus similar to the input 
menu. 

If the user sees something unusual 
while in SHOW (for example, an unex- 
pected value), the EXPLAIN mode can 
be used to determine the cause. 
EXPLAIN can also be used by relative 
novices to understand how VT per- 
forms the design task. 

The user interacts with VT’s expla- 
nation facility by asking questions. 
The type of information given in the 
explanation depends on the type of 
question asked. VT’s explanation 
facility cur 
types of queries that can be asked 
about individual system values. These 
query types are discussed in detail in 
the next section. The sample interac- 
tion in figure 6 demonstrates some of 
the tools the explanation facility pro- 
vides, including the use of VT’s lexi- 
con of synonyms for system value 
names. 

The only major part of VT that is 
not visible in figures l-6 is VT’s 
database. The database is read only 
and primarily contains data about 
pieces of equipment and machinery 
that VT must configure Each piece of 
equipment has its own table; the rows 
of each of these tables represent differ- 
ent models of the equipment from 
which to choose, and the columns rep- 
resent attributes relevant to the type 
of equipment These attributes can be 
restrictions on each model’s use (for 
example, maximum elevator speed or 
maximum load supported by the 
equipment j, values of equipment 
attributes [for example, height and 
weight), or lists of model numbers of 
compatible pieces of equipment. 

Calls to the database indicate which 
table is to be used and what value is to 
be returned. This value can be either 
the name of the particular model or 
the value of one of its attributes. A 
call might also include an arbitrary 
number of constraints on the values of 
each column. 

In the event that multiple entries in 
the database satisfy all the constraints 
in a call, each table is ordered along an 
equipment attribute [for example, 
size) to indicate a preference or priori- 
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ty. The entries in a table are examined 
from best to worst, and the first entry 
satisfying all the constraints is the 
one from which the return value is 
obtained. 

The VI’ Architecture 
VT solves its problem by constructing 
an approximate elevator design and 
successively refining it. The process 
of constructing an approximate design 
is forward chaining. Each step in this 
phase extends the design by proce- 
dures that use input data or results of 
prior decisions to determine a value 
for a design parameter. Some of these 
steps embody heuristic knowledge 
about how to propose an approximate 
design extension. These steps are 
needed when the decision is under- 
constrained or when it must be based 
on partial information. As VT builds a 
proposed design, constraints on the 
elevator system are specified whenev- 
er enough information is available to 
determine their values. The control in 
this constructive phase is data driven; 
any step can be taken as soon as the 
information called for by the proce- 
dure associated with the step is avail- 
able. As it extends the design, VT also 
builds a dependency network that 
records for each value which other 
values were used to obtain it. 

The dependency network developed 
during the forward-chaining construc- 
tive phase is enough to identify all 
contributors to a violated constraint 
and the value it constrains. These 
contributors represent potential 
points to backtrack to in order to 
revise the proposed design However, 
domain expertise is needed to indicate 
what changes in the proposed design 
are least costly in real-world terms. 
Although it is not possible to assign a 
dollar cost to each revision, domain 
knowledge determines which of the 
potential alterations are legal as well 
as the order of preference among the 
legal ones. 

Demons are used to check for con- 
straint violations; whenever enough is 
known about the proposed design to 
supply values for both a constraint 
and the value it constrains, they are 
compared. Whenever VT detects a 
constraint violation, it tests the effec- 
tiveness of suggested changes in order 

EXPLAIN GR 24364 ADMINISTRATION CENTER 
Exphin: how car rrmby 
The CAR-RUNBY WilS determined by a fix, 
The CHOICE-SET-CAR-RUNBY constraint was violated. 
The CAR-RUNBY was 6, but was constrained to be 6.125. 
The CAR-RUNBY was changed from 6 to 6,125. 
EIow[ CHOICE-SE’I=CAR-IIUNBY 1: <cr> 
The CI-IOICE.SET-CN~-RlJNSY (6.125) = PIT-DEPTH (72) - [ PLATFORM- 
EFEIGHT (6.625) + SAFETY-HEIGHT (9) + CAR-BIJPPER-HEIGHT (28.75) + 
CAR-FOOTING- CHANNEL-HEIGHT (3.5) + CAR-BUFPER-BLOCIUNG- 
HEIGHT (18)] 
EIow [ PIT-DEPTH 1: <cr> 
The PIT-DEPTH (72) was input by Bob Rochc on 25.MAR-1985 
How [ PJ,ATFORM-WEIGHT 1: snfety hcig1ir 
The SAFETY-HEIGHT (9) was determined by a database lookup. 
It was found in the HEIGHT column of the SAFETY table. 
[t met the following constraints: 

MODEL = SAFETY-MODEL (Bl) 
How [ SAFETY MODEL ]: <a> 
The SAFETY-MODEL (131) was determined by a database lookup. 
It was found in the MODEL column of the SAFETY table. 
[t had the SMALLEST HEIGHT that met the followhlg constraints: 

MAX-SPEED 5 SPEED (25CI) 
MAX-PL,ATFORM-WJDTII >= PLATIQRiM-WIDTH (70) 
MIN-PLATFORM-WIDTH <= PLATFORM-WIDTH (70) 

Kow[ SPEED ]: what ij safety model B4 
I’hc SAFETY-MODEL is currently Bl. 
[fit were 84, the following major rhangcs would occur: 

VAME: ACTUAL: PROPOSED: 
MACHINE-GROOVE-PRESSURE 114.118 155.563, 
I’RACTION-RATIO 1.80679 1.76682. 
ZWT-OVERTRAVEL 49.835 52.835. 
ZAR-BUFFER-REACTION 26709.4 27652.4. 
ZWT-STACK-PERCEN’I 84.1122 88.148. 
“WT-BIJPFER-REACTION 19684 20627.0. 
::WT-PI,AT~-(IUANTITY 90 94.3184. 
;:WT-WEIGHT 4921.0 5156.76. 
DAR-BUFFER-LOAD 6677.35 6913.11. 
CAR-WEIGHT 3677.35 3913.11. 
DEFLECTOR-SHEAVE-DIAMETER 25 20. 
CAR-BUFFER-BLOCKING-HEIGHT 17.125. 
EIOIST-CABJ,E-MODEI ;.0.5 (3).0.5. 
CAR-RUNBY 6.125 6. 
SAPETYdMODEL Bl 84. 
Would you like to see ALL vales which would change [ NO 1: <CT> 
Would you like to implement this [ NO 1: <CD 
How [ MACHINE-GROOVE-PRESSURE 1: safety load 
There is more than one SAFETY-LOAD: 
1, SAFETY-LOAD-CAR-SIDE-CAR-TOP 
2. SAFETY-J,OAD-CAR-SIDE-CAR-BOTTOM 
3. SAFETY-LOAD-CWT-SIDE-CAR-TOP 
4. SAFETY-LOAD-CWT-SIDE-CAR-BOTTOM 
Which would you like to know about? 
[ SAFETY-LOAD-CAR-SIDE-CAR- TOP 1: 2 

Figure 6 A Sample Interaction with the Explanation Facility 
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J) MACHINE-MODEL step: 
P a value has been generated for SUSPENDED-LOAD, and 

there is no value for IMACHINE-MODEL, 
F’HEN look in the database in the MACHINE table for the entry with the 

SMALLEST WEIGHT whose listing for MAX-LOAD is greater than the 
SUSPENDED-LOAD. 
Retrieve the value uudcr MODEL for that entry and assign that value to 
MACHINE-MODEL. 
Leave a trace that SUSPENDED-LOAD contributed to MACHINE-MODEL. 
Leave a declarative represmtation of the details of the database call. 

trol. This rule is eligible to fire as 
soon as a value for SUSPENDED- 
LOAD is made availablei then uses 
this value to supply MACHINE- 
MODEL. Leaving a trace of the contri- 
bution adds to the dependency net- 
work used by the truth maintenance 
system in backtracking. Leaving a 
declarative representation of the 
action taken by this rule is used by 
the explanation facility. 

Figure 7. Machine-Model Step 

To see how this step might interact 
with others, consider the two steps 
shown in figure 8. 

of decreasing preference rating. As VT 
moves through the list of potential 
fixes for a constraint violation, it first 
tries every individual fix at a given 
preference level. Next it tries to com- 
bine each fix at the cur 
level with those of greater or equal 
preference. 

Once VT identifies a change to 
explore, it first verifies that no con- 
straints on the changed value itself 
are violated by the change. It then 
makes the proposed change and works 
through the implications according to 
its knowledge about constructing a 
proposed design (constraints can be 
numeric or symbolic, and procedures 
for determining values often involve 
nonlinear functions such as selections 
from the database). VT continues this 
procedure until it has enough knowl- 
edge to evaluate the originally violat- 
ed constraint. If a proposed change 

12) MACHINE-SHEAVE-DIAMETER step: 
IP a value has been generated for MACHINE-MODEL, and there is no value fol 

MACHINE-SHEAVE-DIAMETER, 
YHEN look in the database in the MACHINE table for the entry whose listing 

for MODEL is the same as MACHINE-MODEL. 
Rctricvc the value under SHEAVE-DIAMETER for that entry and assign that 
value to IMACHINE-SHEAVE-DIAMETER. 
Leave a trace that MACHINE-MODEL contributed to MACHlNE-SHEAVI?- 
DIAMETER. 
Leave a declarative representation of the details of the database call. 

[3) MACHINE-GROOVl?-PRESSURE-FACTOR step: 
IF a value has been generated for HOIST-CABLE-DIAMETER, and there is no 

value for MACHINE-GROOVE-PRESSURE-PACTOR, 
THEN compute 2 l HOIS’1’-Chl3LE-‘I)INI1ETER. 

Assign the result to llIACHINE-GROOVE-PRESSIIHE-PhCTOH. 
Leave a trace that HOIST-CABLE-DIAMETER contributed to MACHINE- 
GROOVE-PRESSURE-FACTOR. 
Leave a declarative representation of the details of the calculation. 

violates the constraints, it is reJected, Figure 8 Sheave-Diameter and Pressure-Factor Steps. 

and another selection is made. This 
lookahead is limited because it only 
considers constraints on the changed 
value and the originally violated con- 
straint. The purpose of this lookahead 
is to limit the work done in exploring 
the implications of a proposed guess 
until VT has reason to believe it is a 
good guess. Once a good guess has 
been identified, VT applies a truth 
maintenance system; that is, it uses 
the dependency network constructed 
during the forward-chaining phase to 
identify and remove any values that 
might be inconsistent with the 
changed value. VT then reenters the 
data-driven constructive phase for 
extending the design with the new 
data. 

A Detailed Look at Problem Solving 

In order to better illustrate how VT 
ar 
forwardchaining and backtracking 
done in a small portion of the sample 
run. The detail focuses on steps lead- 
ing to the specification of MACHINE- 
GROOVE-PRESSURE and its con- 
straint MAXIMUM-MACHINE- 
GROOVE-PRESSURE and follows the 
backtracking initiated by a violation 
of this constraint. 

A step to extend the proposed 
design specifies a value for a design 
parameter, often using results of deci- 
sions already made. For example, the 
step to select the model of the 
machine that moves the elevator car 
can be given the English translation 
shown in figure 7 

The first line of this step specifica- 
tion sets up the forward-chaining con- 

According to the control shown in 
figures 7 and 8, step 1 must be applied 
before step 2 because step 1 creates 
the conditions under which step 2 is 
satisfied. If step 3 is satisfied at the 
same time as either of the other steps, 
it does not matter which procedure is 
applied first. 

The machine moves the elevator by 
turning the machine sheave. The 
machine sheave contains grooves that 
grip the hoist cables which support 
the elevator car. Some pressure is 
required, but if the pressure on each 
individual cable is too great, there is 
excessive wear on the cables. Steps 1 
and 2 are on the inference chain that 
produces a value for MACHINE- 
GROOVE-PRESSURE. This value is 
the result of a calculation using MAX- 
TOTAL-LOAD-CAR-SIDE, 
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MACHINE-SHEAVE-DIAMETER, and 
HOIST-CABLE-QUANTITY. Step 3 is 
on the inference chain that produces a 
value for MAXIMUM-MACHINE- 
GROOVE-PRESSURE. This value is a 
function of the MACHINE-GROOVE- 
MODEL, the SPEED the elevator will 
travel, and MACHINE-GROOVE- 
PRESSURE-FACTOR. Once values for 
both MACHINE-GROOVE-PRES- 
SURE and MAXIMUM-MACHINE- 
GROOVE-PRESSURE are available, 
they are compared. Because the con- 
straint is a maximum, the constraint 
is flagged as violated if the value of 
MACHINE-GROOVE-PRESSURE is 
greater than the value of MAXIMUM- 
MACHINE-GROOVE-PRESSURE. 
Flagging the constraint as violated 
causes VT to shift control into fix 
exploration. 

As a first step in exploring remedies 
for the constraint violation, VT pro- 
poses potential remedies. For this par- 
ticular violation, a propose-fix step for 
the VT knowledge base looks as 
shown in figure 9. (This is an abbrevi- 
ated listing of fixes for MAXIMUM- 
MACHINE-GROOVE-PRESSURE. We 
return to a complete treatment of this 
example in “Management of Knowl- 
edge-Based Backtracking.) 

Downgrading the MACHINE- 
GROOVE-MODEL to one that grips 
the cable less increases the allowable 
MAXIMUM-MACHINE-GROOVE- 
PRESSURE. Increasing the HOIST- 
CABLE-QUANTITY distributes the 
load and decreases the actual 
MACHINE-GROOVE-PRESSURE on 
each groove. VT’s domain expert felt 
these two potential fixes would be 
practical to attempt. Of the two fixes, 
the first is preferable 

VT first considers a downgrade of 
MACHINE-GROOVE-MODEL by try- 
ing to select the next higher groove 
according to the preference ordering.1 
If there is such a prefer 
determines what the MAXIMUM- 
MACHINE-GROOVE-PRESSURE for 
this groove is. If this value is not less 
than the value of MACHINE- 
GROOVE-PRESSURE, VT tries to 
downgrade the groove model further. 
When there are no longer any models 
to try (there are only two groove mod- 
els), VT considers an increase of 
HOIST-CABLE-QUANTITY by adding 
1 to its cur 

IF there has been a violation of MAXIMUM-MACHINE-GROOVE-PRESSURE, 
THEN try a DOWNGRADE for MACHINE-GROOVE-MODEL which has a 

preference rating of 1 hecause it CAUSES NO PROBLEM. 
Try an INCREASP, BY-STEP of 1 of HOIST-CABLE-QUANTITY which has a 
prefercncc rating of 4 because it CHANGES MINOR EQUIPMENT SIZING. 

Figure 9 A Propose-Fix Step 

to see whether this quantity is larger 
than the MAXIMUM-HOIST-CABLE- 
QUANTITY (which in any application 
is never more than six cables). If not, 
VT then recomputes the MACHINE- 
GROOVE-PRESSURE using the new 
HOIST-CABLE-QUANTITY to see if 
this quantity brings the pressure 
under the maximum. If it does not, 
VT tries adding another hoist cable 
and repeats the procedure. If VT 
exceeds the MAXIMUM-HOIST- 
CABLE-QUANTITY before bringing 
MACHINE-GROOVE-PRESSURE 
under its maximum, it then attempts 
a combination of the two fixes. If none 
of the specified fixes resolve the viola- 
tion, VT has reached a dead end (that 
is, the constraint violation cannot be 
car 
previously, the proposed design 
already employed the prefer 
at the time of the constraint violation; 
adding a single hoist cable was the 
selected remedy. 

Once VT finds the fix it wants to 
implement, it uses the dependency 
network built during the forward 
chaining to remove any values that 
depended on the one it changed. It 
then returns to the forward-chaining 
phase with the new HOIST-CABLE- 
QUANTITY and continues. 

A Detailed Look 
at the Explanation Facility 

Every decision VT makes must be jus- 
tifiable to the user. This condition is 
provided for by making a record of 
each decision as it is made. The 
dependency network built for VT’s 
truth maintenance system can provide 
the foundation for a very useful expla- 
nation facility (Doyle 1979; Sussman 
and Steele 1980). This network is aug- 
mented by the details of the contribu- 
tion relation, for example, a descrip- 
tion of an algebraic formula or the 
relation between values required by a 
precondition. In addition, VT records 

adjustments to the proposed design 
that it makes, such as fixes of con- 
straint violations The explanation 
facility pieces these individual actions 
together to describe VT’s line of rea- 
soning. 

VT’s explanation facility does more 
than just examine past decisions; it 
also performs some hypothetical rea- 
soning to demonstrate the effect of 
alternative decisions the user sug- 
gests. Hypothetical explanations are 
relatively simple to construct given 
the VT knowledge representation. 
What the system must do in order to 
answer hypothetical queries is closely 
related to how it resolves constraint 
violations. 

Explaining Past Decisions. The how 
query is probably the most fundamen- 
tal and can be thought of as asking the 
question “How did you determine the 
value of <x>?” First, the explanation 
facility looks for the appropriate node 
in the dependency network that 
recorded the decision which VT made 
regarding the value assigned to <x>. 
This decision record includes, for 
example, not only a formula but also 
any conditions in the system that 
made the formula appropriate. The 
dependency network provides pointers 
to the actual values that were used in 
determining the value in question. 

If the user were to ask how the 
machine groove pressure was deter- 
mined, VT would respond with some- 
thing like the following: 

The MACHINE-GROOVE-PRES- 
SURE (90.0307) = MAX-TOTAL- 
LOAD-CAR-SIDE (6752.3042) / 
[ [ MACHINE -SHEAVE-DIAME- 
TER (30) * 0.5 ] * HOIST- CABLE- 
QUANTITY (5) ] 

The machine groove pressure was 
determined by a calculation, which is 
displayed in terms of the names of the 
system values and their values. 

If the value being explained was 



obtained via a database lookup, the 
explanation facility responds with 
something like the following: 

The MOTOR-MODEL (20HP) 
was determined by a database 
lookup. It was found in the 
MODEL column of the MOTOR 
table. It had the SMALLEST 
HORSEPOWER that met the fol- 
lowing constraints: 

HORSEPOWER > REQUIRED- 
MOTOR-HP (18.705574) 
The facility reports the name of the 

table and the column within the table 
from which the value was obtained as 
well as what criterion was used in 
ordering the table. It then lists the 
constraints that were applied to the 
attributes in the table which nar- 

If the method used to calculate the 
value in question was selected accord- 
ing to a precondition, the description 
of the method is followed by a 
description of the precondition, as fol- 
lows: 

The CAR-RETURN-LEFT (25) = 
PLATFORM-WIDTH (70) - 
[ OPENING-WIDTH-FRONT (42) 
+ CAR-RETURN-RIGHT (3) ] 
This particular method was used 
because: 
[ DOOR-SPEED-FRONT = TWO ] 
AND [ OPENING-STRIKE-SIDE- 
FRONT = RIGHT ] 
In addition, the how query finds 

possible reasons why a quantity in the 
system might have a value that the 
expert believes to be out of the ordi- 
nary, unexpected, or just plain incor- 

values can occur, as the following 
paragraphs illustrate: 

Conflicting input values: Some 
inputs to VT can come from multiple 
sources. If these sources specify differ- 
ent values, one is chosen (by applying 
a specified strategy), and a record is 
made of the event. Obviously, the 
choice can be incor 
cause unusual values to propagate 
throughout the system. 

Inconsistent input values. This situ- 
ation occurs when two input values 
violate an expected relationship 
between them. For example, inputs 
exist for the number of front open- 
ings, number of rear openings, and the 
total number of openings in an eleva- 
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tor shaft. Obviously, “front” plus “rear” 
should equal “total,” but if such is not 
the case, a decision is made about how 
to make the values consistent, and a 
record is made of the event. 

Unusual input values: Some inputs 
have a reasonable range of values spec- 
ified. A value outside the reasonable 
range is allowed (as long as it does not 
violate the absolute range) but is an 

value is determined by its direct con- 
tributors or unusual decisions which 
directly change its value. Everything 
upstream in the dependency network 
contributes to the proposed value. The 
explanation facility allows the user to 
step back through the network by 
repeated questioning and provides 
default queries after each answer to 
aid in this process, as shown earlier in 

Explain: how traction ratio 
The TRACTION-RATIO (1.796574) = 

MAX 1 TRACTION-RATIO-CAR-TOP-PULL (1.759741) 
TRACTION-RATIO-CAR-BOTTOM-FULL (1.796574) 
TRACTION-RATIO-CAR-TOP-EMPTY (1.742178) 
TRACTION-RATIO-CAR-BOTTOM-EMPTY (1.696701) ] 

The value for TRACTION-RATIO may be unusual because: 
(1) The IMACHINE-MODBL was changed due to a constraint on the HOIST- 
CABLE-DIAMETER. (Depth = 3) 
(2) The CAPACITY was an inconsistent input value. (Depth x 3) 

Figure 10. An Explanation Noting Unusual Contributors. 

indication that VT is receiving an 
input which is out of the ordinary. As 
stated earlier, this unusual value can 
propagate other unusual values 
throughout the system. 

Default input values: If the user 
chooses not to answer a particular 
question in the input, a default value 
is assigned. The chances that the 
default chosen is actually the car 
value depends on the particular ques- 
tion. 

Fixed values: A value changed by 
the fix mechanism can look unusual 
to a user, particularly if the value 
changed is an input or if a low-prefer- 
ence fix was required. 

When the user makes a how query 
about a value, unusual occur 
are reported as well: 

Explain: how hoist cable quantity 
The HOIST-CABLE-QUANTITY 
(4) was determined by a fix: 
The MAXIMUM-MACHINE- 
GROOVE-PRESSURE constraint 
was violated. The MACHINE- 
GROOVE-PRESSURE was 
149.5444, but had to be <= 119. 
The gap of 30.544 was eliminated 
by the following action(s): 

Increasing HOIST-CABLE- 
QUANTITY from 3 to 4 
Of course, it is simplifying the pro- 

cess of extending a design to say that a 

“What VT Does.” The facility also 
searches the upstream network on its 
own and in answering any how query 
reports any unusual decisions made 
about upstream contributors. In 
searching for reasons why cx> might 
be unusual, the explanation facility 
examines all the items that directly 
contributed to <x> as well as the 
items used in evaluating any precondi- 
tions on <x>‘s method. This examina- 
tion is recursive in that each of these 
contributors is also examined similar- 
ly and so on until the explanation 
facility grounds out on either inputs 
or constants. 

Figure 10 illusrates an unusual 
explanation; the user asks how TRAC- 
TION-RATIO was determined. The 
depth indicates how far upstream the 
contributor is. 

Hypothetical Reasoning. The data- 
driven control for the forward-chain- 
ing construction of the proposed 
design assumes that the dependency 
network built while the design was 
extended is a directed acyclic graph. 
Because of this assumption, hypothet- 
ical queries can proceed in two direc- 
tions-upstream and downstream. 
The two hypothetical query 
types-why not and what if-differ in 
their emphasis on what direction is of 
interest to the user. Thus, the answer 



Explain: rvljy not safety model 34 
The SAFETY-MODEL (currently Ill) could be B4, but that is less desirable 

because it has a larger HEIGHT. A SAFETY-MODEL of Bl was selected 
because it met the following constraints: 
Its MAX-SPEED (500) was at feast as much as the SPEED (250). 
Its MAX-PLATFORM-WIDTH (93) was not less than the PLATFORM- 
WIDTH (70). 
Its MIN.PLATFORM-WIDTH (54) was not more than the PLATPORM- 
WIDTH (70). 

1 

Figure 11. Why Not Explanation 

to the query is reported differently 
depending on the query type. Howev- 
er, fixes for constraint violations can 
form loops in VT’s line of reasoning. 
Downstream constraint violations can 
cause upstream design adjustments 
that can affect the node from which 
the query originated. Thus, when 
hypothesizing about a change to a 
node in the dependency network, the 
system must be run to quiescence to 
ensure that the reported causes or 
effects are taken from a consistent, 
acceptable design. 

The why not query can be thought 
of as asking the question “Why wasn’t 
the value of <x> a particular value?” 
This question is appropriate if the 
user expected (or desired] a certain 
value, and VT did not produce it. The 

explanation facility then suggests 
what has to be done in order to obtain 
the desired result. The how query 
does a search for reasons why a value 
might be unexpected, and the why not 
query looks for a way to bridge the gap 
between the system’s model and that 
of the user 

If the user expected VT to choose a 
larger safety, the question “why not 
safety model B4” could be posed. The 
results are shown in Figure 11. 

Thus, in this case, the user’s expec- 
tation is possible but not prefer 
Here, the explanation facility locates 
all constraints in the system that con- 
strained the safety model (including 
implicit constraints in database calls) 
and reports them. 

The following case is the opposite. 

Explain: what ifsafety model R4 
The SAFETY-MODEL is currently Bl. 
If it were H4, the followir~g major cha3lges would 0ccUI: 
NAME: ACTUAL: 
MACHINE-(;ROOVE-PRESSUnE 114.118 
‘TRACTION-RATIO 1.80679 
CWT-OVERTRAVEL 49.835 
CAR-BUFFER-REACTION 26709.4 
CWT-STACK-PERCENT 84.1122 
CWT-BUFFER-RBACTION I9684 
CWT-PLATB-9lJ~TlTY 90 
C;WT-WEIGHT 4921.0 
CA&-BUFFER-LOAD 6677.35 
CAR-WEIGHT 3677.35 
DEFLECTOR-SHEAVE-DIAMETER 25 
CAR.BUFFER-BLOCKING-HEIGHT 
HOIST-CABLE-MODEL ;;?.5 
CAR.RUNBY 6.125 
SAFETY-MODEL HI 

PROPOSED: 
155.563 
1.76682 
52.835 
27652.4 
88.148 
20627.0 
94.3184 
5156.76 
6913.1 I 
3923.11 
20 
17.125 
(3).5 
6 
B4 

Would you like to see ALL values which would change [ NO ]: <CT> 
Would you like to implement this [ NO 1: 

Qwe. 12. What If Explanation. 

The suggested value is prefer 
not possible, except perhaps by chang- 
ing values upstream (for example, 
introducing nonprefer 
where). 

Explain: why not safety model Bl 
A SAFETY-MODEL of Bl would 

have been used (instead of B4) if: 
The PLATFORM-WIDTH were 
84 instead of 86. 
In order to handle this second case, 

VT uses knowledge that was acquired 
solely for the purpose of handling 
hypothetical queries about the value 
of SAFETY-MODEL. The form of the 
knowledge required is the same as 
that required for fixing designs which 
violate constraints. VT must have 
knowledge of what contributors to 
SAFETY-MODEL are changeable, the 
relative preference for possible 
changes, and the nature of the change 
in a contributor that would produce 
the desired difference in SAFETY- 
MODEL. As mentioned earlier, the 
system continues to completion to 
verify that changes made to produce 
the desired SAFETY-MODEL can stay 
in place regardless of any fixes for sub- 
sequent constraint violations. If the 
proposed changes cannot be incorpo- 
rated into an acceptable design-that 
is, some constraint violation is impos- 
sible to fix-this condition is reported. 
Otherwise, the explanation facility is 
poised to describe the effects of these 
changes in the same way it does for 
what if queries, and VT offers to dis- 
play this information to the user. 

The what if query can be thought of 
as asking the question “What would 
happen if I changed <x> to be a partic- 
ular value?” The user then sees the 
impact this change would make on 
the system when VT lists which 
important system values would 
change. (The term important is prede- 
fined and is part of VT’s knowledge 
base.) Sixty system values are cur 
ly considered important in this con- 
text, but usually only a relatively 
small subset of these 60 change in a 
given scenario; thus, the user is not 
overwhelrhed by information. Figure 
12 shows the what if explanation of 
the scenario that was shown in figure 
11. 

If the user does wish to examine 
detailed information, the option is 
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provided to see all the values that 
would change. The ability to imple- 
ment a suggested change is provided. 
As was the case with the fix mecha- 
nism when run interactively, this 
option is provided as a way to force 
VT to produce nonstandard results 
(perhaps in response to inventory fluc- 
tuations or other transient situations). 

Internally, the why not and what if 
queries are virtually identical. 
Because they both propose a value for 
a particular quantity, they must be 
able to go upstream and modify values 
in order to make the system consis- 
tent with the new value and then 
propagate the value downstream. This 
process is exactly what the fix mecha- 
nism follows, and in fact, these two 
queries effectively add a dynamic con- 
straint to the system. As mentioned 
earlier, VT must have fix knowledge 
to go with these constraints, some- 
thing which is impractical for all val- 
ues that VT derives while it con- 
structs a design. When the user asks a 
why not or what if query about a 
value that VT has no fix knowledge 
for, the user is so warned. The what if 
report might still be of interest, but it 
is then up to the user to verify 
upstream consistency. 

tems it generates will use a propose- 
and-revise problem-solving strategy 
SALT acquires knowledge from an 
expert and generates a domain-specif- 
ic knowledge base compiled into 
rules. This compiled knowledge base 
is then combined with a problem- 
solving shell to create an expert sys- 
tem. SALT maintains a permanent, 
declarative store of the knowledge 
base which is updated during in&r- 
views with the domain expert and 
which is the input to the compiler. 
This intermediate representation lan- 
guage seeks to make the function of 
domain knowledge explicit. 

As with CONSTRAINTS, SALT’s 

SALT: A Look at 
Knowledge Acquisition 

renresentation scheme is built around 
the framework of a dependency net- 
work For SALT, each node in the net- 
work is the name of a value; this 
name can be that of an input, a design 
parameter, or a constraint. Three 
kinds of directed links represent rela- 
tions between nodes: (1) “contributes- 
to” links A to B if the value of A is 
used in a procedure to specify a value 
for B; (2) “constrains” links A to B if A 
is the name of a constraint, B is the 
name of a design parameter, and the 
value of A places some restriction on 
the value of Bj and (3) “suggests-revi- 
sion-of” links A to B if A is the name 
of a constraint, and a violation of A 

VT’s problem-solving strategy impos- 
es an organization on the system’s 
knowledge that can be exploited for 
knowledge acquisition. Given the 
assumed propose-and-revise strategy, 
domain-specific knowledge must per- 
form one of three roles with respect to 
the problem solver: (1) PROPOSE-A- 
DESIGN-EXTENSION, (2) IDENTIFY- 
A-CONSTRAINT on a design exten- 
sion, or (3) PROPOSE-A-FIX for a con- 
straint violation. A representation 
scheme for a domain-specific knowl- 
edge base such as VT’s should recog- 
nize these roles and the interdepen- 

suggests a change to the cur 
posed value of B. Each of these links is 
supported by additional information 
in the knowledge base. Ill con- 
tributes-to links-are suppdrted by 
details of how contributors are com- 
bined to specify the value of the node 
pointed to: (21 constrains links are 
supported ‘by a specification of the 
nature of the restriction; and (3) sug- 
gests-revision-of links are supported 
by a declaration of the nature of the 
proposed revision [for example, direc- 
tion and amount of change) and its 
relative preference 

For SALT, the knowledEe-accruisi- - _ 
dencies among them. Understanding 
knowledge roles and relationships is 
crucial to acquisition and mainte- 
nance of the knowledge base and pro- 
vides the key to how and when the 
knowledge should be used by the 
problem solver. 

SALT is an automated knowledge- 
acquisition tool that assumes the sys- 

tion task becomes one of fleshing out 
the knowledge base using these repre- 
sentational primitives. SALT allows 
users to enter knowledge piecemeal 
starting at any point. The grain size of 
the pieces car 
three knowledge roles for the propose- 
and-revise strategy: Users can supply 
a procedure for specifying a parameter 
value, identify a constraint on a 

tomer satisfaction as well as dollar 
cost to the company. Relative position 

parameter value, or suggest a remedy 
for a constraint violation. SALT keeps 
track of how the pieces are fitting 
together and warns the user of places 
where pieces might be missing or cre- 
ating inconsistencies. 

SALT users must first specify which 
of the three roles each piece of entered 
knowledge plays. Once this choice is 
made, SALT presents a set of prompts 
for the detailed knowledge required by 
this role. For example, a filled-in 
schema for PROPOSE-A-DESIGN- 
EXTENSION for CAR-RETURN- 
LEFT is shown in figure 13; where 
SALT prompts appear on the left and 
user responses on the right. 

The IDENTIFY-A-CONSTRAINT 
schema prompts for similar informa- 
tion to acquire a procedure for deter- 
mining a value (or values in the case 
of a set constraint) for the constraint. 
In addition, the schema requires the 
user to specify what parameter is con- 
strained and what kind of constraint 
it is (for example, a maximum). 

Collection of information to direct 
backtracking is also highly structured. 
Each piece of PROPOSE-A-FIX knowl- 
edge is a proposal for remedying the 
violation of a particular constraint by 
changing one of the decisions made 
while extending a design. Procedures 
used in the forward-chaining portion 
of extending a design produce values 
the expert would prefer in an under- 
constrained case. Associated with the 
potential fixes is some reason why 
they are less prefer 
nally proposed value. The reasons are 
drawn from the following list: 

1. Causes no problem 
2. Increases maintenance requirements 
3. Makes installation difficult 
4. Changes minor equipment sizing 
5. Violates minor equipment 

constraint 
6. Changes minor contract specifications 
7. Requires special part design 
8. Changes major equipment sizing 
9. Changes the building dimensions 
10. Changes major contract specifications 
11. Increases maintenance costs 
12. Compromises system performance 

These effects are ordered from most 
to least prefer 
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on this scale is significant, but abso- 
lute position is not. When more than 
one fix is suggested to remedy a par- 
ticular constraint violation, the most 
prefer 
attempted first. 

In addition, the domain expert must 
indicate the kind of change that 
should be made. This indication can 
be a perturbation of whatever the cur- 

that doesn’t reference the cur 
value, such as the substitution of 
some other system value. Figure 14 is 
an example of a filled-in schema for a 
fix for MAXIMUM-MACHINE- 
GROOVE-PRESSURE. 

In addition to providing a language 
for representing domain-specific 
knowledge, SALT analyzes the knowl- 
edge base and guides the user’s input 
to ensure that the knowledge base is 
complete and consistent. SALT’s over- 
all design and operation are described 
in detail elsewhere (Marcus, McDer- 
mott, and Wang 1985; Marcus and 
McDermott 1986). The next section 
describes an analysis SALT provides 
to test any knowledge base it collects 
for adequacy with respect to the prob- 
lem-solving method it assumes. 

Management of 
Knowledge-Based Backtracking 

The kind of domain-specific informa- 
tion that SALT initially collects to 
direct backtracking is relatively easy 
to supply because the expert can focus 
on one constraint violation at a time. 
However, a search that relies solely on 
this local information and ignores 
potential interactions among fixes for 
different constraint violations can run 
into trouble. One naive way to ensure 
that a system which uses backtrack- 
ing converges on a solution, if one 
exists, is to open the search complete- 
ly and try every possible combination 
of values for every potential fix before 
announcing failure. This solution is 
not practical for domains that have 
any significant amount of complexity, 
such as VT’s domain. VT can cur 
ly encounter 52 different constraint 
violations. Most constraint violations 
(37 of 52) have only one fix-one 
parameter that might be revised. 
However, typically there are several or 
many alternative values a parameter 

Na11UX CAR-RETURN-LEFT 
Precondition: [ DOOR-SPEED-FRONT = TWO ] AND 

1 OPENING-STRIKE-SIDE-FRONT = RIGHT ] 
Procedure Type: CALCULATION 
Forlllula: PLATFORM-WIDTH - OPENING-WIDTH-FRONT + 

CAR-RETIJRN-RIGHT 

Figure 13. A Completed SALT Schema for a Procedure. 

Constraint Nantc: MAXIMUM-MACHINE-GROOVE-PRESSURE 
Value to Change: HOIST-CABLE-QUANTITY 
Chaugc Tyyc: INCREASE 
Step Type: BY-STEP 
Step Size: 1 
Preference Rating: 4 
Preference Reason: CHANGES MINOR EQUIPMENT SIZING 

Figure 14 A Completed SALT Schema for a Fix. 

cur might assume. This case also exists 
for the remaining constraints with 
multiple fixes; 10 have two fixes each, 
3 have three fixes, and 2 have four 
potential fixes, with multiple possible 
instantiations for each fix A blind 
search that considered all possible 
combinations of these fixes would 
have a potentially large search space. 
In fact, it might be unnecessarily large 
because it might not be the case that 
every fix interacts with every other. 

ed in order of the expert’s preference. 
Until a remedy is found for this viola- 
tion, all possible combinations of 
these constraint-specific remedies are 
tried. If the system reaches a dead end, 
that is, none of these combinations 
remedy the local constraint violation, 
the system announces that there is no 
possible solution. If fixes for one con- 
straint violation have no effect on 
other constraint violations, this strate- 
gy guarantees that the first solution 
found is the most prefer 
the system car 
no successful fix is found for an indi- 
vidual constraint. 

SALT helps manage knowledge- 
based backtracking by mapping out 
potential interactions among fixes for 
different constraint violations A 
developer can then examine cases of 
interacting fixes for their potential to 
cause trouble for convergence on a 
solution. Nonproblematic fixes can be 
handled using local information only. 
This treatment ignores potential inter- 
actions among fixes for different con- 
straints. Trouble spots are treated as 
special cases that take into account 
global information. 

VT’S Local 
Treatment and Its Trouble Spots 

In the local treatment, deciding which 
upstream value is to be modified is 
conditioned on individual constraint 
violations. Potential fixes considered 
are only those which the domain 
expert identified as relevant to the 

However, it is possible that reme- 
dies selected for one constraint viola- 
tion might aggravate constraint viola- 
tions that occur further downstream. 
In some instances, this situation can 
result in failure to find a solution 
when one does exist.2 In these cases, a 
fix that appears optimal based on local 
information would not be prefer 
more were known about the search 
space. 

For example, the most prefer 
for one constraint violation might 
aggravate a downstream constraint 
violation to such a degree that it 
reaches a dead end when exploring its 
own fixes. If less prefer 
first constraint do not have the same 
negative effect downstream, then a 
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solution might be possible. The unde- 
sired behavior of the system in this 
case would be a premature announce- 
ment of failure. 

Another potential problem is that 
unproductive looping can occur 
between fixes for two constraint vio- 
lations if each has a prefer 
a counteracting effect on the other. 
This situation occurs, for example, if 
fixing one constraint violation 
increases a certain value that leads to 
the violation of another constraint 
whose fix results in decreasing the 
same value, and so on. Repeated viola- 
tions of the same constraint are not 
necessarily pernicious, but such a case 
of antagonistic constraints might 
result in an infinite loop. 

SALT provides a mapping of the 
interactions among fixes in a knowl- 
edge base. It does this mapping using 
its understanding of dependencies 
among procedures for extending a 
design plus identification of con- 
straints and fixes. (See Marcus and 
McDermott 1986 for a detailed 
description of this analysis.) We used 
this map to analyze VT’s knowledge 
base for its potential to get into trou- 
ble with a local, constraint-specific 
search. We then hand coded a special 
case treatment for the problem spots 
we found. We plan to automate this 
entire process in SALT. 

VT’s Fix Interactions 
and Their Special Handling 

The VT knowledge base contains 37 
chains of interacting fixes. Eleven of 
these chains are short and nonprob- 
lematic. The rest represent different 
entry points for loops on 8 con- 
straints. Two of these looping con- 
straints represent no danger for the 
local treatment. Three pairs of con- 
straints might cause thrashing under 
the local treatment and are treated as 
special cases in VT. 

Each of the eleven short chains 
involve at most three constraints and 
the effects of only one fix per con- 
straint. The most common scenario 
for these chains is that when a con- 
straint violation causes one piece of 
equipment to be upgraded (or 
increased in size), the values of con- 
straints on related equipment are 
affected and might require that the 

related equipment be upgraded as 
well. For example, if the number of 
hoist cables needed for a job exceeds 
the maximum allowable for the 
machine model selected, the fix is to 
choose a larger machine that can 
accommodate more cables. The 
machine model’s specifications limit 
what machine sheave heights it can 
be used with; larger machines require 
larger machine sheaves. If the cur 
machine sheave is too small for the 
newly upgraded machine model, a 
larger machine sheave (the smallest 
one that meets constraints) is substi- 
tuted. 

The situation involving the two 
nonproblematic looping constraints, 
CHOICE-SET-HOIST-CABLE-QUAN- 
TITY and CHOICE-SET-HOIST- 
CABLE-DIAMETER, also involves a 
rippling effect of upgrading equip- 
ment. Most of the equipment selec- 
tion in VT depends on the weight of 
other components selected. The hoist 
cable quantity and diameter depend 
on hoist cable quantity and diameter 
(that is, they must be able to support 
their own weight) as well as proper- 
ties of other parts that require knowl- 
edge of hoist cable quantity and diam- 
eter in their selection. The VT 
strategy estimates the lowest accept- 
able value for hoist cable quantity and 
diameter using rough criteria, selects 
other parts using these estimates, and 
derives from these estimates a con- 
straint on the quantity and diameter 
that must be used. If the value of the 
constraint does not match the initial 
estimate, quantity and diameter are 
increased. Violations of other con- 
straints on the system derived from 
this major equipment selection, such 
as the MAXIMUM-MACHINE- 
GROOVE-PRESSURE shown earlier, 
also call for changing hoist cable 
quantity or diameter but always in 
the direction of increasing the values. 
Furthermore, the VT knowledge base 
also contains knowledge of MAXI- 
MUM-HOIST-CABLE-QUANTITY 
and MAXIMUM-HOIST-CABLE- 
DIAMETER (SALT asked for this 
information when fixes were entered 
that called for increasing the quantity 
and diameter.) Thus, this loop does 
not present the danger of infinite 
looping. Because the values start at 
the lowest possible point and always 

increase until the maximums are 
reached, the system does not thrash. 

Three cases, however, might result 
in infinite loops under the local treat- 
ment. These cases contain a pair of 
antagonistic constraints that might 
cause thrashing. A local treatment of 
one of these constraints, MAXIMUM- 
MACHINE-GROOVE-PRESSURE, 
was described earlier. Its antagonistic 
constraint is MAXIMUM-TRAC- 
TION-RATIO. The complete set of 
potential fixes for each of these is 
shown in figure 15. 

Figure 16 shows the relevant seg- 
ment of the VT knowledge base as 
SALT represents it. Constraints are 
connected to the values they con- 
strain by the dotted ar 
tom Above these ar 
portion of the dependency network 
that links the constraint-constrained 
pairs to their potential fix values. 
Contributors are linked to the values 
they contribute to by a solid ar 
order to make the figure readable, not 
all contributors are shown. In addi- 
tion, suggests-revision-of links were 
omitted. Instead, suggested revisions 
in response to a violation of MAXI- 
MUM-MACHINE-GROOVE-PRES- 
SURE are sur 
and suggested revisions for violations 
of MAXIMUM-TRACTION-RATIO 
are enclosed in ovals. 

One scenario can illustrate the 
potential for thrashing in this part of 
the network. This scenario uses the 
knowledge shown in figure I plus 
information supporting the links, 
including formulas for combining 
contributors, the nature of con- 
straints, and the suggested direction 
of revisions. Suppose MAXIMUM- 
TRACTION-RATIO is violated, and 
VT responds by increasing CAR-SUP- 
PLEMENT-WEIGHT. This situation 
increases CAR-WEIGHT, which, in 
turn, increases SUPPORTED-LOADS. 
This condition decreases TRAC- 
TION-RATIO but increases 
MACHINE-GROOVE-PRESSURE. An 
increase in MACHINE-GROOVE- 
PRESSURE makes it likely for it to 
exceed its maximum. A violation of 
MAXIMUM-MACHINE-GROOVE- 
PRESSURE could call for a decrease of 
COMP-CABLE-UNIT-WEIGHT, 
which, in turn, would decrease 
COMP-CABLE-WEIGHT, CABLE- 
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WEIGHT, and SUPPORTED-LOADS 
Decreasing SUPPORTED-LOADS 
increases TRACTION-RATIO, mak- 
ing it more likely to violate MAXI- 
MUM-TRACTION-RATIO. At this 
point, the scenario could repeat itself 

SALT analyzes the knowledge base 
for scenarios such as this one and pro- 
duces messages such as the one 
shown in figure 17. 

The top leftmost constraint, MAXI- 
MUM-TRACTION-RATIO, in figure 
17 is an arbitrary starting point. 
Potential fixes for its violation appear 
in parentheses and indented one level. 
The suggested changes to three of 
these values-MACHINE-GROOVE- 
MODEL, COMP-CABLE-UNIT- 
WEIGHT, and CAR-SUPPLEMENT- 
WEIGHT-would make violation of 
MAXIMUM-MACHINE-GROOVE- 
PRESSURE more likely, as indicated 
by its appearance indented below 
these fixes. Violation of MAXIMUM- 
MACHINE-GROOVE-PRESSURE, in 
turn, could call for changes to these 
same three fix values. The LOOP flags 
indicate that these changes might 
make a violation of MAXIMUM- 
TRACTION-RATIO more likely. As 
shown by a lack of nesting, decreasing 
the CWT-TO-PLATFORM-DIS- 
TANCE to fix MAXIMUM-TRAC- 
TION-RATIO does not affect 
MACHINE-GROOVE-PRESSURE or 
its maximum. Adding hoist cables to 
fix MAXIMUM-MACHINE-GROOVE 
-PRESSURE tends to relieve a prob- 
lem with MAXIMUM-TRACTION- 
RATIO, although the effect is not sub- 
stantial enough to war 
sion as a fix for this constraint. 

As long as only one of the two con- 
straints is violated, the local search 
for a solution based on isolated con- 
straint violations is satisfactory. How- 
ever, if both constraints are violated, 
the system might thrash. We added to 
the VT shell the ability to treat this 
latter situation as a special case and 
investigate fixes for the two in tan- 
dem. To do this investigation, VT 
required one additional piece of infor- 
mation. If both constraints cannot be 
remedied at the same time, our 
domain expert relaxes MAXIMUM- 
MACHINE-GROOVE-PRESSURE 
before violating MAXIMUM-TRAC- 
TION-RATIO. If both cannot be fixed, 
VT tries to minimize the violation of 

IP there has been a violation of MAXIMUM-TRACTION-RATIO, 
l31EN try a DECREASE BY-STEP of 1 inch of CWT-TO-PLATPORM-DIS- 

TANCE which has a ptcfcteuce rating of 1 because it CAUSES NO PROB- 
LEM. 
Try an UPGRADE of COMP-CABLE-UNIT-WEIGHT which has a ptcfet- 
ence rating of 4 because it CHANGES MINOR EQUIPMENT SX%lNG. 
Try au INCREASE BY-STEP of 100 lhs. of CAR-SUPPLEMENT-WEIGHT 
which has a preference rating of 4 because it CHANGES MINOR EQUIP- 
MENT SIZING. 
Try an UPGRADE for MACHINE-GROOVE-MODEL which has a ptcfet- 
ence tatiug of 11 because it INCREASES IMAINTENANCE COSTS. 

lF there has been a violation of MAXIMUM-MACHINE-GROOVE-PRl?S- 
SURE, 

rHEN try a DOWNGRADE for MACHINE-GROOVE-MODEL which has a 
ptefeteucc rating of 1 because it CAUSES NO PROBLEM, 
Try an INCREASE BY-STEP of 1 of HOIST-CABLE-QUANTITY which has 
a ptefeteuce rating of 4 because it CHANGES MINOR EQUIPMENT SIZ- 
ING. 
Try a DOWNGRADE of COIMP-CABLE-UNIT-WEIGHT which has a ptef- 
ctence tatiug of 4 because it CHANGES MINOR EQUIIJMENT SIZING. 
Try a DECREASE BY-STEP of 10 Ibs. of CAR-SUPPLEMENT-WEIGHT 
which has a ptefeteucc rating of 4 because it CHANGES MINOR EQUIP- 
MENT SIZING. 

Figure 25. Potential Fixes for Two Conflicting Constraints. 

MAXIMUM-MACHINE-GROOVE- 
PRESSURE without violating MAXI- 
MUM-TRACTION-RATIO. 

Whenever a demon detects a viola- 
tion of one of these constraints, VT 
checks to see if the other has been vio- 
lated. If it has, it resets the values of 
all potential fix values to the last 
value they had before the first viola- 
tion of either constraint. It then tries 
out potential fixes, making sure that it 
does not repeat a combination of 
them, in the following order of fix 
function: (1) helps both, (2) helps one 
and doesn’t hurt the other, and (3) 
helps one but does hurt the other. In 
the third case, the system applies the 
fix in the direction intended to reme- 
dy the constraint most important to 
fix. If there is asymmetry in the 
amount of change in a bidirectional 
fix, as there was for CAR-SUPPLE- 
MENT-WEIGHT discussed earlier, 
after fixing the most desired con- 
straint, VT changes the value in the 
other direction by the largest amount 
that still leaves the first constraint 
unviolated. 

Nowhere in the VT knowledge base 

did we observe a problem that might 
cause the declaration of a premature 
dead end. In most cases, a failure 
report cannot be premature because 
the fixes that cause downstream viola- 
tions are the only possible fix at their 
point of origin. Thus, any dead end 
observed at the aggravated down- 
stream point is unavoidable. This situ- 
ation is true for hoist cable quantity 
and diameter. For the other cases, the 
aggravating fix is the most expensive 
alternative for its constraint violation 
and won’t be implemented unless 
nothing else works at this point. 
Again, this situation means that any 
dead end downstream would be 
unavoidable. 

If we had identified a chain of inter- 
acting fixes that might result in pre- 
mature dead end, it would have been 
relatively simple to provide a cus- 
tomized treatment for the potential 
site of the dead end. The VT shell 
could be modified so that whenever a 
dead end were found for such a con- 
straint violation, VT would go back 
and try more expensive fixes at the 
relevant prior constraint violation(s). 
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Figure 16 A Segment of the VT Knowledge Base Containing Antagonistic Constraints 

SALT’s map of interacting fixes could 
be used to identify the relevant prior 
fixes. 

For VT then, SALT’s analysis locat- 
ed cases in which fixes for different 
constraints interacted. Our examina- 
tion showed in most cases the propa- 
gation of changes was such that a 
search based on fixing one constraint 
at a time would either converge on a 
solution or car 
solution was possible. In three cases 
involving pairs of constraints, the sys- 
tem might thrash if constraint viola- 
tions were fixed independently; so, 
additional knowledge was used to deal 
with the interacting constraint viola- 
tions in combination. 

Domain knowledge is needed to 
specify what revisions are possible in 
the real world and what their relative 
desirability is for fixing particular 
constraints As a first step, SALT asks 
the domain expert to address each 
constraint violation individually This 
situation relieves the expert from hav- 
ing to anticipate the ramifications for 
the rest of the design-something that 
is difficult for a person to do in a com- 
plex domain. SALT can help decide 
whether this approach is adequate for 
a problem solver because it has access 
to the entire knowledge base and 
because its representation of the 
knowledge base makes clear how the 
knowledge is to be used. In the case of 

1 

, 
MAXIMUM TRACTION RATIO --___-_____ 

(CWT TO PLATFORM DISTAiiCE, Down) 
(COMP CABLE IJNIT WEIGHT, Up} 

MAXIMUM MACHINE GROOVE PRESSURE 
(MACHINE GROOVE MODEL, Down)------* ’ LOOP l l - 
(HOIST CABLE QUANTITY, Up) 
(COMP CABLE UNIT WEIGHT, Down 
(CAR SUPPLEMENT WEIGHT, Down) 

}-;l’ y; ‘*-- 
l ‘- 

(CAR SUPPLEMENT WEIGHT, Ilp) 
MAXIMUM MACHINE GROOVE I’RESSURE 

(MACHINE GROOVE MODEL, Down)----- l LOOP ’ *--- 
(HOIST CABLE QUANTITY, Up) 
(COMP CABLE UNIT WEIGHT, DO~II) l ’ LOOP l *- 
(CAR SUPPLEMENT WHGHT, Down)- +* LOOP *+- 

(MACHINE GROOVE MODEL, IJy) 
MAXIMUIM MACHINE GROOVE PRESSURE 

(MACHINE GROOVE MODEL, ~~OWJ$------* * LOOP l l ---, 
(HOISr SABLE QUANTITY, Up) 
(COMP CABLE UNIT WEIGHT, Down 
[CAR SUPPLEMENT WEIGHT, Down)-- 

Figure 17 SALT’s Report of Interacting Fixes 

VT, a search space with hidden mine 
fields for a locally based search was 
much more manageable when supple- 
mented with analysis-based special 
case treatment. The particular solu- 
tions to knowledge base inadequacies 
used in VT might not be sufficient for 
all constraint-satisfaction tasks. How- 
ever, SALT’s representation scheme 
and analyses still help in addressing 

inadequacies because they make obvi- 
ous the ramifications of problem-solv- 
ing decisions with a given knowledge 
base. Thus, they can identify the need 
for additional knowledge and identify 
considerations that should go into 
deciding how and when knowledge 
should be used (Marcus 1988; Stout et 
al 1987). 
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Comparison to Other 
Constructive Systems 

The ordering of decisions in VT is in 
the spirit of the Expert Executive for 
aerospace vehicle design described in 
Chalfan (1986). The Expert Executive 
knows the inputs required and out- 
puts produced by each of the proce- 
dures, or programs, it must configure. 
A program is run only when all other 
programs have been run whose out- 
puts serve as its inputs. Unlike VT, 
the Expert Executive and the pro- 
grams it configures are intended to be 
a design aid rather than a design 
expert. The Expert Executive and pro- 
gram configurations leave to the 
human expert the task of suggesting 
plausible starting values for free 
parameters, checking constraints, and 
directing revisions. VT performs these 
functions as well. 

VT’s architecture is probably most 
similar to that of EL, an expert system 
which performs analysis of electric 
circuits. EL makes a guess for, say, the 
cur 
principles such as Ohm’s Law and 
Kirchoff’s Law to propose values at 
other points in the circuit. It is simi- 
lar to VT in that it builds up a depen- 
dency network representing this prop- 
agation, backtracks whenever con- 
straints are violated (when some point 
is assigned two different values), and 
uses a truth maintenance system. The 
main difference between EL and VT is 
that EL uses a domain-independent 
strategy of dependency-directed back- 
tracking as opposed to VT’s domain- 
specific knowledge-based approach. 
EL’s decision of where to backtrack to 
is based solely on the dependency net- 
work’s record of what guesses con- 
tributed to the conflicting constraints. 
Furthermore, EL is committed to a 
search that tries all possible combina- 
tions of all guesses, although it pre- 
vents thrashing by keeping track of 
combinations already tried and never 

CONSTRAINTS language allows the 
user to direct backtracking and is sim- 
ilar to VT when running in interactive 
mode or performing what-if explana- 
tion. 

Domain-independent dependency- 
directed backtracking is not satisfac- 
tory for VT’s domain. VT is not sim- 

ply searching for a single solution that 
meets constraints, where any solution 
is equally good. Generally, many pos- 
sible solutions exist, and these solu- 
tions differ in domain-specific disad- 
vantages. These differences are 
expressed in VT by using the expert’s 
most prefer 
an initial value and using explicit 
preferences supplied by the expert on 
potential fixes for constraint viola- 
tions . 

GARI (Descotte and Latombe 1985) 
does incorporate a notion of domain- 
specific preference in its plausible rea- 
soning but in an indirect and difficult- 
to-maintain manner. GARI’s task is to 
devise a plan for machining parts that 
meets constraints on the order in 
which operations should be performed 
and the orientation of parts with 
respect to the machining tools It 
employs backtracking whenever con- 
straints conflict, and the decision 
about what point to backtrack to is 
determined by weights taken from 
domain experts. GARI backtracks to 
its most recent, lowest-weight deci- 
sion. GARI does not use a dependency 
network or any relation of contribu- 
tion in this decision The result is 
that the decision it changes might be 
ir 
which has arisen In addition, 
although the weights are taken from 
domain experts, the designers note 
that the experts find the weights diffi- 
cult to assign and that afterwards 
knowledge engineers must adjust 
these weights by experimentation. 
This process must be particularly dif- 
ficult because these weights might 
have evolved to express both a combi- 
nation of expense in terms of materi- 
al, equipment cost, and so on, and of 
their likelihood to converge on a solu- 
tion. 

Two other design systems, 
AIR/CYL (Brown 1985) and PRIDE 
(Mittal and Araya 1986), use a knowl- 
edge-based approach to revising 
designs in response to constraint vio- 
lations but differ somewhat from VT 
in the knowledge used. AIR/CYL has 
failure handlers that respond to con- 
straint violations by calling for 

of the design. If more than one value 
might be revised, AIR/CYL uses a 
least backup strategy; it attempts revi- 

sion at the most recently established 
relevant value. AIR/CYL moves back 
to the next most recently established 
only if it fails to remedy the violation 
at the cur 
wants to restrict the range of back- 
tracking on the grounds that this 
restriction is what human design 
experts do PRIDE also uses domain 
expertise to suggest how to revise 
parts of the design in response to con- 
straint violations. For PRIDE, the 
presence of more than one suggestion 
about how to respond to a particular 
constraint violation causes the system 
to set up multiple contexts for explor- 
ing each suggestion. The PRIDE user 
can then select among alternatives. 
VT explores design revisions sequen- 
tially. In interactive mode, users can 
determine the order in which revi- 
sions are explored and suggest revi- 
sions of their own. In the absence of 
user input, VT has domain expertise 
regarding the preference of alternative 
fixes that it uses to decide the order in 
which it explores them. 

Rl (McDermott 1982) is a system 
that constructs a solution but uses a 
strategy for plausible reasoning which 
might be described as “lookaround.” 
Whenever a decision based on partial 
information is required, Rl tries to 
collect as much information as it can 
to ensure that the decision is accept- 
able. The kind of information it col- 
lects might be the same kind of infor- 
mation that could be used to augment 
fix knowledge, that is, information 
about how close the cur 
is to violating related constraints 
Without the kind of dependency net- 
work representation that VT/SALT 
uses, it is difficult to identify the role 
of this information. Rl is cur 
being revised to more clearly repre- 
sent the roles that knowledge plays 
with respect to its own problem-solv- 
ing method (van de Brug, Bachant, and 
McDermott 1986). This revision 
should make it easier to compare the 
two systems. 

As mentioned at the outset, VT 
does postpone decisions where possi- 
ble, but most of its effort goes into 
plausible guessing combined with 
backtracking. This system contrasts 
with MOLGEN whose main effort is 
put into managing its least commit- 
ment planning. Although MOLGEN 
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has the ability to backtrack, its guess- 
ing and backtracking capability is 
underdeveloped, and MOLGEN often 
does not recover from bad guesses 
[Stefik I98Ia) 

ISIS [Fox 1983; Smith, Fox, and Ow 
1986) is another constraint-satisfac- 
tion planner that uses least commit- 
ment in job shop scheduling. ISIS 
expresses preferences as constraints 
When forced to guess, that is, to 
choose among constraints it will meet 
when it can’t meet all of them, ISIS 
conducts a beam search by maintain- 
ing in parallel the most prefer 
tions If a solution is not found by 
scheduling in the forward direction, 
that is, from first operation in time to 
last, then a second attempt is made 
starting from the last operation. The 
efficiency and probability of the 
search’s success depends on the 
weights assigned to the constraints 
and the width of the beam. As with 
GARI, this architecture can lead to a 
difficult problem in credit assign- 
ment. 

MOLGEN, ISIS, AIR/CYL, and 
PRIDE share the property of being 
hierarchical in that they select a met- 
alevel plan or design and then refine 
it. In Friedland’s version of MOLGEN 
especially, selecting which metalevel 
plan to refine involves a great deal of 
search [Cohen and Feigenbaum 1982). 
Although solution paths for extending 
a design for an elevator can differ 
depending on input parameters, these 
path differences are represented in VT 
as preconditions on individual steps. 
Nowhere are the path differences rep- 
resented as separate metalevel 
designs. In the hierarchical planners, 
an abstract, metalevel design also 
serves to split the task into nearly 
independent subproblems. Interac- 
tions take the form of constraints that 
propagate from one subproblem to 
others VT does not have a subtask 
level of organization to group proce- 
dures for extending a design and speci- 
fying constraints. One benefit of a 
subdivided architecture might be that 
it helps the system builders keep 
track of interactions among decisions. 
SALT’s knowledge representation and 
the analysis it does based on the 
anticipated problem-solving strategy 
serves this function for VT (see also 
Marcus 1988). 

VT’s Performance 
VT is cur 
house Elevator Company. It must 
function with a large knowledge base 
and converge on an acceptable solu- 
tion within a reasonable amount of 
time This section provides a descrip- 
tion of its size and some indication of 
its performance characteristics 

Rule Characteristics 

Because VT is implemented in OPS5 
(Forgy 19811, it is appropriate to 
describe its size and complexity in 
terms of rules. VT cur 
total rules Of these, 2191 are domain- 
specific rules generated by SALT (70.2 
percent). The remainder belong to the 
general shell for I-O, explanation, and 
problem-solving control There are 
several types of SALT-generated rules 
Some are not directly used in problem 
solving. These 698 rules (31.9 percent 
of all SALT-generated rules) contain 
domain-specific information required 
for I-O and the explanation facility. 
The remaining 1393 SALT-generated 
rules break down into the following 
categories: (1) 521 (23.8 percent] are 
forward-chaining rules for proposing a 
part of the elevator design, 12) 12~1 (5 5 
percent) are forward-chaining rules for 
specifying constraints on the design, 
(3) 58 (2.7 percent) are rules for 
proposing potential fixes conditioned 
on the violation of particular con- 
straints, (4) 44 [2 0 percent) are rules 
for directing exploration of the impli- 
cations of a fix /lookahead), IS) 530 
(24 2 percent) are lookahead rules for 
extending a design, and (6) 120 (5.5 
percent) are lookahead rules for speci- 
fying constraints. 

These rules represent procedures 
derived from the knowledge SALT col- 
lects in its three knowledge roles. The 
first three rule types make use of the 
knowledge in the roles of PROPOSE- 
A-DESIGN-EXTENSION, IDENTIFY- 
A-CONSTRAINT, and PROPOSE-A- 
FIX, respectively The next group, 
rules for directing lookahead, define 
which procedures for proposing design 
extensions and identifying constraints 
are relevant to deciding whether pro- 
posed fixes actually remedy the con- 
straint violation they are intended to 
fix The last two categories employ 
the same knowledge encoded in the 

first two groups, PROPOSE-A- 
DESIGN-EXTENSION and IDENTI- 
FY-A-CONSTRAINT They differ 
from the first two in that the condi- 
tions under which they fire are set up 
by the rules that direct lookahead. 
They are used to selectively explore 
implications of proposed fixes before 
choosing one to implement Table 1 
gives an impression of rule complexi- 
ty in each of these categories. 

Run Characteristics 

Statistics reported here are based on a 
sample of six test cases that Westing- 
house engineers feel are representa- 
tive of the range of complexity which 
VT must handle. A breakdown of 
these cases on measures that reflect 
search complexity is given in table 2. 
All constraint violations are fixed on 
the runs in table 2; that is, there are 
no dead ends. 

The breakdown of rule firings 
shown in table 3 helps to give an idea 
of where the activity is focused during 
a run. The breakdown for these jobs in 
CPU time, as measured on a VAX 
11/780 with 20MB of memory, is 
shown in table 4. 

Conclusion 
VT is an expert system whose domain 
requires plausible guessing. Its prob- 
lem-solving strategy incrementally 
constructs an approximate elevator 
design by proposing values for design 
parameters At the same time, it iden- 
tifies constraints on design parame- 
ters. If a constraint is violated, VT 
uses domain expertise to figure out 
how to revise the proposed design. In 
doing so, it uses an architecture that 
makes clear the role which each piece 
of domain-specific knowledge plays in 
proposing, constraining, and revising 
solutions. This knowledge representa- 
tion serves as the basis for VT’s expla- 
nation facility that can both explain 
past decisions and hypothesize about 
alternative solutions. It is also the 
foundation of an automated knowl- 
edge-acquisition tool, SALT, that can 
be used to generate expert systems 
which use this problem-solving strate- 
gy and explanation facility. SALT was 
used to acquire the knowledge for and 
to generate the system described here 
as well as to map out potential inter- 
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actions among fixes. This analysis 
helps a developer assess the potential 
for the system to converge on a solu- 
tion if one exists. Trouble spots locat- 
ed by this analysis can be given spe- 
cial treatment in the backtracking 
search. In the future we plan to con- 
tinue our exploration of the use of 
knowledge-based backtracking 
through the use of SALT as a tool to 
acquire the knowledge for other types 
of constructive tasks. 
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