
This article is a written version of an 
invited talk on artificial intelligence (AI) 

and the history of science that was pre- 
sented at the Fifth National Conference on 

Artificial Intelligence (AAAI-86) in 
Philadelphia on 13 August 1986 Included 

is an expanded section on the concept of 
an abstraction in AI; this section responds 
to issues that were raised in the discussion 

which followed the oral presentation 
The main point here is that the history 

of science can be used as a source for con- 
structing abstract theory types to aid in 

solving recurring problem types. Two theo- 
ry types that aid in forming hypotheses to 
solve adaptation problems are discussed: 

selection theories and instructive theories. 
Providing cases from which to construct 

theory types is one way in which to view 
the history of science as “compiled hind- 
sight” and might prove useful to those in 
AI concerned with scientific knowledge 

and reasoning 

Viewing the History of 
Science as Compiled 
Hindsight 
Lindley Darcien 

hen I was invited to give a 
talk on AI and the history of 
science, I declined the sugges- 

tion that I discuss the place of AI in 
the history of science. The field is too 
new, developing too rapidly, to try to 
assess its place in the history of sci- 
ence just yet. Some aspects of AI are 
applied and more like engineering 
than science. Some aspects, those in 
which AI researchers aim at modeling 
human intelligence, merge into cogni- 
tive science. Those researchers trying 
to understand intelligence, human or 
otherwise, are forging a new area that 
might or might not ultimately be 
called scientific. I don’t believe it is 
profitable to argue over whether a 
field deserves the honorific title of 
“science.” Each field needs to develop 
its own methodologies, which are 
shaped by the needs and problems 
within the field, without succumbing 
to the disease of physics envy. If some 
of the many characteristics attributed 
to science are useful within a new 
field, then they should be considered. 
Some fields, for example, might find 
controlled experimentation useful; 
others might strive for quantitative 
results; and still others might find the- 
ory-driven methods of use. However, 
adopting methods simply to obtain 
the label scientific and not because 
they are demanded by the problems 
seems to me to be misguided. 

Although I believe it is too early to 
try to assess AI’s place in the history 
of science, it is not too early to begin 
preserving records for the historians 
who will be writing the history of AI. 
AI is an exciting and rapidly develop- 
ing field. Those persons shaping it 

should be aware of the need to pre- 
serve records of their activities. 
Pamela McCorduck’s entertaining and 
journalistic account of AI, Machines 
Who Think (1979,) will be the first of 
many chronicles of this field. Profes- 
sional historians will soon follow the 
journalists. 

The difficulty in preserving pro- 
grams and the hardware on which 
they run will make the historians task 
even more difficult than the usual 
problem, for example, of coping with 
scientists who cleaned out their files 
and threw away their notebooks. 
Those of you working in the field 
should be careful about preserving 
material. Consider donating your 
papers to university or corporate 
archives, and be aware that future gen- 
erations will likely want to trace your 
steps of thinking and implementing. 
One scientist whose work I have tried 
to trace cleaned out his files every five 
years. Another researcher destroyed 
his notebooks when he retired. Be- 
cause we cannot date a key discovery 
on the basis of information in this re- 
searcher’s notebooks, which are the 
best historical source, we are left with 
trying to reconstruct what he said in 
his classes during this period to see if 
he discussed as yet unpublished 
results in his lectures. Would you 
want to count on your students’ lec- 
ture notes to substantiate your claim 
that you made a discovery? Certain 
large projects, such as the space tele- 
scope, hire a historian at the outset so 
that appropriate records can be kept 
and interviews done as the project 
proceeds. Scientists interviewed many 
years later might or might not accu- 
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Although I believe it is too early to try to assess 
AI’s place in the history of science, it is not too 

early to begin preserving records for the historians 
who will be writing the history of AI. 

rately remember what happened and 
when. Having a historian involved in 
the early stages is a good way to record 
AI work on large projects. 

The Babbage Institute and the 
Smithsonian Institution have strong 
interests in the history of computing, 
but they have done little yet on the 
history of AI. Arthur Norberg of the 
Babbage Institute told me that they 
will be happy to advise anyone with 
archival material in AI about appropri- 
ate places for storage. A major exhibit 
on the information revolution is 
scheduled to open at the Smithsonian 
Institution in 1990. Currently, nothing 
on AI is scheduled to appear in this 
exhibit. 

In contrast, the Computer Museum 
in Boston has an exhibit entitled, 
“Artificial Intelligence and Robots,” 
opening in the summer of 1987. Oliver 
Strimpel is the curator working on the 
exhibit. The museum already has 
Shakey and other artifacts and is inter- 
ested in acquiring still more. It is also 
interested in collecting programs, 
either in listings or in other usable 
forms, for their archives. For the 
exhibit, they need rugged, state-of-the- 
art AI systems which might be of 
interest to the public and which could 
withstand museum use. 

The AI field is fortunate to have its 
key founding fathers still alive. It is 
certainly time for professional histori- 
ans--those trained in oral history 
methodology--to begin collecting 
audiotapes and videotapes, deciding on 
key historical questions that need to 
be asked, and filling in the gaps in doc- 
umentation. The American Associa- 
tion for Artificial Intelligence might 
wish to fund such a project, just as 
many of the scientific societies have 
done. 

Although the history of AI is an 
interesting topic, it is not the focus of 
my discussion today. It is not my area 
of research. I am a historian and a 
philosopher of the natural sciences 
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(not the social or artificial]. I am inter- 
ested in scientific knowledge and rea- 
soning. My topic deals with the ways 
in which AI and the history and phi- 
losophy of science can profit from 
interacting. Successes already exist 
with such an interface, and I would 
like to suggest additional points of 
potential contact. 

When I was invited to speak, I was 
asked to be entertaining and provoca- 
tive. Because I am normally rather 
matter-of-fact and, I guess, sad to say, a 
bit dull, such a task isn’t especially 
easy for me. AI has some very bright, 
clever, and entertaining people who 
give very lively talks. I can’t hope to 
match their liveliness and wit. Also, 
being provocative requires one to take 
dogmatic stands so that others will 
disagree. Philosophical training has 
sharpened my ability to see both sides 
of an issue and dulled my ability to be 
dogmatic. However, in an effort to sat- 
isfy this request, let me attempt to 
make a few provocative remarks before 
getting on to the serious--and I hope 
not too dull--points. 

To give an overview of what is com- 
ing, first I will make some provocative, 
introductory remarks. Then, I will dis- 
cuss fruitful interactions between AI 
and the history and philosophy of sci- 
ence. Next will come a discussion of 
an important idea developed in AI, 
namely, abstraction. This idea will be 
applied in a discussion of abstractions 
that I have found by analyzing the his- 
tory of science as well as an illustra- 
tion involving two types of theories 
from the biological sciences--selection 
and instructive theories. The conclu- 
sion is a summary of the compiled 
hindsight provided by the examples 
discussed and suggests ways in which 
AI and the history of science can con- 
tinue to interact. 

AI and Other Fields 
In a provocative article in AI 
Magazine in 1983, Roger Schank made 

some remarks about AI that are worth 
recalling. Schank discussed the some- 
times tenuous connection between AI 
and the rest of computer science. He 
said that AI is a methodology applica- 
ble to many fields other than computer 
science because it is “potentially, the 
algorithmic study of processes in every 
field of inquiry. As such the future 
should produce AI anthropologists, AI 
doctors, AI political scientists, and so 
on” (Schank 1983, p. 7). I would add to 
this list AI historians and philosophers 
of science. 

Students educated in computer sci- 
ence as undergraduates who then spe- 
cialize in AI as graduate students learn 
a lot of skills, maybe some mathemat- 
ics, but they might be exposed to very 
little actual knowledge, scientific or 
otherwise, or to problems examined by 
researchers in other fields. I think this 
lack of training in knowledge-rich 
fields accounts in part for so many of 
the toy problems and games that have 
been the domain of much AI work. Al 
efforts that address real, rather than 
toy, problems, especially scientific 
ones, are of much greater interest to 
those researchers in other fields 
attempting to make connections with 
AI. 

The work in expert systems has 
been all for the good in getting Al 
researchers involved with real-world 
knowledge and reasoning. Some Al 
systems have been driven by researcl 
problems and needs in other areas 
including science. Such success 
requires those involved in AI to learr 
about other fields and become con 
cemed with the research problems ant 
reasoning strategies in various conten 
fields. Graduate programs in AI shoulc 
have less training in computer science 
More of the students’ time should bc 
spent in research fields where AI tech 
niques can be applied and where the 
needs of these fields can drive the 
development of new areas of AI. The 
history of science has been marked b! 
successful interfield interactions lead 
ing to new developments (Darden ant 
Maul1 1977). The potential exists fo 
the AI field to be a part of many sue 
cessful interfield bridges, and a 
Schank suggested, what would the] 
mark a successful contribution in A 
would be developments that are appli 
cable to a wide range of areas (Schanl 



1983, p.7). 
Another case of AI researchers lack- 

ing content knowledge but attempting 
to apply their powerful skills is the 
current work on commonsense rea- 
soning. As someone working on the 
relations between the history and phi- 
losophy of science and AI, I don’t find 
the work on common sense of particu- 
lar interest. Common sense is a very 
vague term. The eclectic list of topics 
pursued in AI under this rubric 
demonstrates a lack of clear focus. 
Furthermore, commonsense notions 
about the natural world are often 
wrong. Science has spent hundreds of 
years cleaning up commonsense 
misconceptions and improving loose 
methods of reasoning. 

Much of Aristotle’s world view was 
a commonsense one: objects stop mov- 
ing if no mover is pushing them; the 
earth is at the center of the universe 
and does not move, and the stars 
revolve around the earth; animal 
species perpetuate themselves etemal- 
ly and act according to teleological 
goals; substances have essential and 
accidental properties. Science, or natu- 
ral philosophy as it was called until 
the nineteenth century, has served to 
correct these and many other com- 
monsense misconceptions. Thus, sci- 
ence is an important storehouse of 
knowledge about the natural world. 
Storing this knowledge and finding 
ways of making it readily accessible to 
AI systems is an important task. As a 
philosopher of science, I find efforts to 
encode and use scientific knowledge of 
much more interest than the attempts 
to make the vague concept of com- 
monsense knowledge precise. (For fur- 
ther discussion of the view that episte- 
mology should be the study of scientif- 
ic, rather than commonsense, knowl- 
edge, see Popper 1965, p. 18-23.) 

Having now provocatively suggested 
that AI researchers could profit from 
working on scientific problems rather 
than toy ones and dogmatically assert- 
ed that science has cleaned up com- 
monsense misconceptions, I will try 
to turn to claims of greater substance. 
The history of science and the philoso- 
phy of science can be related in vari- 
ous ways (see Figure 1). Much of the 
history of science now being written is 
not focused on scientific ideas but on 
the social and institutional aspects of 

science. Thus, it is outside the sphere 
of the philosophy of science. Some 
work has been done using the social 
history of science in AI and would, 
thus, be located in the intersection of 
the history of science with AI outside 
the philosophy of science, as shown in 
figure 1. A possible example is Korn- 
feld and Hewitt’s (1981) effort to build 
a parallel system that is analogous to a 
scientific community of researchers 
that are working independently on the 
same scientific problem. 

he philosophy of science can (and 
much of it has) involve logical 
analyses of science without atten- 

tion to the historical development of 
scientific ideas. The work of Glymour, 
Kelly, and Scheines (1983) on imple- 
menting the testing of scientific 
hypotheses in a logical form is an 
example of philosophers of science 
(those who aren’t concerned with the 
history of science) making use of AI 
techniques. Their work would be 
located in the area of figure 1 in which 
AI and the philosophy of science inter- 
sect outside the history of science. 

The history of science and the phi- 
losophy of science interact in the 
interdisciplinary area of the history 
and philosophy of science (HPS). The 
aim of HPS is to understand reasoning 
in the growth of scientific knowledge. 
HPS researchers make use of extensive 
case studies from the history of sci- 
ence in order to understand scientific 
change. I argue that AI and HPS have 
and can continue to interact to their 
mutual benefit; important work has 
been and can continue to be done at 
the intersection of AI and HPS, the 
center area in figure 1. jj 

AI and the 
History of Science 

Thus far, I have discussed science as a 
body of knowledge. However, science 
can also be characterized by its 
methodologies, which themselves 
have improved over time. Some meth- 
ods used in science have already 
proved fruitful in AI. Experimentation 
is often seen as a key method in sci- 
ence. The early work on using AI tech- 
niques in molecular genetics (MOL- 

Figure 1: Interfield Relations 

GEN) (Friedland and Kedes 1985) aided 
in the planning of experiments. One of 
the most interesting pieces of work in 
AI from a science historian’s point of 
view is the work by Langley, Brad- 
shaw, and Simon (1983) and others on 
Baconian induction. They developed 
methods for finding patterns in numer- 
ic data. Another of their systems, 
GLAUBER, can discover certain kinds 
of qualitative laws (Langley et al. 
1983). These methods are sufficient for 
rediscovering numerous empirical 
laws, such as the laws of chemical 
combination discovered in the nine- 
teenth century. Implementing induc- 
tive-reasoning strategies in order to 
rediscover past scientific results has 
provided fruitful insights into scientif- 
ic reasoning methods. But data-driven, 
bottom-up, inductive methods have 
their limits, as Langley’s group real- 
ized (Langley et al. 1986). 

Consider a simplistic division of sci- 
entific knowledge into data, empirical 
generalization, and explanatory theory. 
Inductive methods can be seen as a 
way of getting from data to empirical 
generalizations but not to explanatory 
theories. Explanatory theories require 
concepts not in the data themselves in 
order to explain these data (philoso- 
phers of science have argued, for exam- 
ple, Hesse 1966). A method for produc- 
ing explanatory hypotheses is the 
hypothetico-deductive method: a 
hypothesis is guessed, and a prediction 
is then derived from it. The philoso- 
pher of science Karl Popper advocated 
this method and stressed the impor- 
tance of falsifying instances to elimi- 
nate erroneous guesses (Popper 1965). 

The hypothetico-deductive method 
corresponds--or perhaps even gave rise- 
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to the methodology in AI called “gen- 
erate and test.” The key component 
becomes the hypothesis generator. 
The idea from the philosophy of sci- 
ence that generation of hypotheses is 
by unconstrained guessing is not very 
helpful in trying to implement a 
hypothesis generator. The DENDRAL 
work [Lindsay et al. 1980) was an 
implementation of a generate-and-test 
methodology for forming hypotheses 
within a theoretical context. The 
hypotheses could be exhaustively 
specified. However, the hypothesis 
space was so large that a key problem 
was to find constraints to add to the 
generator to restrict the search of the 
hypothesis space. Use of the generate- 
and-test method provides a real chal- 
lenge when the hypothesis space is not 
well-defined--guessing new theories is 
not something that computers are 
good at. 

Philosophers of science have criti- 
cized the lack of insight provided by 
the hypothetico-deductive method 
that hypotheses are to be guessed. N. 
R. Hanson (1961), drawing on the 
work of Charles Pierce, argued for an 
alternative to the hypothetico-deduc- 
tive method called “retroduction” or 
“abduction.” Abduction is a method of 
plausible hypothesis formation. It is 
beginning to receive attention in AI. In 
their recent AI textbook, Charniak 
and McDermott discussed abduction 
in the logical form usually referred to 
as the “fallacy of affirming the conse- 
quent”: 

If a, then b 
b 
Therefore, a 

Of course, b could result from some- 
thing other than 0. However, if one 
already has the reliable generalization 
that a causes b, one can plausibly con- 
jecture that if b occurred, then a 
would explain its occurrence (Chami- 
ak and McDermott 1985, ch. 8). 
Sophisticated versions of abductive 
inference are being developed by Reg- 
gia, Nau, Wang, and Peng (1985), as 
well as Thagard and Holyoak (1985). 

Hanson’s schema for retroduction 
was more complex than the simple 
logical form discussed by Charniak 
and McDermott. Hanson was con- 
cerned with the discovery of new gen- 
eral theories, not merely invoking past 

generalizations in another instance. 
Hanson’s schema for retroduction 

was the following: (1) surprising phe- 
nomena, pl, p2, p3, . . ., are encoun- 
tered; (2) pl, p2, p3, . . ., would follow 
from a hypothesis of H’s type; (3) 
therefore, there is good reason for elab- 
orating a hypothesis of the type of H 
(Hanson 1961, p. 630). 

Hanson had little to say about what 
constituted a type of hypothesis and 
gave only a few examples. For 
instance, he labeled Newton’s law of 
gravitation an inverse-square type of 

TWO powerful ideas 
developed by AI 
researchers in a 

computationally useful 
way are abstraction and 

instantiation. 

theory. Despite its lack of develop- 
ment, Hanson’s idea has appeal: find 
types of hypotheses proposed in the 
past, and analyze the nature of the 
puzzling phenomena to which the type 
applied. Use this “compiled hindsight” 
in future instances of theory construc- 
tion. I think AI can help in the devel- 
opment of Hanson’s vague suggestions, 
for instance, by applying the concept 
of an abstraction to devising computa- 
tionally useful theory types. 

The Concept 
of an Abstraction 

One of the marks of fruitful interfield 
interactions in science is that each 
field contributes to developments in 
the others. Thus far, I have been indi- 
cating how ideas from the history and 
philosophy of science have been and 
can be useful in AI. I would also like to 
suggest how concepts and methods 
developed in AI might be useful in 
fully developing methods for hypothe- 
sis formation in science. 

Two powerful ideas developed by AI 
researchers in a computationally use- 
ful way are abstraction and instantia- 
tion. The analysis of analogy as two 
structures that share a common 
abstraction is computationally useful 

in AI (Genesereth 1980; Greiner 1985). 
An example of a common abstraction 
is a tree structure; instantiations 
include the Linnaean hierarchy in bio- 
logical taxonomy and the organization- 
al chart of a corporation. 

The concept of an abstraction has 
not been well analyzed in AI. Creative 
new concepts usually start out fuzzy 
and ill-defined and are used in different 
ways. Such early vagueness is useful 
for allowing a new concept to “float” to 
an appropriate point, for allowing an 
exploration of its potential areas of 
application. The use of abstraction is 
still developing in AI, and this analysis 
is not meant to be definitive. However, 
some attempt to analyze the concept 
of abstraction and to distinguish it 
from other concepts, such as general- 
ization and simplification, is useful 
here. 

Abstraction can be considered both 
a process (which will here be called 
“abstracting”) and a product of this pro- 
cess (which will be called an “abstrac- 
tion”). Abstraction formation involves 
loss of content. Consider a source and 
the process of abstracting from it. The 
abstraction thus produced is, in a 
sense, simpler than its source. Hence, 
abstracting is one way of simplifying. 
Furthermore, because it has less con- 
tent than the source, an abstraction 
can apply to a larger class of objects, of 
which its source is one member. In 
this sense, abstracting is like generaliz- 
ing. 

The simplifying and generalizing 
aspects of abstracting are reflected in 
methods for forming abstractions. 
Although it is possible to form an 
abstraction from a single instance, it is 
easier to consider the case of taking 
two similar instances and forming the 
common abstraction of which they are 
both instantiations. The most straight- 
forward case is to take two instances, 
delete their differences, and consider 
their commonalities as the abstrac- 
tion. With F, G, and H interpreted as 
properties of an entity a, (F(a) & G(a)) 
and (F(a) & H(a)) give the abstraction 
F(a). For example, “the deltoid muscle 
has actin, and the deltoid muscle has 
myosin” and “the deltoid muscle has 
actin, and the deltoid muscle functions 
as an abductor” abstract to “the deltoid 
muscle has actin”. In this case, content 
is lost in abstracting: G(a) and H(a) 
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cannot be retrieved from the abstrac- 
tion. Thus, the abstraction is simpler 
than its instantiations. 

I don’t know if this method of 
abstracting was developed historically 
from the famous “axiom of abstrac- 
tion” in set theory: “given any proper- 
ty, there exists a set whose members 
are just those entities having that 
property” (Suppes 1972, p. 6). No spe- 
cific mention is made of the loss of 
content here, but the focus on one 
property to the exclusion of others can 
involve abstracting from numerous 
properties to one. This formulation of 
abstraction in set theory shows why 
abstraction and generalization are 
often used synonymously. Polya’s 
work on problem solving has been 
influential in AI. In his set of defini- 
tions, he does not list abstraction but 
defines generalization in the following 
way: (‘. . , passing from the considera- 
tion of one object to the consideration 
of a set containing that object; or pass- 
ing from the consideration of a 
restricted set to that of a more com- 
prehensive set containing the restrict- 
ed one” (Polya 1957, p. 108). 

Quine distinguishes two kinds of 
generality that help explicate the con- 
cept of abstraction. The first kind of 
generality is what he calls the “typi- 
cally ambiguous,” namely, the 
“schematic generality of standing for 
any one of a lot of formulas.” F(a) is 
typically ambiguous because numer- 
ous substitutions can be made for F 
and for a. This meaning of generality 
is close to the usage of abstraction in 
AI. Second, he discusses the generality 
of universal quantification, which 
involves “quantifying undividedly over 
an exhaustive universe of discourse” 
(Quine 1969, p. 266). For example, 
moving from “some muscles contain 
actin” to “all muscles contain actin” is 
a step of universal generalization. It 
would probably not be called abstrac- 
tion because no content is lost (with 
the possible exception of the loss of 
the existential claim that some mus- 
cles exist). This example is an instance 
of inductive generalization, not 
abstraction. 

In forming a general class, however, 
one can omit individual differences to 
get the class concept, which involves 
an abstracting step. For example, con- 
sider forming the class concept of cats: 

“Whiskers has teeth and a white coat,” 
and “Sandy has teeth and a calico coat” 
are generalized to “all cats have teeth.” 
Generalization (in the sense of univer- 
sal quantification) occurred in con- 
cluding “all cats have teeth,” and 
abstraction occurred in the loss of 
information about coats (see HarrC 
1970, for another discussion by a 
philosopher of science of abstraction 
formation). 

Another method for abstracting pro- 
duces abstract formulas that are gener- 
al in the “typically ambiguous” sense. 
Constants are replaced by variables: 
F(a) has the abstraction F(x). The 
changes from (F(a) &. G(a)) to F(a) to 
F(x) involve progressing to higher lev- 
els of abstraction. For example, “the 
deltoid muscle has actin, and the del- 
toid muscle has myosin” abstracts to 
“the deltoid muscle has actin”, which 
abstracts to “x has actin”. It is easy to 
see that AI systems would have no dif- 
ficulty in forming abstractions by 
dropping conditions or changing con- 
stants to variables given appropriate 
rules for doing so. 

In difficult cases, forming an 
abstraction can involve more than 
merely dropping parts or replacing 
constants with variables. New, 
abstract semantic concepts might have 
to be introduced. Forming abstractions 
in such cases might involve creativity 
in finding the appropriate concepts and 
terminology. This method might be 
difficult to implement. Suppose 
instead of abstracting from “the deltoid 
muscle has actin” to “x has actin,” one 
wished to abstract to “abductor mus- 
cles have actin.” The AI system would 
then have to have an “is a” hierarchy 
representing the knowledge that the 
deltoid muscle is an abductor muscle. 
To move to the next abstract level, the 
system would substitute the class con- 
cept for the individual. Some guidance 
would be needed to know if the proper- 
ty of the individual (in this case “has 
actin”) applies to the class at the next 
level in the hierarchy (in this case, it 
does--abductor muscles do have actin). 

The formation of schemas has been 
discussed by cognitive psychologists. 
Gick and Holyoak (1983) discuss the 
example of forming a schema to repre- 
sent two analogous situations, such 
as”destroy a tumor by radiation” and 
“capture a fortress by an army.” The 
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A robot family portrait taken at the 
Computer Museum in Boston. 

schema becomes “overcome a target by 
a force.” “Overcome” is a creative 
abstraction for “destroy” and “capture.” 
A system that could form such cre- 
ative abstractions would have to have 
more semantic content than one 
which operated merely by replacing 
constants with variables. The concept 
of a schematic structure from which 
specific content has been omitted is 
often used synonymously with 
abstraction in AI (see Zeigler and Rada 
1984 for a discussion of this sense of 
abstraction]. 

The idea of multiple levels of 
abstraction is also important in AI. 
Scientists sometimes make use of 
mathematical models at one level of 
abstraction, but multiple levels of 
abstraction, with each increasingly 
abstract, is not a common idea in sci- 
ence or the history and philosophy of 
science. In AI it is easy to consider 
dropping detail as one proceeds upward 
in an abstraction hierarchy. Forming 
the higher-level, abstract concepts 
while building a knowledge base can 
be a creative process for the knowledge 
engineer. The AI researcher might 
have to add new abstract concepts in 
order to put the knowledge into a 
knowledge representation system with 
multiple levels of abstraction. For 
example, the concept of a “molecular 
switch” was developed at a high level 
of abstraction in the MOLGEN knowl- 
edge base, and it has proved of interest 
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to molecular biologists who hadn’t 
considered their material at such an 
abstract level (Friedland and Kedes 
1985; Karp 1985, personal communica- 
tion). Progressive refinement by suc- 
cessive instantiations of multiple lev- 
els of abstraction is now a common 
idea in AI, but it is not commonplace 
in other fields. I will show how it can 
be a method for producing alternative 
hypotheses. 

Forming the higher- 
level, abstract concepts 

while building a 
knowledge base can be a 
creative process for the 

knowledge 
engineer. 

Abstraction has been used in AI sys- 
tems to do problem solving and plan- 
ning. Korf (1985) claims that the first 
explicit use of abstraction in AI was in 
the planning version of the general 
problem solver (GPS) developed by 
Newell and Simon in 1972. A discus- 
sion of GPS in the Handbook of Artifi- 
cial Intelligence makes this use clear: 

GPS planned in an abstraction 
space defined by replacing all log- 
ical connectives by a single 
abstract symbol. The original 
problem space defined four logi- 
cal connectives, but many prob- 
lem-solving operators were appli- 
cable to any connective. Thus, it 
could be treated as a detail and 
abstraction out of the formula- 
tion of the problem (Cohen and 
Feigenbaum 1982, p, 518). 

Another early example of the use of 
abstraction in AI was the work of 
Sacerdoti (1974) in ABSTRIPS, a plan- 
ning program. 

ABSTRIPS plans in a hierarchy of 
abstraction spaces, the highest of 
which contains a plan devoid of all 
unimportant details and the low- 
est of which contains a complete 
and detailed sequence of problem- 
solving operators (Cohen and 
Feigenbaum 1982, p. 517). 

For example, in devising a plan to “buy 
a piano,” the highest level might be 
“locate piano” or “get money.” Lower- 
level details such as “drive to store” 
would be omitted until the later 
stages. If the higher-level, critical goals 
cannot be satisfied, then the lower- 
level details need never be considered 
by the planner. 

Korf summarizes: 
The value of abstraction is well- 
known in artificial intelligence. 
The basic idea is that in order to 
efficiently solve a complex prob- 
lem, a problem solver should at 
first ignore low level details and 
concentrate on the essential fea- 
ture of the problem, filling in the 
details later. The idea readily gen- 
eralizes to multiple hierarchical 
levels of abstraction, each focused 
on a different level of detail. Em- 
pirically, the technique has prov- 
en to be very effective in reducing 
the complexity of large problems 
(Korf 1985, p. 7). 

Three methods for forming abstrac- 
tions from instances have been dis- 
cussed: (1) dropping conditions, (2) 
replacing constants with variables, and 
(3) finding semantically rich concepts 
at a higher level of abstraction that 
capture the meaning of the lower-level 
concepts. What guides the dropping of 
detail depends on the purpose for 
which the abstraction is being formed, 

gene into a bacterial plasmid, a splic- 
ing plan, with its steps of choosing 
appropriate restriction enzymes and SO 
on, could be retrieved and instantiated 
for the particular case. This method is 
similar to Schank and Abelson’s (1977) 
idea of stored scripts to provide expec- 
tations in story understanding. Skele- 
tal plans and scripts are stored abstrac- 
tions based on compiled hindsight. 

Thus, to summarize, abstraction for- 
mation involves loss of content. The 
loss makes the abstraction simpler 
than its instantiation(s). Also, the 
abstracting process might produce an 
abstraction that has a larger class of 
instantiations than the original one(s) 
from which it was formed; in this 
sense, abstraction is like generaliza- 
tion. Multiple levels of abstraction can 
be formed by continuing to apply 
abstracting methods at each level to 
produce the next higher one. Several 
methods for forming abstractions have 
been discussed, including ( 1) dropping 
content; (2) replacing constants with 
variables; and (3) forming new, abstract 
semantic concepts. A fourth method of 
abstraction, which is most important 
in considering applications from the 
history of science, is the following: a 
schema that has resulted from drop- 
ping detail and preserving underlying 
structural or functional relations 
among component parts. 

on the particular problem-solving con- 
text. A given entity or even two simi- History of Science as 

ferent ways depending on which fea- 
tures are the focus of current investi- 
gation (see Utgoff 1986 for a related 

lar entities might be abstracted in dif- 

discussion of bias in learning and 
Kedar-Cabelli 1985 for a discussion of 
the role of purpose in forming analo- 
gies). 

Thus far, the discussion has focused 
on forming abstractions from 
instances. However, some AI systems 
do the opposite; namely, they retrieve 
available abstractions and instantiate 
them in a given situation. Friedland’s 
(1979) version of MOLGEN stored 
skeletal plans containing steps at a 
high level of abstraction for experi- 
ment planning in molecular genetics. 
In a given problem, the appropriate 
skeletal plan could be retrieved and 
instantiated. For example, to splice a 

Except for the development of math- 
ematical models, which can be viewed 
as going up one level of abstraction, 
little effort has been made to extract 
useful abstractions from the history of 

a Source of Abstractions 

science that can be instantiated in new 
problem situations. The thesis to be 
argued here (philosophers like to argue 
for theses) is this: the history of sci- 
ence can serve as a source of compiled 
hindsight for constructing useful 
abstractions. These abstractions will 
be of theory types or other recurrent 
patterns and processes in the natural 
world. They might prove useful in new 
problem situations--when these situa- 
tions are of a recurring problem type-- 
for which an available abstraction 
exists. A presupposition behind this 
thesis is that recurring patterns and 
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processes occur in nature. Recurrent 
types of theories that have proved use- 
ful in the history of science are worth 
analyzing for common features and 
putting into abstract form. Such ab- 
stractions can then serve as compila- 
tions of the hindsight gained from 
their study. Preserving such hindsight 
becomes especially important when 

Discussions at the Analogica ‘85 
conference held at Rutgers University, 

theories are counterintuitive, and sci- 

New Brunswick, New Jersey, showed 
that an important next step in the cur- 

entists have produced insights that 

rent work on analogy is to compile 
instances of useful abstractions. Some 

serve to correct naive, commonsense 

of the individuals working on analogy 
have specifically focused on scientific 

views. If this pattern is encountered 

examples (Darden 1980; Darden 1983). 
Gentner (1983) discussed central-force 

again, it will be computationally effi- 

systems, such as the solar system and 
the Bohr model of the atom. Greiner 

cient to have an abstraction available 

(1985) constructed an abstraction for 
flow problems, such as water and elec- 

rather than to have to rediscover it. 

tric flow. Thagard and Holyoak (1985) 
investigated wave-type theories, such 
as water waves and sound waves. The 
abstractions being developed are com- 
putationally useful in doing analogical 
reasoning and problem solving when 
appropriate problem types arise. The 
later stages of the work on Baconian 
induction were not specifically fo- 
cused on abstractions in analogical 
reasoning; nonetheless, they involved 
reasoning in discovering types of theo- 
ries: compositional theories, and par- 
ticulate theories (Langley et al. 1986; 
Zytkow and Simon 1986). 

Bringing a computational AI per- 
spective to case studies in the history 
and philosophy of science provides a 
new focus. The task is to find abstract 
patterns and processes that can be 
implemented and used in more cases. 

Abstractions for 
Selection and Instructive 

Type Theories 
Bringing this computational perspec- 
tive to my own area of the history and 
philosophy of biology has led me to 

look for abstract characterizations of 
biological theories and the reasoning 
that could produce them. (Although I 
have begun trying to implement rea- 
soning sufficient for rediscovering a 
theory in genetics, this implementa- 
tion is very much in the formative 
stages. Its discussion is appropriately 

An adaptation problem involves 

left for technical sessions in future 

explaining how something comes to fit 
something else, or how two things 

years (see Darden and Rada forthcom- 

change over time so that one comes to 
be adapted to the other. Two different 

ing, for a preliminary sketch). I will 

theory types have been proposed his- 
torically to solve adaptation problems: 

now discuss an example of a problem 

selection theories and instructive the- 
ories. 

type and a recurrent theory type that 
has resulted from searching for useful 
abstractions which can perhaps be 
implemented. 

An abstraction of selection theories 
has the following components: varia- 
tion, interaction of the variants in a 
constrained environment, and the 
resultant perpetuation of the fit vari- 
ants (reproduction or amplification). 

This theory type has only been 

tion theories that don’t have a step for 
reproduction. Once Darwin formed his 
theory of natural selection, selection 
as a type of theory became available. It 
was a product of hundreds of years of 
biological thought and represented a 
departure from commonsense observa- 
tions so radical that some still resist 
this theory. 

Once Darwin formulated a selection 
theory to explain species change, the 
theory type was available for other 
instances of theory construction. An 
example comes from immunology. 
Antibodies that are adapted to elimi- 
nating invaders in the body need to be 
generated; thus, formulating a theory 
of antibody production involves solv- 
ing an adaptation problem. In improv- 
ing a theory for antibody formation in 
the 195Os, Burnet specifically used an 
analogy to natural selection. He pro- 
posed the clonal selection theory: cells 
vary according to the antibodies they 
produce, and a large amount of diversi- 
ty is present in the naturally circulat- 
ing antibodies. Selective interaction 
with invaders occurs. Those cells 
which produce the appropriate anti- 
bodies reproduce in clones and produce 
an amplified level of the particular 
antibody until the invader is eliminat- 

The history of science can serve as a source of 
compiled hindsight for 

constructing useful abstractions. 

available since the middle of the nine- 
teenth century when Darwin proposed 
his theory of natural selection to 
explain the origin of new, adapted 
species. Darwin amassed evidence to 
show that variation occurs in nature. 
He argued that the environment can- 
not sustain all the organisms which 
are produced, so there is a struggle for 
existence. The adapted variants tend to 
survive. In natural selection, survival 
into the next generation by reproduc- 
tion is what ultimately counts for a 
variant’s success. Reproduction can be 
included at a lower level of abstraction 
as one of several ways to instantiate 
the perpetuation of the fit variants. By 
removing it from the higher-level 
abstraction for selection theories, the 
abstraction applies to additional selec- 

ed (if all goes well). Both Darwinian 
natural selection and clonal selection 
have fared well in subsequent tests and 
with further developments in their 
fields. 

. 

Selection as a type of theory can 
now be seen as a historically success- 
ful means of biological theory con- 
struction for adaptation problems. It 
can now be used as an abstract pattern 
for forming new theories to solve new 
adaptation problems. 

An interesting attempt to formulate 
a new selection theory is Edelman’s 
“group-selective theory of higher brain 
function” (Edelman and Mountcastle 
1978). As far as I know, it has not yet 
been confirmed or disconfirmed. The 
unit of variation is a group of brain 
cells. Groups of cells interact with sig- 
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nals such that some are amplified and 
others are not. This amplification can 
occur by either positive or negative se- 
lection of the groups of cells. Because 
the theory is still in its formative 
stage, alternative ways of instantiating 
the abstraction provide competing 
hypotheses to be tested, such as this 
case of positive or negative selection. 
As other theories are formed that 
instantiate the abstraction, then alter- 
natives at a slightly lower level of 
abstraction can be elaborated to pro- 
vide alternative hypotheses. It will be 
interesting to see the fate of this new 
selection theory. 

Another type of theory predated 
selection theories as an alternative for 
solving adaptation problems-instruc- 
tive theories. Instead of a random set 
of variants, information is used to gen- 
erate variants that are already fit. Neo- 
Lamarckian inheritance of acquired 
characteristics is an example. A new 
form is generated in a changed envi- 
ronment to be adapted to the con- 
straints in the environment. For exam- 
ple, the giraffe sees the leaves high in 
the tree and grows a longer neck to 
reach them, which is then inherited by 
the baby giraffe. No wasted variants 
are produced, and no selection is nec- 
essary to produce the adaptation. 
Although this theory eliminates the 
waste of producing unadapted vari- 
ants, it necessitates a powerful genera- 
tor of new forms. The generator has to 
be able to receive information from 
the changing environment and make 
new forms that are adapted to these 
changes. 

Historically, an instructive theory 
was also proposed in immunology. 
The template theory of antibody for- 
mation (Pauling 1940) proposed that 
amorphous preantibodies were gener- 
ated. An invader was then used as a 
template and the preantibody formed 
into an antibody by wrapping around 
it. Neither of the instructive theories 
was confirmed historically. In both 
biological evolution and antibody pro- 
duction, the selection theories have 
proved the successful types. Hindsight 
thus shows, as Edelman succinctly 
said, “It is clear from both evolution- 
ary and immunological theory . . . that 
in facing an unknown future, the fun- 
damental requirement for successful 
adaptation is preexisting diversity” 

(Edelman and Mountcastle 1978, p. 
56). 

However, in a known future--name- 
ly, a stable environment--developing a 
generator to make just adapted forms 
might well be the better strategy. One 
might, for instance, apply these types 
of theories to the adaptation problem 
of making a part in a factory that is 
adapted to another part. An instructive 
process would be better than a selec- 
tive one if the kind of part to be pro- 
duced will be stable over a sufficiently 
long period of time, and a means exists 
for communicating to the mechanism 
generating the part the specifications 
the part should meet. In another 
example, debates in evolutionary epis- 
temology have raised the question of 
whether humans blindly generate 
alternatives when forming new con- 
cepts and then select them or whether 
a directed, instructive process better 
captures human knowledge acquisi- 
tion (see Campbell 1974 and Thagard 
forthcoming for discussions of evolu- 
tionary epistemology). 

In considering the hindsight provid- 
ed by these historical cases, considera- 
tion of the incorrect theories, as well 
as the correct ones, has proved useful. 
Scientists often consider disproved 
theories in a scientific graveyard, not 
worth a second glance by those 
researchers pushing ahead at the fore- 
front. However, in these cases, incor- 
rect but plausible, as well as con- 
firmed, theories proved worth consid- 
ering. The disconfirmed theories pro- 
vided a theory type that might be use- 
ful in cases outside the biological 
examples from which the type was ab- 
stracted. Also, understanding the rea- 
son the disconfirmed theories failed in 
these biological cases provided addi- 
tional hindsight about appropriate 
conditions for instantiating one or the 
other of the two types. 

Conclusion 
The compiled hindsight from the 
study of selection and instructive the- 
ories is the following: find a current 
problem in which something is to 
change over time to fit something else; 
devise good abstractions of the theory 
types for adaptation problems, namely, 
selection and instructive theories; 

develop criteria for choosing which 
abstraction to instantiate; instantiate 
the appropriate abstraction in the cur- 
rent adaptation problem situation to 
provide new hypotheses; test the 
hypotheses; and refine the criteria for 
applying the abstraction in light of 
successes and failures. 

A general research program emerges 
from the thesis that the history of sci- 
ence provides compiled hindsight: 
study the history of science to find 
recurring problem types and theory 
types, devise computationally useful 
abstractions for them, and build AI 
systems to use such compiled hind- 
sight in new problem situations. 

Important tasks in the coming years 
will be to put scientific knowledge 
into a form that can be computational- 
ly useful and to devise reasoning 
strategies which can be implemented 
to produce and make use of scientific 
knowledge. Successful use of the com- 
piled hindsight from the history of sci- 
ence could contribute to this task and 
show the usefulness of interfield inter- 
actions between the history of science 
and AI. 

Earlier at the conference, I had 
lunch with Doug Lenat, from whom I 
have taken the phrase “compiled hind- 
sight” (Lenat 1983). I complimented 
Doug on his ability to give very enter- 
taining talks. He said one rule is to 
close with a joke; then people go away 
thinking they enjoyed your talk. How- 
ever, I don’t have any good abstrac- 
tions for good jokes in AI, so this is 
one piece of compiled hindsight that 
won’t be instantiated here. 
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