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Abstract 

Early this year fifty people took an experimental course at Xerox PARC 
on knowledge programming in Loops During the course, they ex- 
tended and debugged small knowledge systems in a simulated economics 
domain called Truckin Everyone learned how to use the Loops en- 
vironment, formulated the knowledge for their own program, and rep- 
resented it in Loops At the end of the course a knowledge competition 
was run so that the strategies used in the different systems could be 
compared The punchline to this story is that almost everyone learned 
enough about Loops to complete a small knowledge system in only 
three days. Although one must exercise caution in extrapolating from 
small experiments, the results suggest that there is substantial power 
in integrating multiple programming paradigms. 

KNOWLEDGE PROGRAMMING is concerned with the tech- 
niques for representing knowledge in computer programs. It 
is important in many applications of AI, where the problems 
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are messy. As in many situations in life, pat solutions and 
simple mathematical models just aren’t good enough. Things 
break. Information is missing. Assumptions fail. Situations 
are complicated. To cope with messiness, AI researchers have 
found that large amounts of problem-specific knowledge are 
usually needed. This places a premium on the use of powerful 
techniques for representing and testing knowledge in com- 
puter programs. 

Very few people have been trained to build knowledge 
systems. This is a critical bottleneck that limits the scope 
and impact of knowledge engineering. It limits the number 
of things that can be tried, the number of good ideas that 
are propagated, and the number of successful applications 
that influence the way that others perceive the field. 

A few numbers may serve to put this in perspective. 
About one computer science researcher in ten does some 
work in AI, and perhaps a fifth of those work in knowledge 
engineering. In 1980, approximately 265 people graduated 
with Ph.D.‘s in Computer Science, according to the “Snow- 
bird Report” (Denning, et al., 1981). Fewer than a half 
dozen doctoral theses appear each year on some aspect of 
building knowledge systems. An estimate in a brochure by 
Teknowledge, Inc., indicates that there are only about sixty 
people in the world with high level expertise in the design 
and development of knowledge systems. Although precise 
figures for these populations are difficult to obtain, all the 
evidence suggests that the community is tiny, indeed. 
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Training in knowledge engineering usually requires several 
years of study at one of a handful of universities. A group of 
us in the Knowledge Systems Area at Xerox PARC is trying 
to shorten this training time. Our goal is to increase the 
impact and scale of knowledge engineering by simplifying 
the methods of knowledge programming and making them 
more widely accessible. In doing this we have developed an 
experimental knowledge programming system called LOOPS 
(Bobrow & Stefik 1981; Stefik, et al., 1983a) Feedback about 
the adequacy of I,OOPS is collected from beta-test sites which 
are using it to build knowledge systems. Feedback about 
the learnability of LOOPS is collected from participants in 
experimental courses. 

Integration and Paradigms 

An important principle of knowledge programming is 
that different paradigms are appropriate for different pur- 
poses. This contrasts with the use of a single program- 
ming paradigm for everything, be it logic programming as 
in Prolog (Clocksin & Mellish 1981), procedure-oriented pro- 
gramming as in Lisp (Winston & Horn 1978), object-oriented 
programming as in Smalltalk (Goldberg & Robson 1983), or 
whatever. 

There are various metrics of cost for applying a program- 
ming paradigm across a spectrum of applications. Examples 
of metrics are the cost of learning, the cost of modifying, 
the cost of debugging, and the cost of running. These costs 
vary across paradigms and applications because different 
programming paradigms provide different ways of organiz- 
ing information in programs. For a given metric and ap- 
plication, some programming paradigms can be more cost- 
effective than others. By allowing for choice and combina- 

Figure 1. 
The LOOPS Logo Illustrating the different paradigms in 

the current, version of LOOPS procedure-oriented, object,- 
oriented, access-oriented, and rule-oriented The ring is 
intended to suggest that LOOPS integrates the paradigms. 
They are not just complementary, but are designed to be 
used together in building knowledge systems 

tion of paradigms, a knowledge programming system enables 
various costs to be lowered. For example, we attribute much 
of our success in the experimental courses to the low costs for 
learning and applying LOOPS. For each of the things that the 
course participants needed to represent in their knowledge 
systems, there was some paradigm in LOOPS in which the 
expression of the knowledge was concise and the learning 
cost was low. Although there is room for much more work on 
programming paradigms and their applications, the principle 
seems clear: it is expensive to use one simple programming 
paradigm for everything. 

As indicated in the LOOPS logo in Figure 1, I,OOPS 
currently integrates four programming paradigms: 

Procedure-oriented programming: In this paradigm, large 
procedures are built from small ones by the use of 
subroutines Data and programs are kept separate 
Most computer languages are like this The procedure- 
oriented part of LOOPS is INTERLISP-D (Teitclman 
1978, Xerox 1982). INTERLISP-D is shown at the base 
of the LOOPS logo to suggest that it, provides the solid 
foundation on which the rest of LOOPS is built. 

Object-oriented programming: In this paradigm, informa- 
tion is organized in terms of objects, which combine both 
instructions and data. Large objects are built up from 
smaller objects Objects communicate with each other 
by sending messages. The conventions for communicat- 
ing with an object by using messages constitute mes- 
sage protocols. Standardized protocols enable different 
classes of objects to respond to the same kinds of mes- 
sages. Inheritance in a class lattice enables the specializa- 
tion of objects. 

Access-oriented programming: This paradigm is useful for 
programs that monitor other programs Its basic mech- 
anism is a structure called an active value, which has 
procedures that are invoked when variables are accessed 
A useful way to think of active values is as probes that 
can be placed on the object variables of a LOOPS pro- 
gram These probes can trigger additional computations 
when data are changed or read. For example, t,hey can 
drive gauges that display the values of variables graphi- 
cally 

Rule-oriented programming: This paradigm is specialized 
for representing the decision-making knowledge in a pro- 
gram. In LOOPS, rules are organized into rulesets which 
specify the rules, a control structure, and other descrip- 
tions of the rules Two key features of the rule language 
are that it provides techniques for factoring control 
information from the rules, and also dependency-trail 
facilities, which provide mechanisms for “explanation” 
and belief revision. 

These different organizational methods determine the way 
that information is factored and shared. Each paradigm 
provides a vocabulary and a set of composition methods for 
organizing information in a program. 

Procedure composition The composition methods of INTER- 
LISP-D are forms of familiar control statementIs for 
iteration, recursion, and procedure call 
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Figure 2. 
Combining paradigms: The perch approach 

Figure 3 
Combining paradigms: The patch approach 

Object composition This paradigm provides several con- 
position methods (shown in figure 6). The simplest is 
the specialization of methods and variables of a super- 
class. Special classes called Mixins are used to impart a 
specific set of behaviors to a number of subclasses. The 
term “mixin” is borrowed from Flavors ~ (Weinreh & 
Moon 1981). Mixins exploit the multiple inheritance lat- 
tice by allowing inheritance to be factored. Composite 
objects extend the notion of objects to be recursive in 
structure so that multiple objects can be instant,iatetl 
and linked together. Finally, perspectives in I,OOPS are 
groupings of objects into a higher level object, such that 
each component is a view (or perspective) of the whole. 
Perspectives provide for the forwarding of messages to 
the appropriate view 

Access composition Composition in t,his paradigm is done 
by nesting of active values Analogous to the use of mul- 
tiple probes in measuring a circuit, this composition as- 
sumes that the “probes” are for independent instruments 
and do not interfere with each other 

Rule compositeon: The LOOPS rule-oriented paradigm 
provides for the sharing of rules among rulesets It makes 
use of the other paradigms for organizing the interac- 
tions between the rules. Thus rules can call rulesets 
directly (using the procedural orientation), or invoke 
rulesets by sending messages (using the object, orienta- 
t,ion), or invoke rulesets by changing data (using the ac- 
cess orientation) 

Integration has two ma.jor themes in LOOPS: integration 
to allow the paradigms to he used together in building a 
knowledge system; and integration of a programming en- 
vironment for creating and debugging knowledge systems. 

Some examples illustrate the integration of paradigms 
in LOOPS: the “workspace” of a ruleset is an object, rules 
are objects, and so are rulesets. Methods in classes can be 
either Lisp functions or rulesets. The procedures in active 
values can be LISP functions, rulesets, or calls on methods. 
The ring in the LOOPS logo reflects the fact that LOOPS not 
only contains the different paradigms, but integrates them. 
The paradigms are designed not only to complement each 
other, but also to be used together in combination. 

Some examples from other systems illustrate the non- 
integration of programming paradigms. For example, Figure 
2 shows the connection between PLANNER and LISP. PLAN- 
NER was implemented in LISP, but a programmer could not. 
easily intermix PLANNER and LISP procedures. A simple 
mistake by a “naive” programmer could easily crash the 
whole system. Figure 3 shows the connection of list opera- 
tions to PROLOG, reflecting the fact that list operations 
were added late to PROLOG, after the initial design. Figure 
4 illustrates another approach, illustrated perhaps by the 
Spice Machine. In this example LISP and PASCAL commun- 
catc over a narrow bridge, making mutual use awkward and 
costly. 

Figure 4 
Combining paradigms: The bridge approach. 

The second theme of int,egration is the int,egration with 
the programming environment. For example, IJOOPS extends 
to other paradigms many of the facilities of INTERLEWD, 
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such as the display-oriented break package, editors, and in- 
spectors. In LOOPS, this integration has led to the same 
synergy that is exploited in using multiple paradigms for ap- 
plication programs. For example, the notion of “breaking” 
on access to a function is extended to breaking on access to a 
variable by using active values to invoke the break package; 
the notion of tracing is extended to the notion of having 
gauges that can monitor the values of variables. 

Getting Ready for the First Course 

On January 6, we began to plan the first LOOPS course 
that would be offered on January 31 to our beta-test sites. 
We made a preliminary course outline, but we knew that 
we needed some way to draw the participants into program- 
ming in LOOPS. The idea of a video game was suggested, say 
rocket ships with LOOPS programs controlling the thrust and 
phasers. This idea was rejected as being both too frivolous, 
and computationally too expensive. Another suggestion was 
a game for placing tiles. We knew from Malone (1980) that 
there were principles for making games motivating. Our 
course participants would be computing and other profes- 
sionals drawn from research organizations and AI start-up 
firms, who were interested in using LOOPS for building ex- 
pert systems. We needed something that they would find 
useful and appealing. 

As brainstorming continued, some pedagogical principles 
began to emerge. The game should draw on the real world 
knowledge of our students. Rocket ships and tiles were 
wrong, because people didn’t have experience with such 
things from their everyday lives. A board game like Monop- 
oly was considered, and then our first concept of Truckin’ 
emerged. It would be a board game with road stops (see Fig. 
5). The players would drive trucks around buying and selling 
commodities. Their job would be to plan a route and make a 
profit. There would be various hazards along the way, places 
where goods and profits could be lost. Players would need 
to buy gas occasionally. 

By mimicking real life, Truckin’ would provide the kinds 
of difficulties that knowledge engineers encounter in building 
expert systems. We could create a rich and animated simula- 
tion environment for the “independent truckers.” The stu- 
dents would need to add knowledge to make their automated 
players more powerful The simulation environment would 
draw on the student’s real-world knowledge, and be rich 
enough to preclude a simple model. Much of the appeal 
of this was t,hat the “common experience” character of 
Truckin as a domain would enable us to side-step the usual 
knowledge acquisition bottleneck. The knowledge engineer- 
ing experience would be accelerated by immediate feedback 
from the animated simulation. To help students get started, 
we would provide them with a simple expert system for play- 
ing Truckan’. We decided to teach students about knowledge 
programming in LOOPS by giving them a small knowledge 
system to extend. 

At this point, we had less than a month to create the 

course materials, lectures, and Truclcin’. Sleep would become 
a rare and precious commodity The Truck&’ data base 
began to take shape. The players would start at IJnion Hall, 
and would try to be parked at Alice’s Restaurant at the end 
of the game. There would be various kinds of hazards along 
the road. The player with the most cash at Alice’s at the 
end of the game would win. 

LOOPS was able to accommodate changes as our ideas 
evolved. Initially, we thought of the hazards as being road 
stops. This was probably a carry over of our childhood ex- 
periences with board games. Then we added the idea of 
“bandits” that could move around just like the independent 
truckers. Bandits were represented as an inheritance com- 
bination of players and consumers. We used active values 
on variables of the road stops to update t,he display for com- 
modity prices and inventories. This meant that we did not 
need to find every place in the program where t,hese things 
could potentially be changed, in order to update the dis- 
play. The features of LOOPS worked for us, providing con- 
venient techniques for factoring the program. We became 
experienced consumers of our own knowledge programming 
system as we raced to get ready for the course. 

The simulation was designed to cause goal conflicts. A 
truck going quickly over a rough road would probably have 
its fragile merchandise damaged. A truck going quickly past 
a weigh station would probably get an extra fine, unless he 
was lucky or the weigh station was busy. On the other 
hand, a truck going slowly past a bandit would probably 
get intercepted. There would be perishable goods and fragile 
goods. We considered explosive goods and other such things, 
but removed them when they failed to add anything new t,o 
the game. Our pedagogical style was to leave some things 
out in order to keep it simple A player could take only three 
kinds of actions: buy, sell, and move. 

To facilitate the “suspension of disbelief” in watching the 
animated simulation, artistic attent!ion had to he given to the 
appearances of things. Icons for the various commodities, 
hazards, and trucks were created. We experimented with 
different configurations of the gameboard, moving away from 
the outside edge configuration of most gameboards in order 
to pack enough road stops on the display screen Highways 
were drawn next to the road stops, with a gray background 
and little dashed white lines in the center. People looked at 
intermediate versions of the gameboard and told us that the 
abrupt motion of the trucks was startling. We modified the 
code to simulate braking so that trucks would slow down as 
they arrived at their destinations. The visual appearance of 
Truckin’ became seductive. People were drawn into it. 

Prior to this, we had used a simple gauge in our demo 
to illustrate the application of active values. It was a crude 
looking gauge and had little generality. We decided to ex- 
tend the collection of gauges so that people could use them 
for debugging and for monitoring their independent truck- 
ers during the simulation. A family of gauges was designed 
(see Figure 7). For further ideas on style, we collected 
some professional catalogs of gauges, and sought advice from 
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Figure 5 ‘I’hc Loops gameboartt ~ for a game played by c:ompct.ing knowlcclgc syst.ems that, emulate “indcpcntlrnt 
t,ruckers ” The t)oartl’s sqllares are road stops, connected hy t,he highway drawn above RoarMops can he producers, 
consumers, rough roads, weigh stations Roadstops with icons arc producers, where players can buy Those with 
words (c g , C:lot,hing) arc consumers, where players can sell The irucks for the players are shown parked or moving 
along the highway (e g,, Sanjay) To the right, a panoply of gallges monitors the stat,lls of various players In t,hr 
llppel left. corner, a ll11c for onr of the players is being t.raced. 

Br11cc Kobcrts on t,hr St~earner project at BBN. The gauges 
weut through several design reviews, t,o make the gauges 
simpler Lo USC and modify Because of the cxt,ensivc use of 
mult,iplc inheritance and t,hc interactions on the display bc- 
t.ween t,he parts of the hybrid gauges, a uu~nher of dcsigu 
issues surfaced. During these reviews, we created names fol 
certain categories of’ design errors that, WC encountered For 
example, a yraznszze error is it sit,iixtion where the striict81iral 
part.2 of an objcd, (iisiially methods) arc factored too coarsely 
f’or l,hc fine control needed by its specializat,ions. A replzctc- 
tro7l error is a sit,liation where alniosl, the sanic struclure is 
repeated in parallel classes, instcatl of factoring it in a way 
that, would allow it. to 1~ shared. Siich rxperiences gave us a 
dccpcr uuderstauding of bhc programming issucs that, l~ople 
would encounter in usiug t.he diflercnt, paradigms 

Ahoub t,wo weeks bcforc (.he (‘oursc wollld hegirl, we sent, 

out r&ices Lo our Ma-test sites iriviting people to sign ul) for 
thr COIII’SC. We expected about a half dozen people We ad- 
vcrtisetl that, our course would provide hands-on experierm 
in cxteiiding a “mini-expert system.” Hy word of mouth, 
Lhe story spread Over fifl,y people called us, rcqiiesting t,o 
get on the list,. We split the list, in half and scheduled the 
second course for the and of February WC didn’t, scud out, 
any more advcrt,iserncnLs. We had gone: l)ill,lic arid now WC 
had to make it, work 

Suddenly it was the weekend before the (:oIme WC made 
some guesses ahollt, the appropriate dist,ril)ut.ion of prices 
and pcnalbies We creat,ed our first, aulmnut,ed player, t,hc 
Traveler, which wollld just, t,ravcl along the board Mwcten 
1Jnion Hall and Alice’s Rest,aurant, As the ‘l’ravcler cruised 
tirelessly ilrollnd t,hr game board, various bugs iii t,lic simila- 
Lion surfaced. Meanwhile, WC: stari& work on a player Lo 
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Figure 6 Object composition in Loops 7’he inheritance lattice enables many forms of structural sharing in Loops. 
The simplest form is specialization, that is, creating a subclass that overrides and augments variables and methods 
inherited from the superclass. When multiple superclasses are used, the resulting subclass mixes together the 
att,ributes from t,hc superclasses Perspectives provide a way of gronping objects to act as views of a higher level 
object Perspectzoes ant,omat,ically forward messages to the appropriate object 

specialize in luxury goods called HighRoller. We didn’t have 
time to debug it very well before Lhe course started We 
rcasoncd that the hugs were acceptable, since they would 
provide things for t,he course participants to fix. We were 
right, but in hindsight, we had a lot of gall. 

The Courses as Experiments 

We have now run two intensive knowledge programming 
courses, and also repeated the second course to a small group 
using videotape. By the t,ime of publication of this article, 
the course will have been run for over 100 people The 
courses arc organized to alternate lectures and hands-on ex- 
ercises (set Table 1). So f ar, everyone taking the course has 
learued enough about the LOOPS knowledge programming 
system to do some practice exercises (such as creating a new 
kind of gauge) and to build au extended (smarter) Truckzn ’ 
player 

The most important aspect of the courses for our pur- 
poses is the opportunity that they provide for refining both 
LOOPS and t,he course materials For us, the courses arc 

experiments, from which we are discovering how to make 
LOOPS and our teaching met,hods more effective. The basic 
structure of our experimental process is to run a course and 
t,akc some measurements (for cxamplr, of the performance 
of students in terms of the problems that they complete, the 
clue&ions that they ask, and the results of questionaires that 
they return). We then change some parameters and take the 
measurements again during the next course. By examining 
how the observations and measurement,s differ, WC can form 
hypotheses to guide subsequent iterations of the course. 

. We suhstantially increased the emphasis on t,ools and 
tcchniqucs for debugging, and formnlai,ed explicit, 
llenristics for programmil~g in LOOPS Wc taught. 
students 1.0 nse tools for understanding t,he behavior 
of a system The second course led students to use 
gauges for monitoring t,he valnes of variables, cx- 
planation facilities (Fig. 8) for understanding which 
rule made a part,icular decision, and breaking and 
tracing facilities for discovering why some rules do 
not, fire 

. In some cases, we introduced intermediate prohlerns 
in the exercises, having hypot,hesized that some of the 
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I Gauges - - Defined by Classes, Driven by Active Values 
I 

r Window-Gauge<~- 
_-- I t1st.r llnletlt r F:out-ldSc:a 1 e 

_ ---- -2- 
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Vigure 7 Loops gauges Gauges are tools used to monitor the values of variables They can he thought of as probes 
inserted ont,o the variables of an arbitrary Loops program Gauges are defined in Loops as classes, and driven by 
active values the mechanism behind access-oricnt,ed programming in Loops A browser at the bottom of t,he figur(‘ 
illustrat,es the relationships between the classes of gauges From this figure, we can see that the DigiMeter is a 
combination of a Meter and an LCD 

steps between exercises were too dificult to take all 
at once 

. WC fashioned a new starting player for t,he second 
course, called the I’eddler, which did a bet,ter job 
than HighRoller in factoring the concerns of an inde- 
pendent trucker We hypothesized t,hat rcstructur- 
ing IIighRollcr was t,oo difficult to do in a three day 
course. 

. We adjusted the commodity prices and risks 00 
provide a greater reward and selection pressllre for 
more sophisticated and knowledgeable t,ruckers. 

l We improved the browsers, that, is, our interactive 
graphics for “browsing” information in a knowledge 
base (see Figure 9) We believed that, we could 
reduce much of the cognitive load for restructur- 
ing objects and accessing information if we provided 

more efl’ective ways of making the right, information 
visible. 

l We fixed troublesome bugs in the rule compiler Dur- 
ing the first course, participants had to struggle with 
a compiler that did not reliably keep the generated 
LISP code in correspondence with the rules 

As a result of thcsc changes, the participants in the 
second course were dramatically more successful t,han those 

in the first In t,he first course, WC had to slip the schedllle 

for the knowledge competition by 90 mimltes, in order to let. 
people finish preparing their players. In the second course, 

people had players ready in about half of the allocated time, 

and spent the remaining time exploring other aspects of the 

system and tuning their strategies. Furthermore, the weakest 

player of the second course could easily dominate the best 
player from the first course. 
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Figure 8. Seeing the knowledge behind a decision In t,his figure the game is interrupted, causing the Rule KXCX 
window to pop up over the gameboard. The user has asked why his truck picked a part,icular stopping place, and 
Loops has displayed the rule that, made the decision. 

People asked far fewer questions in the second course, 
and were able to complete many more of the exercises. In 
addition, the questionaires from the second course came 
back with radically different advice from those from the 
first course. The general rcsponsc from the first course was 
“give us less on rules” and many people indicated substan- 
tial concern with many of the fundamental aspects of that 
paradigm. In the second course, the responses turned COIII- 
pletely around. They said “give us more on rules and debug- 
ging.” 

We believe that in the first, course the combination of a 
faulty rule compiler and lack of information on how t,o debug 
programs in this paradigm undermined confidence. During 
the second course, two members of a team were observed 
staring at a display. One of them said, “Why is it buying 
t,omat,oes?” and the other one elbowed him saying “Ask 
why! Ask why!” ~ goading him into action at the LOOPS 
keyboard They had learned their lessons well. 

This process of simplifying methods and tuning the 
course in order to enhance learnability and propagatability 

reflects our interest in the engineering of knowlcdgc (Conway 
1981, Stelik & Conway 1982) In this case we are engineering 
languages and techniques for knowledge programming The 
courses provide a source of feedback on t,he effects of changes 
to the course materials, paradigms and programming en- 
vironments. In time, we would like to extend our work to 
provide a framework that would simplify the process of creat- 
ing higher level organizations in expert systems (Stefik et al, 
1982). 

The Knowledge Competition 

A very enjoyable thing a.bout the LOOPS course is the 
electric excitement’that erupts during a knowledge competi- 
tion. People seem to prqjcct themselves into the players that 
they have created They have put their player through many 
simulations and many playing conditions. In a sense, they 
have taught it everything Rut, during the competition thcrc 
is a moment of truth. The rules cannot be changed. Success 
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Figure 9. Class browser on commodities Rrowsers are interactive programs used to browse through a knowlcdgc 
base. The lines seen in a class browser indicate superclass relationships For example, in this figure, a StereoSystem 
is a LuxuryGood, an Appliance, and a FragileCommodity Browsers can be created t,o show other relationships too, 
and by selecting nodes in a browser, a user can access such further information 

in the short run is affected by chance, but on average, the 
most knowledgeable players will win. 

The randomly generated game board comes up As t,he 
simulation begins, there is a great deal of commentary and 

jibes as people compare their players. Who’s ahead? Who 
just got robbed? In Truckzn’ the silliness of the ill-fated 
move is something that all the observers appreciate almost 
immediately. For example, 

l A player nmy be racing to Alice’s Rest,aurant One 
move before the game ends it is unable to resist 
a business “opportunity” and doesn’t make it to 
Alice’s. 

l A player may go to the closest place to sell some 
goods, even if it happens to be the City Dump, which 
unfortunately pays a “negative price.” 

l A player may become focused on a tight producer/con- 
sumer loop, making money faster t,han any other 
player on the board If it is programmed to only 
buy fuel from stations along its route, but there is 
no gas station in the tight loop, the team will watch 
anxiously as the fuel gauge drops lower and lower 

l A player may try to park next to Alice’s Restaurant 
near the end of the game, even if that happens to 
be the LJnion Hall, which confiscates all goods and 
cash 

In our experience so far, these oversights happen in 
the best of players. They provide a source of merriment 
during the competition, and an illustration of just how 
much knowledge is really needed to be powerful, even in an 
artificial environment. 

The knowledge competition also serves as R source of 
examples and metaphors about the nature of knowledge. 
One example drawn from the first sloops course illustrates 
the interplay between knowledge and environment. For the 
first knowledge competition, two t,earns prepared players by 
simply fixing some of the bugs in the IIighRoller They had 
a private playoff just before the competition, and discovered 
that when both players were in the same game, the inventory 

of luxury goods on the game board became exhausted before 
the end of play. Neither player was able t,o cope with this 
situation One of the heuristics that we now offer to teams 
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preparing for a knowledge competition is to test rules with 
many copies of the same player competing at once. 

This interplay between knowledge and environment brings 
to mind the example of the ant on the beach (Simon 1981), 
in which the apparently complex movement of the ant is at- 
tributed to the complexity of the beach environment rather 
than the complexity of the ant. In Truckin’, the “ants” 
are mechanical and programmable. We have obscrvcd that, 
even the complexity of the Truckin’ environment, creates a 
substantial selection pressure for resourceful and knowledge- 
able players. To win, the designers of the players must 
pit knowledge against complexity. Knowledge provides the 
adaptability needed for mastering the situations in the game 

The name “knowledge competition” was inspired by 
the observation that it is truly the knowledge of players 
that is competing, and the most adaptable player wins. 
Rcccntly in connection with the interest, in fifth generation 
computers, Feigenbaum and McC:orduck (1983) have charac- 
terized knowledgr as the new “wealth of nat,ions.” III the 
knowledge competition and Truckin’, the competitive ad- 
vantages of knowledge in a player is concrete and observable 
in short experiments 

The success of the knowledge competition in motivat- 
ing participation has led us t,o speculate on ways of alleviat- 
ing the knowledge acquisition bottleneck. One idea is for 
a community of experts to interact through knowledge serv- 
ers, which accept knowledge over a computer network and 
make themselves available for solving problems Here again 
thert would be a “competition” bct,ween different bodies of 
knowledge from the exprrts, competing to solve the problems 
that are posed 

Implications 

Sometimes the effects of a technological change can be 
surprising and widespread. Although our research and ex- 
perimentation with IJOOPS has not run its full course, there 
have been a few expert systems started at, our beta-test sites: 
three systems that perform parts of VLSI design, a program 
for playing Bridge, an investment advisor, a program for 
expressing specifications of parallel programs, a tester for 
LOOPS 

We sense that a technological change is emerging from 
such research on knowledge programming, a change in the 
infrastntcture for building knowledgc systems. The shift will 
have leveraging power in two ways: (1) the freeing of existing 
knowledge engineers from spending a year or two building 
the bottom of their knowledge representation systems, and 
(2) a measurable accclcration in the progress of the field if t,he 
simplified methods trigger an increase in numbers of prac- 
titioners from 100 to 1000 or more. Knowledge engineering 
can then begin to have a noticeable effect in many areas of 
our lives 

12 THE AI MAGAZINE Fall 1983 

I,OOPS COURSE OUTLINE 

FIRST DAY: 

9:00-g: 15 

9:15-10:15 

10:15-11:oo 

ll:OO-12:oo 

12:00-l:oo 

I :00@2:00 

2:00--4:00 

4:00~4:30 

4:30-5:oo 

Introduction 
Object-Oriented Programming: Classes ~ Objects 

Variables Methods - Inheritance Documcnta- 
tion 
LOOPS Environment (Demonstration): Defining 
Methods ~ Editing ~ Printing ~ Inspecting Brows- 
ing ~ Gauges. 

Exercise I- Introdllctory hands-on session: Sending 
Messages ~~ Browsing - Editing Inspect,ing 

Lunch. 

Access-Oriented Programming: Active Values ~~ 
First,Fet,ch NamedObjects ~ AtCreation Nested 
Active Values The LOOPS Break Package 

Exercise 2 - Gauges hands-on session: Specializing 
Classes ~ Instantiation - lJsing Gauges 

The %&in mini-Expert System 

Discussion 

SECOND DAY: 

9:00- 9:15 Introduction. 

9:15~10:15 Rule-Oriented I’rogramming: RuleSets Control 
Structures Recording Rule Invocations. 

10:15-12:00 Exercise 3 - Rules hands-on session: Edit,ing RuleSets 
-- Debugging RuleSets. 

12:oo l:oo Lunch. 

l:OO- 2:oo Knowledge Represent,ation Examples from Trr~c&n’. 

2:OOp4:30 Exercise 4 - Knowledge programming hands-on 
session: Rule-Oriented Programming ~ multiple 
paradigm programming. 

4:30 5:oo Discussion. 

THIRD DAY: 

9:ol%9:15 

9:15~11:00 

11 :oo- 12:oo 

12:oom l:oo 

1:00~3:00 

3:O& 4:oo 

4:ooG4:30 

4:30- 5:oo 

Introduction. 

Initial Development of your player: hands-on ses- 
sion 

Advanced LOOPS Features: Composite Objects 
Perspectives vs. Mixins ~ Meta Classes ~~ System 
Mixins ~ Knowledge Bases. 

Lllllcll 

Final tuning of your player: hands-on Session 

The 7%&in’ Knowledge Competition 

I,ooPs Environment: LOOPS Tester ~ Facilities for 
Bug Reporting 

Wrap-up: LOOPS support ~ IJser Packages Future 
Directions 

Table I. 
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