
KNOWLEDGE
PROGRAMMING IN LOOPS:
Report on an Experimental Course

Mark Stefik, Daniel G. Bobrow,

Sanjay Mittal, and Lynn Conway]

Knowledge Systems Area
Xerox Palo Alto Research Center

Palo Alto, CA 94304

Abstract

Early this year fifty people took an experimental course at Xerox PARC
on knowledge programming in Loops During the course, they ex-
tended and debugged small knowledge systems in a simulated economics
domain called Truckin Everyone learned how to use the Loops en-
vironment, formulated the knowledge for their own program, and rep-
resented it in Loops At the end of the course a knowledge competition
was run so that the strategies used in the different systems could be
compared The punchline to this story is that almost everyone learned
enough about Loops to complete a small knowledge system in only
three days. Although one must exercise caution in extrapolating from
small experiments, the results suggest that there is substantial power
in integrating multiple programming paradigms.

KNOWLEDGE PROGRAMMING is concerned with the tech-
niques for representing knowledge in computer programs. It
is important in many applications of AI, where the problems

‘Now with the Defense Advanced Research Projects Agency (DARPA).

Copyright @ 1983 by Xerox Corporation

Thanks to Johan de I<leer, Richard Fikes and John McDermott for
their reviews and comments on earlier drafts of this paper. We ex-
tend our special thanks to the course participants from Applied Expert
Systems, Daisy Systems, ESL, Fairchild AI Lab, Lawrence-Livermore
Laboratories, Schlumberger-Doll Research Laboratory, SRI Interna-
tional, Stanford University, Teknowledge, and Xerox Corporation
Their participation and feedback are vital to the ongoing experimental
process for simplifying the techniques of knowledge programming We
enjoyed and will long remember their spirited involvement.

are messy. As in many situations in life, pat solutions and
simple mathematical models just aren’t good enough. Things
break. Information is missing. Assumptions fail. Situations
are complicated. To cope with messiness, AI researchers have
found that large amounts of problem-specific knowledge are
usually needed. This places a premium on the use of powerful
techniques for representing and testing knowledge in com-
puter programs.

Very few people have been trained to build knowledge
systems. This is a critical bottleneck that limits the scope
and impact of knowledge engineering. It limits the number
of things that can be tried, the number of good ideas that
are propagated, and the number of successful applications
that influence the way that others perceive the field.

A few numbers may serve to put this in perspective.
About one computer science researcher in ten does some
work in AI, and perhaps a fifth of those work in knowledge
engineering. In 1980, approximately 265 people graduated
with Ph.D.‘s in Computer Science, according to the “Snow-
bird Report” (Denning, et al., 1981). Fewer than a half
dozen doctoral theses appear each year on some aspect of
building knowledge systems. An estimate in a brochure by
Teknowledge, Inc., indicates that there are only about sixty
people in the world with high level expertise in the design
and development of knowledge systems. Although precise
figures for these populations are difficult to obtain, all the
evidence suggests that the community is tiny, indeed.

THE AI MAGAZINE Fall 1983 3

AI Magazine Volume 4 Number 3 (1983) (© AAAI)

Training in knowledge engineering usually requires several
years of study at one of a handful of universities. A group of
us in the Knowledge Systems Area at Xerox PARC is trying
to shorten this training time. Our goal is to increase the
impact and scale of knowledge engineering by simplifying
the methods of knowledge programming and making them
more widely accessible. In doing this we have developed an
experimental knowledge programming system called LOOPS
(Bobrow & Stefik 1981; Stefik, et al., 1983a) Feedback about
the adequacy of I,OOPS is collected from beta-test sites which
are using it to build knowledge systems. Feedback about
the learnability of LOOPS is collected from participants in
experimental courses.

Integration and Paradigms

An important principle of knowledge programming is
that different paradigms are appropriate for different pur-
poses. This contrasts with the use of a single program-
ming paradigm for everything, be it logic programming as
in Prolog (Clocksin & Mellish 1981), procedure-oriented pro-
gramming as in Lisp (Winston & Horn 1978), object-oriented
programming as in Smalltalk (Goldberg & Robson 1983), or
whatever.

There are various metrics of cost for applying a program-
ming paradigm across a spectrum of applications. Examples
of metrics are the cost of learning, the cost of modifying,
the cost of debugging, and the cost of running. These costs
vary across paradigms and applications because different
programming paradigms provide different ways of organiz-
ing information in programs. For a given metric and ap-
plication, some programming paradigms can be more cost-
effective than others. By allowing for choice and combina-

Figure 1.
The LOOPS Logo Illustrating the different paradigms in

the current, version of LOOPS procedure-oriented, object,-
oriented, access-oriented, and rule-oriented The ring is
intended to suggest that LOOPS integrates the paradigms.
They are not just complementary, but are designed to be
used together in building knowledge systems

tion of paradigms, a knowledge programming system enables
various costs to be lowered. For example, we attribute much
of our success in the experimental courses to the low costs for
learning and applying LOOPS. For each of the things that the
course participants needed to represent in their knowledge
systems, there was some paradigm in LOOPS in which the
expression of the knowledge was concise and the learning
cost was low. Although there is room for much more work on
programming paradigms and their applications, the principle
seems clear: it is expensive to use one simple programming
paradigm for everything.

As indicated in the LOOPS logo in Figure 1, I,OOPS
currently integrates four programming paradigms:

Procedure-oriented programming: In this paradigm, large
procedures are built from small ones by the use of
subroutines Data and programs are kept separate
Most computer languages are like this The procedure-
oriented part of LOOPS is INTERLISP-D (Teitclman
1978, Xerox 1982). INTERLISP-D is shown at the base
of the LOOPS logo to suggest that it, provides the solid
foundation on which the rest of LOOPS is built.

Object-oriented programming: In this paradigm, informa-
tion is organized in terms of objects, which combine both
instructions and data. Large objects are built up from
smaller objects Objects communicate with each other
by sending messages. The conventions for communicat-
ing with an object by using messages constitute mes-
sage protocols. Standardized protocols enable different
classes of objects to respond to the same kinds of mes-
sages. Inheritance in a class lattice enables the specializa-
tion of objects.

Access-oriented programming: This paradigm is useful for
programs that monitor other programs Its basic mech-
anism is a structure called an active value, which has
procedures that are invoked when variables are accessed
A useful way to think of active values is as probes that
can be placed on the object variables of a LOOPS pro-
gram These probes can trigger additional computations
when data are changed or read. For example, t,hey can
drive gauges that display the values of variables graphi-
cally

Rule-oriented programming: This paradigm is specialized
for representing the decision-making knowledge in a pro-
gram. In LOOPS, rules are organized into rulesets which
specify the rules, a control structure, and other descrip-
tions of the rules Two key features of the rule language
are that it provides techniques for factoring control
information from the rules, and also dependency-trail
facilities, which provide mechanisms for “explanation”
and belief revision.

These different organizational methods determine the way
that information is factored and shared. Each paradigm
provides a vocabulary and a set of composition methods for
organizing information in a program.

Procedure composition The composition methods of INTER-
LISP-D are forms of familiar control statementIs for
iteration, recursion, and procedure call

4 THE AI MAGAZINE Fall 1983

Figure 2.
Combining paradigms: The perch approach

Figure 3
Combining paradigms: The patch approach

Object composition This paradigm provides several con-
position methods (shown in figure 6). The simplest is
the specialization of methods and variables of a super-
class. Special classes called Mixins are used to impart a
specific set of behaviors to a number of subclasses. The
term “mixin” is borrowed from Flavors ~ (Weinreh &
Moon 1981). Mixins exploit the multiple inheritance lat-
tice by allowing inheritance to be factored. Composite
objects extend the notion of objects to be recursive in
structure so that multiple objects can be instant,iatetl
and linked together. Finally, perspectives in I,OOPS are
groupings of objects into a higher level object, such that
each component is a view (or perspective) of the whole.
Perspectives provide for the forwarding of messages to
the appropriate view

Access composition Composition in t,his paradigm is done
by nesting of active values Analogous to the use of mul-
tiple probes in measuring a circuit, this composition as-
sumes that the “probes” are for independent instruments
and do not interfere with each other

Rule compositeon: The LOOPS rule-oriented paradigm
provides for the sharing of rules among rulesets It makes
use of the other paradigms for organizing the interac-
tions between the rules. Thus rules can call rulesets
directly (using the procedural orientation), or invoke
rulesets by sending messages (using the object, orienta-
t,ion), or invoke rulesets by changing data (using the ac-
cess orientation)

Integration has two ma.jor themes in LOOPS: integration
to allow the paradigms to he used together in building a
knowledge system; and integration of a programming en-
vironment for creating and debugging knowledge systems.

Some examples illustrate the integration of paradigms
in LOOPS: the “workspace” of a ruleset is an object, rules
are objects, and so are rulesets. Methods in classes can be
either Lisp functions or rulesets. The procedures in active
values can be LISP functions, rulesets, or calls on methods.
The ring in the LOOPS logo reflects the fact that LOOPS not
only contains the different paradigms, but integrates them.
The paradigms are designed not only to complement each
other, but also to be used together in combination.

Some examples from other systems illustrate the non-
integration of programming paradigms. For example, Figure
2 shows the connection between PLANNER and LISP. PLAN-
NER was implemented in LISP, but a programmer could not.
easily intermix PLANNER and LISP procedures. A simple
mistake by a “naive” programmer could easily crash the
whole system. Figure 3 shows the connection of list opera-
tions to PROLOG, reflecting the fact that list operations
were added late to PROLOG, after the initial design. Figure
4 illustrates another approach, illustrated perhaps by the
Spice Machine. In this example LISP and PASCAL commun-
catc over a narrow bridge, making mutual use awkward and
costly.

Figure 4
Combining paradigms: The bridge approach.

The second theme of int,egration is the int,egration with
the programming environment. For example, IJOOPS extends
to other paradigms many of the facilities of INTERLEWD,

THE AI MAGAZINE Fall 1983 5

such as the display-oriented break package, editors, and in-
spectors. In LOOPS, this integration has led to the same
synergy that is exploited in using multiple paradigms for ap-
plication programs. For example, the notion of “breaking”
on access to a function is extended to breaking on access to a
variable by using active values to invoke the break package;
the notion of tracing is extended to the notion of having
gauges that can monitor the values of variables.

Getting Ready for the First Course

On January 6, we began to plan the first LOOPS course
that would be offered on January 31 to our beta-test sites.
We made a preliminary course outline, but we knew that
we needed some way to draw the participants into program-
ming in LOOPS. The idea of a video game was suggested, say
rocket ships with LOOPS programs controlling the thrust and
phasers. This idea was rejected as being both too frivolous,
and computationally too expensive. Another suggestion was
a game for placing tiles. We knew from Malone (1980) that
there were principles for making games motivating. Our
course participants would be computing and other profes-
sionals drawn from research organizations and AI start-up
firms, who were interested in using LOOPS for building ex-
pert systems. We needed something that they would find
useful and appealing.

As brainstorming continued, some pedagogical principles
began to emerge. The game should draw on the real world
knowledge of our students. Rocket ships and tiles were
wrong, because people didn’t have experience with such
things from their everyday lives. A board game like Monop-
oly was considered, and then our first concept of Truckin’
emerged. It would be a board game with road stops (see Fig.
5). The players would drive trucks around buying and selling
commodities. Their job would be to plan a route and make a
profit. There would be various hazards along the way, places
where goods and profits could be lost. Players would need
to buy gas occasionally.

By mimicking real life, Truckin’ would provide the kinds
of difficulties that knowledge engineers encounter in building
expert systems. We could create a rich and animated simula-
tion environment for the “independent truckers.” The stu-
dents would need to add knowledge to make their automated
players more powerful The simulation environment would
draw on the student’s real-world knowledge, and be rich
enough to preclude a simple model. Much of the appeal
of this was t,hat the “common experience” character of
Truckin as a domain would enable us to side-step the usual
knowledge acquisition bottleneck. The knowledge engineer-
ing experience would be accelerated by immediate feedback
from the animated simulation. To help students get started,
we would provide them with a simple expert system for play-
ing Truckan’. We decided to teach students about knowledge
programming in LOOPS by giving them a small knowledge
system to extend.

At this point, we had less than a month to create the

course materials, lectures, and Truclcin’. Sleep would become
a rare and precious commodity The Truck&’ data base
began to take shape. The players would start at IJnion Hall,
and would try to be parked at Alice’s Restaurant at the end
of the game. There would be various kinds of hazards along
the road. The player with the most cash at Alice’s at the
end of the game would win.

LOOPS was able to accommodate changes as our ideas
evolved. Initially, we thought of the hazards as being road
stops. This was probably a carry over of our childhood ex-
periences with board games. Then we added the idea of
“bandits” that could move around just like the independent
truckers. Bandits were represented as an inheritance com-
bination of players and consumers. We used active values
on variables of the road stops to update t,he display for com-
modity prices and inventories. This meant that we did not
need to find every place in the program where t,hese things
could potentially be changed, in order to update the dis-
play. The features of LOOPS worked for us, providing con-
venient techniques for factoring the program. We became
experienced consumers of our own knowledge programming
system as we raced to get ready for the course.

The simulation was designed to cause goal conflicts. A
truck going quickly over a rough road would probably have
its fragile merchandise damaged. A truck going quickly past
a weigh station would probably get an extra fine, unless he
was lucky or the weigh station was busy. On the other
hand, a truck going slowly past a bandit would probably
get intercepted. There would be perishable goods and fragile
goods. We considered explosive goods and other such things,
but removed them when they failed to add anything new t,o
the game. Our pedagogical style was to leave some things
out in order to keep it simple A player could take only three
kinds of actions: buy, sell, and move.

To facilitate the “suspension of disbelief” in watching the
animated simulation, artistic attent!ion had to he given to the
appearances of things. Icons for the various commodities,
hazards, and trucks were created. We experimented with
different configurations of the gameboard, moving away from
the outside edge configuration of most gameboards in order
to pack enough road stops on the display screen Highways
were drawn next to the road stops, with a gray background
and little dashed white lines in the center. People looked at
intermediate versions of the gameboard and told us that the
abrupt motion of the trucks was startling. We modified the
code to simulate braking so that trucks would slow down as
they arrived at their destinations. The visual appearance of
Truckin’ became seductive. People were drawn into it.

Prior to this, we had used a simple gauge in our demo
to illustrate the application of active values. It was a crude
looking gauge and had little generality. We decided to ex-
tend the collection of gauges so that people could use them
for debugging and for monitoring their independent truck-
ers during the simulation. A family of gauges was designed
(see Figure 7). For further ideas on style, we collected
some professional catalogs of gauges, and sought advice from

6 THE AI MAGAZINE Fall 1983

Figure 5 ‘I’hc Loops gameboartt ~ for a game played by c:ompct.ing knowlcclgc syst.ems that, emulate “indcpcntlrnt
t,ruckers ” The t)oartl’s sqllares are road stops, connected hy t,he highway drawn above RoarMops can he producers,
consumers, rough roads, weigh stations Roadstops with icons arc producers, where players can buy Those with
words (c g , C:lot,hing) arc consumers, where players can sell The irucks for the players are shown parked or moving
along the highway (e g,, Sanjay) To the right, a panoply of gallges monitors the stat,lls of various players In t,hr
llppel left. corner, a ll11c for onr of the players is being t.raced.

Br11cc Kobcrts on t,hr St~earner project at BBN. The gauges
weut through several design reviews, t,o make the gauges
simpler Lo USC and modify Because of the cxt,ensivc use of
mult,iplc inheritance and t,hc interactions on the display bc-
t.ween t,he parts of the hybrid gauges, a uu~nher of dcsigu
issues surfaced. During these reviews, we created names fol
certain categories of’ design errors that, WC encountered For
example, a yraznszze error is it sit,iixtion where the striict81iral
part.2 of an objcd, (iisiially methods) arc factored too coarsely
f’or l,hc fine control needed by its specializat,ions. A replzctc-
tro7l error is a sit,liation where alniosl, the sanic struclure is
repeated in parallel classes, instcatl of factoring it in a way
that, would allow it. to 1~ shared. Siich rxperiences gave us a
dccpcr uuderstauding of bhc programming issucs that, l~ople
would encounter in usiug t.he diflercnt, paradigms

Ahoub t,wo weeks bcforc (.he (‘oursc wollld hegirl, we sent,

out r&ices Lo our Ma-test sites iriviting people to sign ul) for
thr COIII’SC. We expected about a half dozen people We ad-
vcrtisetl that, our course would provide hands-on experierm
in cxteiiding a “mini-expert system.” Hy word of mouth,
Lhe story spread Over fifl,y people called us, rcqiiesting t,o
get on the list,. We split the list, in half and scheduled the
second course for the and of February WC didn’t, scud out,
any more advcrt,iserncnLs. We had gone: l)ill,lic arid now WC
had to make it, work

Suddenly it was the weekend before the (:oIme WC made
some guesses ahollt, the appropriate dist,ril)ut.ion of prices
and pcnalbies We creat,ed our first, aulmnut,ed player, t,hc
Traveler, which wollld just, t,ravcl along the board Mwcten
1Jnion Hall and Alice’s Rest,aurant, As the ‘l’ravcler cruised
tirelessly ilrollnd t,hr game board, various bugs iii t,lic simila-
Lion surfaced. Meanwhile, WC: stari& work on a player Lo

Specialization

a

b r

a

b

A

Mixins

B,

:I- I-
C

be

Perspectives

a

T-

bh-
C

d

a

b

Figure 6 Object composition in Loops 7’he inheritance lattice enables many forms of structural sharing in Loops.
The simplest form is specialization, that is, creating a subclass that overrides and augments variables and methods
inherited from the superclass. When multiple superclasses are used, the resulting subclass mixes together the
att,ributes from t,hc superclasses Perspectives provide a way of gronping objects to act as views of a higher level
object Perspectzoes ant,omat,ically forward messages to the appropriate object

specialize in luxury goods called HighRoller. We didn’t have
time to debug it very well before Lhe course started We
rcasoncd that the hugs were acceptable, since they would
provide things for t,he course participants to fix. We were
right, but in hindsight, we had a lot of gall.

The Courses as Experiments

We have now run two intensive knowledge programming
courses, and also repeated the second course to a small group
using videotape. By the t,ime of publication of this article,
the course will have been run for over 100 people The
courses arc organized to alternate lectures and hands-on ex-
ercises (set Table 1). So f ar, everyone taking the course has
learued enough about the LOOPS knowledge programming
system to do some practice exercises (such as creating a new
kind of gauge) and to build au extended (smarter) Truckzn ’
player

The most important aspect of the courses for our pur-
poses is the opportunity that they provide for refining both
LOOPS and t,he course materials For us, the courses arc

experiments, from which we are discovering how to make
LOOPS and our teaching met,hods more effective. The basic
structure of our experimental process is to run a course and
t,akc some measurements (for cxamplr, of the performance
of students in terms of the problems that they complete, the
clue&ions that they ask, and the results of questionaires that
they return). We then change some parameters and take the
measurements again during the next course. By examining
how the observations and measurement,s differ, WC can form
hypotheses to guide subsequent iterations of the course.

. We suhstantially increased the emphasis on t,ools and
tcchniqucs for debugging, and formnlai,ed explicit,
llenristics for programmil~g in LOOPS Wc taught.
students 1.0 nse tools for understanding t,he behavior
of a system The second course led students to use
gauges for monitoring t,he valnes of variables, cx-
planation facilities (Fig. 8) for understanding which
rule made a part,icular decision, and breaking and
tracing facilities for discovering why some rules do
not, fire

. In some cases, we introduced intermediate prohlerns
in the exercises, having hypot,hesized that some of the

8 THE Al MAGAZINE Fall 1983

I Gauges - - Defined by Classes, Driven by Active Values
I

r Window-Gauge<~-
_-- I t1st.r llnletlt r F:out-ldSc:a 1 e

_ ---- -2-
- ILCLI -B-F- -- ---

- ri i IY i hl F! t P t-

Vigure 7 Loops gauges Gauges are tools used to monitor the values of variables They can he thought of as probes
inserted ont,o the variables of an arbitrary Loops program Gauges are defined in Loops as classes, and driven by
active values the mechanism behind access-oricnt,ed programming in Loops A browser at the bottom of t,he figur(‘
illustrat,es the relationships between the classes of gauges From this figure, we can see that the DigiMeter is a
combination of a Meter and an LCD

steps between exercises were too dificult to take all
at once

. WC fashioned a new starting player for t,he second
course, called the I’eddler, which did a bet,ter job
than HighRoller in factoring the concerns of an inde-
pendent trucker We hypothesized t,hat rcstructur-
ing IIighRollcr was t,oo difficult to do in a three day
course.

. We adjusted the commodity prices and risks 00
provide a greater reward and selection pressllre for
more sophisticated and knowledgeable t,ruckers.

l We improved the browsers, that, is, our interactive
graphics for “browsing” information in a knowledge
base (see Figure 9) We believed that, we could
reduce much of the cognitive load for restructur-
ing objects and accessing information if we provided

more efl’ective ways of making the right, information
visible.

l We fixed troublesome bugs in the rule compiler Dur-
ing the first course, participants had to struggle with
a compiler that did not reliably keep the generated
LISP code in correspondence with the rules

As a result of thcsc changes, the participants in the
second course were dramatically more successful t,han those

in the first In t,he first course, WC had to slip the schedllle

for the knowledge competition by 90 mimltes, in order to let.
people finish preparing their players. In the second course,

people had players ready in about half of the allocated time,

and spent the remaining time exploring other aspects of the

system and tuning their strategies. Furthermore, the weakest

player of the second course could easily dominate the best
player from the first course.

THE Al MAGAZINE Fall 1983 9

Figure 8. Seeing the knowledge behind a decision In t,his figure the game is interrupted, causing the Rule KXCX
window to pop up over the gameboard. The user has asked why his truck picked a part,icular stopping place, and
Loops has displayed the rule that, made the decision.

People asked far fewer questions in the second course,
and were able to complete many more of the exercises. In
addition, the questionaires from the second course came
back with radically different advice from those from the
first course. The general rcsponsc from the first course was
“give us less on rules” and many people indicated substan-
tial concern with many of the fundamental aspects of that
paradigm. In the second course, the responses turned COIII-
pletely around. They said “give us more on rules and debug-
ging.”

We believe that in the first, course the combination of a
faulty rule compiler and lack of information on how t,o debug
programs in this paradigm undermined confidence. During
the second course, two members of a team were observed
staring at a display. One of them said, “Why is it buying
t,omat,oes?” and the other one elbowed him saying “Ask
why! Ask why!” ~ goading him into action at the LOOPS
keyboard They had learned their lessons well.

This process of simplifying methods and tuning the
course in order to enhance learnability and propagatability

reflects our interest in the engineering of knowlcdgc (Conway
1981, Stelik & Conway 1982) In this case we are engineering
languages and techniques for knowledge programming The
courses provide a source of feedback on t,he effects of changes
to the course materials, paradigms and programming en-
vironments. In time, we would like to extend our work to
provide a framework that would simplify the process of creat-
ing higher level organizations in expert systems (Stefik et al,
1982).

The Knowledge Competition

A very enjoyable thing a.bout the LOOPS course is the
electric excitement’that erupts during a knowledge competi-
tion. People seem to prqjcct themselves into the players that
they have created They have put their player through many
simulations and many playing conditions. In a sense, they
have taught it everything Rut, during the competition thcrc
is a moment of truth. The rules cannot be changed. Success

10 THE N MAGAZINE Fall 1983

IommndityTransportability

FragileCommodity

_ -4Ief rigerator
_-

--mA&-T~ Televisiloln

_--- -2- ArtSupplies

‘Off iceSupplies + Book
-=--- Xerox 1100

I 1

\, ’ SportingGoods ----BaseBall
\ -T----Eicycle

‘, Clothing
-Pants

----Shirt

Figure 9. Class browser on commodities Rrowsers are interactive programs used to browse through a knowlcdgc
base. The lines seen in a class browser indicate superclass relationships For example, in this figure, a StereoSystem
is a LuxuryGood, an Appliance, and a FragileCommodity Browsers can be created t,o show other relationships too,
and by selecting nodes in a browser, a user can access such further information

in the short run is affected by chance, but on average, the
most knowledgeable players will win.

The randomly generated game board comes up As t,he
simulation begins, there is a great deal of commentary and

jibes as people compare their players. Who’s ahead? Who
just got robbed? In Truckzn’ the silliness of the ill-fated
move is something that all the observers appreciate almost
immediately. For example,

l A player nmy be racing to Alice’s Rest,aurant One
move before the game ends it is unable to resist
a business “opportunity” and doesn’t make it to
Alice’s.

l A player may go to the closest place to sell some
goods, even if it happens to be the City Dump, which
unfortunately pays a “negative price.”

l A player may become focused on a tight producer/con-
sumer loop, making money faster t,han any other
player on the board If it is programmed to only
buy fuel from stations along its route, but there is
no gas station in the tight loop, the team will watch
anxiously as the fuel gauge drops lower and lower

l A player may try to park next to Alice’s Restaurant
near the end of the game, even if that happens to
be the LJnion Hall, which confiscates all goods and
cash

In our experience so far, these oversights happen in
the best of players. They provide a source of merriment
during the competition, and an illustration of just how
much knowledge is really needed to be powerful, even in an
artificial environment.

The knowledge competition also serves as R source of
examples and metaphors about the nature of knowledge.
One example drawn from the first sloops course illustrates
the interplay between knowledge and environment. For the
first knowledge competition, two t,earns prepared players by
simply fixing some of the bugs in the IIighRoller They had
a private playoff just before the competition, and discovered
that when both players were in the same game, the inventory

of luxury goods on the game board became exhausted before
the end of play. Neither player was able t,o cope with this
situation One of the heuristics that we now offer to teams

TIE AI MAGAZINE Fall 1983 11

preparing for a knowledge competition is to test rules with
many copies of the same player competing at once.

This interplay between knowledge and environment brings
to mind the example of the ant on the beach (Simon 1981),
in which the apparently complex movement of the ant is at-
tributed to the complexity of the beach environment rather
than the complexity of the ant. In Truckin’, the “ants”
are mechanical and programmable. We have obscrvcd that,
even the complexity of the Truckin’ environment, creates a
substantial selection pressure for resourceful and knowledge-
able players. To win, the designers of the players must
pit knowledge against complexity. Knowledge provides the
adaptability needed for mastering the situations in the game

The name “knowledge competition” was inspired by
the observation that it is truly the knowledge of players
that is competing, and the most adaptable player wins.
Rcccntly in connection with the interest, in fifth generation
computers, Feigenbaum and McC:orduck (1983) have charac-
terized knowledgr as the new “wealth of nat,ions.” III the
knowledge competition and Truckin’, the competitive ad-
vantages of knowledge in a player is concrete and observable
in short experiments

The success of the knowledge competition in motivat-
ing participation has led us t,o speculate on ways of alleviat-
ing the knowledge acquisition bottleneck. One idea is for
a community of experts to interact through knowledge serv-
ers, which accept knowledge over a computer network and
make themselves available for solving problems Here again
thert would be a “competition” bct,ween different bodies of
knowledge from the exprrts, competing to solve the problems
that are posed

Implications

Sometimes the effects of a technological change can be
surprising and widespread. Although our research and ex-
perimentation with IJOOPS has not run its full course, there
have been a few expert systems started at, our beta-test sites:
three systems that perform parts of VLSI design, a program
for playing Bridge, an investment advisor, a program for
expressing specifications of parallel programs, a tester for
LOOPS

We sense that a technological change is emerging from
such research on knowledge programming, a change in the
infrastntcture for building knowledgc systems. The shift will
have leveraging power in two ways: (1) the freeing of existing
knowledge engineers from spending a year or two building
the bottom of their knowledge representation systems, and
(2) a measurable accclcration in the progress of the field if t,he
simplified methods trigger an increase in numbers of prac-
titioners from 100 to 1000 or more. Knowledge engineering
can then begin to have a noticeable effect in many areas of
our lives

12 THE AI MAGAZINE Fall 1983

I,OOPS COURSE OUTLINE

FIRST DAY:

9:00-g: 15

9:15-10:15

10:15-11:oo

ll:OO-12:oo

12:00-l:oo

I :00@2:00

2:00--4:00

4:00~4:30

4:30-5:oo

Introduction
Object-Oriented Programming: Classes ~ Objects

Variables Methods - Inheritance Documcnta-
tion
LOOPS Environment (Demonstration): Defining
Methods ~ Editing ~ Printing ~ Inspecting Brows-
ing ~ Gauges.

Exercise I- Introdllctory hands-on session: Sending
Messages ~~ Browsing - Editing Inspect,ing

Lunch.

Access-Oriented Programming: Active Values ~~
First,Fet,ch NamedObjects ~ AtCreation Nested
Active Values The LOOPS Break Package

Exercise 2 - Gauges hands-on session: Specializing
Classes ~ Instantiation - lJsing Gauges

The %&in mini-Expert System

Discussion

SECOND DAY:

9:00- 9:15 Introduction.

9:15~10:15 Rule-Oriented I’rogramming: RuleSets Control
Structures Recording Rule Invocations.

10:15-12:00 Exercise 3 - Rules hands-on session: Edit,ing RuleSets
-- Debugging RuleSets.

12:oo l:oo Lunch.

l:OO- 2:oo Knowledge Represent,ation Examples from Trr~c&n’.

2:OOp4:30 Exercise 4 - Knowledge programming hands-on
session: Rule-Oriented Programming ~ multiple
paradigm programming.

4:30 5:oo Discussion.

THIRD DAY:

9:ol%9:15

9:15~11:00

11 :oo- 12:oo

12:oom l:oo

1:00~3:00

3:O& 4:oo

4:ooG4:30

4:30- 5:oo

Introduction.

Initial Development of your player: hands-on ses-
sion

Advanced LOOPS Features: Composite Objects
Perspectives vs. Mixins ~ Meta Classes ~~ System
Mixins ~ Knowledge Bases.

Lllllcll

Final tuning of your player: hands-on Session

The 7%&in’ Knowledge Competition

I,ooPs Environment: LOOPS Tester ~ Facilities for
Bug Reporting

Wrap-up: LOOPS support ~ IJser Packages Future
Directions

Table I.

References

B&row, I) G & St&k, M (1981) The LOOPS Man& Tech.
llep KB-VLSI-81-13, Knowlcdgc Systems Arca, Xerox Palo
Alto Research Center (PARC!).

Clocksin, W 1~ Xr Mcllish, C S (1981) Programmzng zn Prolog Ber-
lin: Springer-Verleg.

Conway, I,. (1981) The MPG adventures: Experiences with the
generation of VLSI design and implementation methodologies
Proc of the Second Caltech Conference on Very Large Scale Integra-
tion, 5-28

Denning, P J., Feigenhaum, E , Gilmore, P , Hearn, A., Ritchic,
R W , 81 Traub, .J (1981) The Snowbird Report: A discipline in
crisis. Communzcatzons of the AC:M, 24:370-374

Feigenbaurn, E , Rr McCorduck, P (1983) The fifth generation
Artificial Intelligence and Japan’s Challenge to the World Reading,
MA: Addison-Wesley

Goldberg, A , & Robson, D. (1983) Smalltallc-RO The language and
zts im$ementatzon Reading, MA: Addison-Wesley

Malone, T W. (1980) What makes things fun to learn? ,4 study of
intrznszcally motzvatzng computer games Technical Report CIS-7
(SSL-80-II), Xerox PAl<C!

Simon, H. A. (1981) The sciences of the artificzal Cjambridge, MA:
The MIT Press

St&k, M., Bohrow, D , & Mittal, S. (1983) Knowledge programming
in LOOPS Highlights from an experimental course Video Report
KSA-83-1, Xerox PARC;

St,efik, M., Bell, A G , & Bohrow, D. G (1983) Rule-oriented pro-
gramming zn LOOPS Tech. Rep KB-VI,%-82-22, Knowledge
Systems Arca, Xerox PARC.

Stefik, M., & Conway, L (1982) The principled engineering of
knowledge AI Magazzne 3(3):4-16.

SOefik, M , Aikins, J., Balzer, R., Benoit, J., Birnbaum, L., Hayes-
Roth, I’., & Sacerdoti, E (1982) The organization of expert
systems: A tutorial. Artzficial Intellzgence 18:135-173

Teitelman, W (1978) Interlisp Reference Manual Technical Report,
Xerox PARC

Weinreb, D & MOOII, 1) (1981) Lisp Machzne Manual. Cambridge,
MA: MIT Artilicial InLelligence Laboratory

Winst,on, P Rr Horn, R (1981) Lzsp Reading, MA: Addison-
Wesley

Xerox Corpornt,ion (1982) INTERLISP-D users gurde Pasadena,
C:A: Xerox Special Information Systems.

Note

LOOPS is available t,o select& Xerox customers desig-
nated as beta-test, sites. The Knowledge Systems Area at.
Xerox PARC offers the intensive I,OOPS course to selected
applicant,s periodically for its research purposes.

Exciting new books
from Harper & Row...

“This B tt3c~fine.G introduction to LISP erler uCttef2 ”
-Daniel L. Weinreb, Symbolics, Inc

David S. Touretzky
A Gentle Introduction to Symbolic Computation

CONTENTS: Getting Acquainted. Functions and Data
Lists. EVAL Notation Meet the Computer, Conditionals
Global Variables and Side Effects List Data Structures
Applicative Operators Kecursion Elementary Input/
Output. Iteration Property Lists. Appendix A-Recom
mended Further Reading Appendix B-Dialects of
LISP Appendix C-Extensions to LISP Appendix D-
Answers to Exercises,

Marc Eisenstadt 81 Tim O’Shea
ARTIFICIALINTE~GENCE
Tools, Techniques, and Applications

CONTENTS: TOOLS: An Introduction to Prolog, b!
William E Clocksin An Introduction to LISl: by Ton)7
Hasemer Advanced LISP Programming, byJoachim
Laubusch. A New Software Environment for List-Pro-
cessing and Prolog Programming, by Steve Hard)
TECHNIQIJES: How to Get a Ph.D. in AI, by Ah
Bundy, Benedict du Boulay, Jim Howe, and Gordon
Plotkin Cognitive Science Research, by Jon Slack
Robot Control Systems, by Steve Hardy Kinematic and
Geometric Structure in Robot Systems, byJoe Roone)
Implementing Natural Language Parsers, by Henq
Thompson and Graeme Ritchie. APPLICATIONS: Corn
puter Vision, bvJohn Mayhew and Henry Thompson
Industrial Robotics, by William 1: Clocksin and Peter
Davey Text Processing, by Paul Lefrere Planning and
Operations Research, by Lesley Daniel.

ORDER ?ODAK
Send this coupon to Iv1 Gonslg: Suite iL), Harp & Kow, 10 Ext 53~1
Street, New York, NY 10022

I’lease indicate numhel of copies clesi~ecl i

q - LISP: A Gede Introcluctic~n to Svmhulic Computation !
@ $17 95 I

0 _ ARTIFICIAL INTEI.I.IGENCE: Xx~ls, Techniclucs, and Al’-
plications @ $21 50

i

Postage awl hanclling: (I’lease inclucle $1 50 for the first 1~~~~1~ 5OG’ I
fot each additional copy) i
Al~l3licahle sales tax: Total:
0 Enclosed is *q cl~ecldmoney or&~

!

0 Please charge rn)’ 0 VISA 0 MastelCxtl 0 Atnericw Expess I ,
Exp the C:lKl #

I
Signature I

Address i

City/State/Q? 1
.L--------------------------------------- :

