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Editors’ Note: Many expert systems require some means 
of handling heuristic rules whose conclusions are less than certain 
Baysian techniques and other numerical scoring methods have 
been developed to combine and propagate certainty measures as 
the expert system draws inferences in solving different problems. 

Doyle’s paper argues that it is difficult for a human expert 
to produce reliable probabilities or numerical scoring factors for 
an inference rule, and that a radically different approach to the 
problem should be considered He essentially suggests that the 
expert be encouraged to think in terms of specific instances which 
would conflict with the general rule and to encode this knowledge 
explicitly. 

Methodologically this seems to be very appealing, and helps 
to make both explicit and rigorous some of the techniques cur- 
rently used by knowledge engineers whm they encode and refine 
the expert’s knowledge We would welcome comments and 

criticisms of this approach from those steeped in the practical 
issues of constructing large rule-based expert systems. - 

Derek Sleeman and Jazme Carbonell 

Abstract 

Probabilistic rules and their variants have recently supported several 
successful applications of expert systems, in spite of the difficulty 
of committing informants to particular conditional probabilities or 
“certainty factors,” and in spite of the experimentally observed insen- 
sitivity of system performance to perturbations of the chosen values 
Here we survey recent developments concerning reasoned assumptions 
which offer hope for avoiding the practical elusiveness of probabilistic 
rules while retaining theoretical power, for basing systems on the infor- 
mation unhesitatingly gained from expert informants, and reconstruct- 
ing the entailed degrees of belief later 
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The “Probability” Problem 

Recent successes of “expert systems” stem from much 
hard work of designers and experts in elicting, encoding and 
examining the normally tacit rules of reasoning employed by 
the experts. These three tasks of elicting, encoding, and ex- 
amining rules of reasoning influence each other. The designer 
must be able to encode the rules elicted, the encoding must 
facilitate examination of the rules in operation and the sorts 
of information elicted must seem important to the expert lest 
examination seem pointless. Much current practice employs 

THE AI MAGAZINE Summer 1983 39 

AI Magazine Volume 4 Number 2 (1983) (© AAAI)



so-called judgmental rules for encoding the informant’s rules 
of reasoning Judgmental rules, for example those in MYCIN, 
incorporate both propositional and “probabilistic” informa- 
tion. An investment advisor system, for instance, might be 
given a rule 

IF: 1. The client’s income bracket is 50%, 

and 2. The client carefully studies market trends, 

THEN: 3. There is evidence (0.8) that the investment 

should be in high-technology. 

(from Davis, 1979) and would use the rule to draw conclu- 
sions whose “certainty factors” depend on the observed cer- 
tainty factors of the hypotheses (lines 1 and 2) and the cer- 
tainty factor (0.8) of the rule itself. Though few expert sys- 
tems actually treat these numerical grades of certainty as 
Bayesian probabilities and conditional probabilities, their in- 
terpretation usually approximates that of Bayesian probabil- 
ities, namely as subjective degrees of belief. Although simple, 
these judgmental rules have supported development of many 
impressive applications. 

In spite of the fruitfulness of this approach, its prac- 
titioners express discomfort with several of its requirements. 
One difficulty is that while it is relatively easy to elict ten- 
tative propositional rules from experts and from people in 
general, it is considerably harder to get commitment to par- 
ticular grades of certainty That is, one’s human informant 
might quickly suggest the propositional part of the above rule 
“IF 1 and 2, THEN 3” but might try to avoid assigning 0.8 or 
any other number to the rule. Worse still, individual infor- 
mants frequently vary in their answers to a repeated question 
depending on the day of the week, their emotional state, the 
preceding questions, and other extraneous factors. This fur- 
ther aggravates the sensitivity of answers to the phrasing of 
questions noted by Tversky and Kahneman (1981). 

Another difficulty stems from these. Noticing their infor- 
mants’ hesitancy, system designers test the sensitivity of the 
system’s performance to the set of numbers used. Reported 
experiments show the numbers do not actually mean exactly 
what they seem to mean, for the performance of most sys- 
tems remains constant under all sorts of small (< 30%) 
perturbations in the precise values used. Understandably, 
expert system designers have difficulty justifying their use 
of the numerical judgments in face of these indications of 
psychological and pragmatic unreality. Unfortunately, they 
have had to stick to their guns, since no satisfactory alter- 
native has been apparent. 

One hope for giving expert system designers what they 
want is to investigate their practice, to seek simpler but equi- 
potent sorts of information and operations which capture the 
“grain of truth” in the probabilistic approach. Something 
might explain both the designers’ intuitions and their sys- 
tems’ successes. Since that something is clearly not standard 
Bayesian probability theory or its certainty factor variants, 
can we find what really underlies current practice? 

This article answers “Yes.” Recent developments con- 
cerning reasoned assumptions suggest an approach which al- 
lows familiar sorts of rules of reasoning, judgments of cer- 
tainty of conclusions, and more besides - all without the 
unreality of the probabilistic approach. In the following, we 
explain the modified approach together with its practical and 
theoretical attractions. Related discussions of Bayesianism 
can be found (Minsky, 1975; Shortliffe & Buchanan, 1975; 
Duda, Hart, & Nilsson, 1976; Szolovits, 1978; Szolovits & 
Pauker, 1978). 

Reasoned Assumptions 

The approach of reasoned assumptions modifies the stan- 
dard treatment of uncertainty, not the treatment of proposi- 
tional information Thus in the investment rule above, we 
change only the certainty factor information, and leave the 
propositional information intact. Although our approach 
accommodates representational systems based on “frames” 
and “units” as easily as syst,ems based on “assertions,” for 
expository simplicity we pretend the database consists of 
elementary logical sentences, and leave restatement of the 
approach in one’s favorite representational system as an exer- 
cise for the reader. For terminological simplicity, we label all 
the numerical approaches as “Bayesianism,” and use MYCIN 
as our standard of comparison Strictly speaking, MYCIN 
is not Bayesian, but the differences are immaterial in the 
following discussion. 

We abbreviate the parts of IF-THEN rules by writing 
A to mean the set’ of antecedent sentences of the IF part, 
and by writing C to mean the set of conclusion sentences of 
the THEN part If the rule simply relates concrete (ground) 
sentences, A and C are sets of concrete sentences If the 
rule expresses general or schematic information in terms of 
variables Z = ~1, . . . , x,, we can indicate this generality by 
writing A(??) and C(z) instead. We also write 1A to mean 
the set of negations of statements in A: that, is, 1 A = { 7 a 1 
UEA}. 

We express uncertain rules of reasoning in expressions of 
the form 

and 

‘dz [A@) II BP) IF WVI. 
We read the former as “A without B gives C:” an expression 
informally interpreted as “conclude every sentence in C if 
every sentence in A has been concluded and no sentence in 
B has been concluded.” We interpret, the latter expression as 
a schema implying all concrete instances of the form A($ 11 
B(G) It W f or g round terms G We call these expressions 
reasons, and the conclusions derived from them reasoned 
assumptzons. We connect reasons with IF-THEN rules by 
noting that A and C act, as antecedents and consequents as 
before, and that B contains qualifications on the inference 
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Thus, ignoring uncertainty, we can rewrite the propositional 
part of “IF A, THEN C” as A (/ 0 /b C. 

Reasoned assumptions express uncertainty in terms of 
the non-statistical notions of typicalaty and defeasibilzty 
(English for “liability to defeat”), notions concerned with 
the preferences of t,he agent about how to adopt assumptions 
in order to resolve ambiguities in its information about the 
problem. Rules of typicality express the usual, normal or ini- 
tial conclusions for consideration, conclusions which may be 
individually defeated if circumstances warrant. (See Doyle 
(1982) for more discussion of these notions.) Completely 
certain inference rules can be written as A I[ 0 I/- C, in 
which case the absence of qualifying statements means the 
conclusions are always drawn from the antecedents. Rules 
stating the normal or usual conclusions following from an- 
tecedents may be written either as default reasons or as 
defeasible reasons. Default reasons are of the form A 11 
7 C I/- C, meaning that the conclusions are inferred from the 
antecedents only if their negations are not already known. 
Defeasible reasons are of the form A 11 {Defeated(R)} jk 
C, where R is the name of the reason itself. Thus R = 

iA II {Defeated(R)) II- Cl means that the conclusions are 
inferred from the antecedents only if the use of the reason 
has not been ruled out by the presence of the statement 
Defeated(R) in the database. Default and defeasible reasons 
are usually used in concert with other reasons expressing 
special cases, exceptions and other overriding conditions. If 
a particular application (instantiation) of a schematic reason 
produces unwanted conclusions, we defeat the particular ap- 
plication, not the schematic reason itself. In other words, 
we ordinarily correct errors on a case-by-case basis. If the 
overriding reasons cover most circumstances, the overrid- 
den reasons serve as “catch-all” rules, guidelines for what 
to do about “everything else” not covered by the specific 
case reasons. Moreover, independently formulated default 
reasons sometimes conflict on instances, and so may require 
conflict resolution reasons defeating one instance in favor of 
another in ambiguous circumstances. (See Reiter (1978) and 
Reiter & Criscuolo (1981) for examples.) 

Comparison of the Approaches 

One cannot simply reformulate probabilistic rules as 
reasons according to their certainty factors To re-express a 
database of expertise, we require the knowledge acquisition 
process carried a bit further than usual. The approach of 
reasoned assumptions supposes that numerical judgments of 
certainty often hide more specific information not yet made 
explicit by the expert informant. When the expert says that 
“To degree 0.3, IF A, THEN C,” this really means that many 
exceptional cases are familiar to the expert. One might ask 
the informant to list these exceptions as a set B, in order 
to qualify the rule by writing it as A /I B IF C, but it is 
often as difficult to think of exceptions offhand as it is to 
think of ordinary heuristic rules. Instead, we apply the same 
technique to articulating expertise as that already practiced, 

namely the informant expresses what is clear, and then for- 
mulates and reformulates the missing cases, exceptions, and 
generalizations by repeatedly examining the system’s perfor- 
mance on test problems. At bottom, we always have rules of 
the form “Usually, IF A, THEN C” or “Usually, IF A, THEN 
7 C,” which we express as defeasible or default reasons, and 
we express the intermediate degrees of uncertainty by case 
analysis and reasons stating exceptions to generalities. This 
of course requires more work in articulating expertise than 
the probabilistic approach, since one may have to formu- 
late several cases and conflict resolution reasons that could 
be hidden in a single number, but in the long run, improv- 
ing the performance of a probability-based system requires 
the same sort of case and conflict analyses. That is, use of 
probabilities may make the initial database smaller, but by 
the time expert performance has been molded from the ini- 
tial approximation, about the same information should be 
present in the one approach as in the other. Since the same 
hard questions must be addressed in either case, and since 
the non-probabilistic rules can be had with less hesitation, 
we conclude the total work of the reasoned assumptions ap- 
proach should not exceed that of the probabilistic approach. 

Our assessment of the relative amounts of work needed 
to formulate a body of expertise assumes that the two sorts 
of encodings can express the same information. While the 
mathematical details are inappropriate for pursuit here, 
recent theoretical treatment of reasoned assumptions shows 
how subjective probabilities or certainty factors may be 
derived from sets of reasons, a project reminiscent of Savage’s 
(1972) construction of quantitative subjective probabilities 
from qualitative subjective probabilities. The converse deriva 
tion seems unlikely, so from a purely theoretical viewpoint, 
the information expressed in reasons may be more powerful 
or fundamental than that expressed in probabilistic rules 
We briefly sketch these ideas. 

MYCIN’s probabilistic rules are interpreted by comput- 
ing the “deductive closure” of the rules together with prob- 
lem specific information. This results in a single probability 
distribution on all statements of interest. 

In contrast, sets of schematic and problem specific 
reasons are interpreted by finding their admzsszble exten- 
520725. The admissible extensions AFzts(S) of a set S 
of reasons are “closed and grounded” supersets E of S. 
“Closed” means that if A // B IF C is in E, and if every 
element of A is in E, and if no element of B is in E, then 
every element of C is in E. LLGrounded” means that every 
statement in E either is in S or is supported by a noncir- 
cular argument from S and qualifiers not in E. (See Doyle 
(1982) for the precise formulation.) Mie reconstruct subjec- 
tive probabilities from admissible extensions by using a prob- 
abilistic algorithm to derive admissible extensions from the 
initial set of reasons. Probabilistic algorithms compute per- 
fectly definite structures, in our case some E E AExts(S), 
but make deliberately randomized choices whenever there 
is more than one construction possible Probabilities enter 
into our observations of the computation, but not into the 
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computation itself. We apply this idea by supposing that all 
admissible extensions with the same number of elements are 
equally likely to be derived from the initial set of reasons, and 
that the probability of derivation decreases with the number 
of elements in the admissible extension. Specifically, we sup- 
pose pr(E 1 S), the probability of deriving extension E from 
S, to be proportional to 2-IEI. The “degree of belief” pr(a 1 
S) of a statement a given S is then the normalized probabil- 
ity of deriving admissible extensions containing a. That is, 
if 

N= c ’ 
2-IEI 

a?%AEzts(S) 

we can define 

2-IEI 
pr(E I s) = 7’ 

and 

pr(a I s> = C pr(E I s>. 

For example, if S is the set of reasons 

0 II {Cl) it 17c1> 

{Cl} II {7c2> IF {@I 

{Cl) II {Cal It -t7c2> 
then S has three admissible extensions 

El =Su{-cl} 

E2 =SU{c1,c2) 

E3 = Su{c1,7c2} 

so that pr(ci I 5’) = 3, pr(Tci I S) = i, pr(cz I S) = i, 
and pr(l cs 1 S) = a. If the dependence of c2 and 1 c2 on cl 
is removed, we have instead four admissible extensions 

so that statements in S have probability 1 and cl, 1 cl, cs, 7 c2 
each have probability 3. 

The preceding suggests, both practically and theoreti- 
cally, that reasoned assumptions express a more fundamen- 
tal notion of uncertainty than numerical stipulations of cer- 
tainty. One incompleteness in the preceding comparison con- 
cerns objective probabilities. It may not always be reason- 
able to expect that all probabilities may be analyzed into 
cases. The probabilities may be the results of formal physi- 
cal measurements of phenomena, or informal observations 
by the informant of past experience with success of rules or 
reliability of data. Moreover, even if such probabilities might 

ultimately succumb to analysis, their analysis may cost too 
much. 

We cannot yet offer a complete solution to this difficulty. 
While one obvious approach is to assume the more likely out- 
come as a default and expect to work to correct the outcome 
when wrong, another possibility is to combine reasons and 
objective probabilities by making the probabilistic extension- 
computing algorithm sensitive to statements of fundamental 
objective probabilities. Unfortunately, this combination has 
not yet been adequately explored. 

Even if a workable combination of reasoned assump- 
tions and objective probabilities exists, this need not sanc- 
tion continued reliance on purely probabilistic systems. The 
approach of reasoned assumptions has other attractions for 
knowledge acquisition, attractions which recommend prob- 
abilities only as a tool of last resort. We mention two. 

One of the most important requirements placed on 
reasoning systems by knowledge acquisition is that of ex- 
plicability of conclusions, since informants must see how the 
system uses its information and arrives at its conclusions in 
order to criticize and correct it. Most expert systems based 
on probabilities keep track of the applications of rules used in 
computing derived probabilities, and so can explain the prob- 
ability of a conclusion in terms of its computation. Similarly, 
the reasoned assumption approach explicitly involves a no- 
tion of explanation in the groundedness requirement on ad- 
missible extensions. But the two sorts of explanations are not 
of comparable power since computational histories need not 
be illuminating explanations of conclusions. This is an im- 
portant difference, for explanations in terms of applied rules 
simply explain numbers with more numbers, while explana- 
tions in terms of assumptions explain unlikely conclusions in 
terms of the assumptions needed to get them, or from the 
critical viewpoint, in terms of their possible counterexamples. 
Compared with the probability-combination rules used in 
Bayesianism, explicit computation of admissible extensions 
presents the informant with more fine-grained examples and 
counterexamples, explanations which more readily guide for- 
mulation of special cases, exceptions, and conflict resolution 
reasons. While both approaches permit explanation, those 
of reasoned assumptions are more useful. 

Another attraction of reasoned assumptions is that they 
facilitate additive updating of databases and supply “audit 
trails” pinpointing the history of rule revisions. If the infor- 
mant decides a rule needs changing in MYCIN, the rule must 
be deleted and replaced by the informant in cooperation with 
a bookkeeping system (We need not consider the grotesque 
alternative of adding an identical rule with the equally cer- 
tain but contrary conclusion.) In contrast, with defeasible 
reasons, the required bookkeeping is explicitly part of the 
system, so that the informant can indicate reasoned retrac- 
tions and replacements of faulty reasons, with the history of 
database changes made explicit in the reasons themselves. 
For example, if the informant decides to base a revision on a 
further hypothesis about the problem situation, he need not 
replace the faulty reason alone, but can make the hypothesis 
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explicit in t,he qualifiers of the new reason and in the defeater 
of the old reason, so that, the old reason will again be used 
when circumst antes void the informant’s hypothesis. 

Conclusion 

Compared with numerical judgments of subjective prob- 
ability, reasoned assumptions offer both closer correspon- 
dence with the expertise easily obtainable in pract,ice, and 
comparable theoretical power. This suggests exploring ex- 
pert systems based on reasoned assumptions instead of rest- 
ing content, with current systems. ,4 variety of practicable 
systems for manipulating and interpreting reasons currently 
exist for use, but they do not, yet implement facilities for 
computing degrees of belief, facilities which may be neces- 
sary for summarizing the struct,ure of large sets of admissible 
extensions as well as for quantifying confidence levels Con- 
siderable theoretical work seems needed to identify those no- 
tions of admissible extensions and derived probabilities which 
may be feasibly computed, and this may temporarily temper 
the at,tractions of reasoned assumptions Nevertheless, the 
likely practical rewards seem t,o justify the pursuit’. 

Whatever the ultimately preferred treatment of uncer- 
tainty, I hope this article encourages further analysis of prac- 
tice aiming for increased methodological simplicity. Alore 
than in some periods of its history, current artificial intel- 
ligence involves many people building on t,he work of others, 
especially by taking existing tools and doing somet,hing with 
them rather than devising speculative inventions for each 
new application. But one can also build on the achievements 
of others by analyzing their experience to extract the es- 
sence of their ideas and results, rather than simply assum- 
ing that the first successful formulation is best In such 
circumst,ances, one analyzes demonstrably practicable ideas 
and techniques, not to pat,ch t,hem, but to rethink, under- 
stand, and possibly improve them in fundamental ways. I 
believe much of artificial intelligence theory and practice is 
ripe for this sort of analysis, not just its treatments of un- 
certainty. In many other areas, artificial intelligence offers 
numerous alternative, seemingly incomparable theories Are 
there further “grains of t,ruth” awaiting discovery which 
might, connect and explain these alternat,ives? 
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