
The Interviewer/Reasoner Model:
An Approach to Improving System

Responsiveness in Interactive AI Systems

Phillip E. Gerring

Teknowledge Inc.

Edward H. Shortliffe

Stanford Unaversaty

William van Melle

Xerox Palo Alto Research Center

Abstract

Interactive intelligent systems often suffer from a basic conflict between
their computationally intensive nature and the need for responsiveness
to a user This paper introduces the Interviewer/Reasoner model,
which helps to reduce this conflict This model partitions an intelligent
system into two asynchronous components The Interviewer’s primary
function is to gather data while providing an acceptable response time
to the user The Reasoner does most of the symbolic computation for
the system This paper describes the implementation of the model in
both timesharing and personal workstat,ion environments, and uses the
ONCOCIN system as an example

1. Introduction

Interactive intelligent systems often suffer from a basic
conflict between their comput,ationally intensive nature and

The work described in t,his paper was carried out at Stanford University
and was partly supported by the National Library of Medicine under
program project grant LM-00395.
The original idea for splitting the tasks of information gathering from
reasoning in order to improve system response time was suggested by
Ted Shortliffe and Chuck Clanton for the ONCOCIN project Thanks
are due to Eric Schoen and Bill van Melle for help with the implemen-
tation, to Mark Stefik and Harold Brown for help in writing this paper,
and to the rest of the ONCOCIN project members, including Carli
Scott, Miriam Bischoff, Charlotte Jacobs, and Craig Tovey. Further
information, including implementation details, is available by writing
Miriam Bischoff, The Heuristic Programming Project, Room TG117,
Stanford University School of Medicine, Stanford, California 94305

the need for responsiveness to a user. An acceptable response
time is needed both during system testing and to help in-
sure end-user acceptability. During the normal course of
development of an AI system there is substantial t,esting on
real problems under the guidance of human experts whose
time is usually valuable. Moreover, many end users (e.g.,
physicians) will simply refuse to use a system if they have
to wait for a response. Both these considerations place a
premium on responsiveness. Unfortunately, many AI systems
run so slowly that waiting appears t,o be unavoidable.

This paper int,roduces the Interviewer/Reasoner model,
a technique which can help to reduce this conflict under the
conditions specified below. As is described in Section 2, the
model partitions an AI system into two components which
run asynchronously, one to handle the interactions with the
user and the other to perform the symbolic computations.
The Interviewer/Reasoner model has been implementled in
ONCOCIN (Shortliffe, ct al., 1981), an expert system that
is designed to assist physicians in the treatment of cancer
patients. ONCOCIN was developed at Stanford University
on the SUMEX computer facilit,y. Section 3 describes how the
model has been implemented for ONCOCIN in a timeshar-
ing environment, and Section 4 discusses two possible im-
plementations on personal workstations. Other application
areas and further extensions to the model are considered in
Section 5.

24 THE AI MAGAZINE Fall 1982

AI Magazine Volume 3 Number 4 (1982) (© AAAI)

Rcasoncr 1

----+ (‘oitt rol

c *

Figure 1. The Interviewer/Reasoner model The Interviewer
interacts with the user, buffering and ordering data The
Reasoner performs the intelligent system’s symbolic computa-
tion

2. The Interviewer/Reasoner Model

The Interviewer/Reasoner model partitions an intel-
ligent system into two components: an Interviewer, which
mediates interactions between the user and the system, and
a Reasoner, which does most, of t,he symbolic computation
for the system (Fig. 1). The Interviewer’s primary function
is to gather data. It should ideally never cause the user
to wait, and must operate independently of the reasoning
process. The Reasoner must run in the background, essen-
tially invisible to the user. If it needs additional data not
normally gathered by the Interviewer, it can interrupt the
user, via the Interviewer, to ask for those data. To minimize
delay before its results are available to the user, the Reasoner
should start using data as soon as they are available.

These characteristics constrain both the nature of the
Reasoner and t,he kind of domain for which the model is
appropriate. In order to work effectively as a background
process, the Reasoner should be primarily data-driven. A
goal-directed system usually needs specific pieces of informa-
tion at unpredictable times. A goal-directed Reasoner would
therefore need to direct the information-gathering process,
and the Interviewer/Reasoner model would gain nothing. For
the model to be useful, the Interviewer must be able to gather

information independently of the reasoning process. For ex-
ample, this is possible for consulting systems which form
conclusions from relatively standard data sets as they are
entered.

In order for the model to work most effectively-i.e., to
maximally overlap interviewing and reasoning-neither the
Interviewer nor the Reasoner should have to wait long for
the other. The Reasoner must be able to use the data in
whatever order they arrive, or it must be possible for the
Interviewer to obtain early any data that are critical to the
Reasoner’s processing. For consulting problems, the critical
data questions can often be asked at the beginning of the
session.

ONCOCIN follows the latter strategy. After perform-
ing a history and physical examination, the physician uses a
video display terminal to fill out a patient’s flow sheet. The
flow sheet is a list of patient “parameters” (blood counts,
lab tests, etc.) for which the physician supplies values.
If the Reasoner needs information not on the flow sheet,
it can interrupt, and ask the physician for tha.t informa-
tion. Because an actual interruption can be annoying, ON-
COCIN handles this situation by simply inserting the new
data queries at a convenient place on the flowsheet that the
physician is filling out. After t,he physician supplies all the

THE AI MAGAZINE Fall 1982 25

Figure 2 The ONCOCIN system The TopDog process
monitor controls the other system components The Interac-

tor handles all interprocess communication The Printer con-
trols a lineprinter used for generating patient flow sheets, sum-

mary sheets, therapy recommendations, etc. The Interviewer

interacts with physicians via a display terminal with a special

keyboard. The Reasoners interpret patient data and make
therapy recommendations; one finishes up one case while the

scond starts another.

values, the Reasoner makes therapy recommendations. The
most useful parameters, from the Reasoner’s point of view

(i.e., those which will allow it to begin significant process-
ing immediately), are positioned at the top of the form. If
they were scattered throughout the form or near the end,
the physician might have to wait an unacceptably long time
before the recommendations were ready. This is a problem
with goal-directed systems such as MYCIN (Shortliffe, 1976),
where the physician must provide an answer, wait, provide
another, wait again, etc., until the program reaches a con-
clusion.

3. Implementation for a Timesharing Environment

On a large timesharing machine, a straightforward im-
plementation of the Interviewer/Reasoner split is to run each
as a separate process and provide some means of communica-
tion between them. This is how the current prototype version
of ONCOCIN is implemented.

ONCOCIN uses two support programs (Fig. 2). A mul-
tiple process monitor, familiarly called TopDog, creates the
processes for the Interviewer and the Reasoner and sets them
in motion. The Interviewer and the Reasoner communicate
by passing messages to each other via an additional process,
called the Interactor. The Interactor provides a “mail ser-
vice;” each process has an “in-box” and an “out-box.” The
Interactor picks up messages from the out-boxes, queues

26 THE AI MAGAZINE Fall 1982

them if necessary, and delivers them one at a time to the
appropriate in-boxes.

Messages have a priority level. Those with higher
priority will be delivered first; otherwise any queueing is
simply first-in-first-out. Priority is often important. For cx-
ample, if ONCOCIN’s Reasoner needs to interrupt with a
question, that datum requires a higher priority than other
flow sheet values (of which there may already be a queue).
Alternatively, an unimplemented but useful feature would be
to allow the physician to ask questions of the form “What
was the patient’s white blood cell count the last time the
toxicity was this severe?” Here the user would expect to get
an immediate answer; giving the more important messages
higher priority allows this to be done.

An advantage of this multiple process approach is the
ablility to implement the Interviewer and the Reasoner in
different languages, each suited to its purpose. ONCOCIN’s
Interviewer is coded in SAIL (Reiser, 1976), which provides
high-speed interactive I/O capabilities, while the Reasoner is
coded in Interlisp (Teitelman, 1978), which provides symbol
manipulation capabilities.

The prototype ONCOCIN system was installed for ex-
perimental use in the oncology clinic at the Stanford Medical
Center in May 1981. During clinical use, the system runs on

a dedicated timeshared DECSystem-2020. Physicians inter-
act with the Interviewer via a video display terminal with a
special keyboard. System response time is acceptable, with

a typical interaction lasting approximately five minutes. Be-
cause only one terminal is available on the current system,
only one physician may use the system at a time; the ON-
COCIN project hopes to provide more readily available access
to the consultation programs by transferring the system to
a network of personal workstations.

4. Implementations for a Personal
Workstation Environment

Several manufacturers have recently introduced high-
performance personal Lisp workstations. These machines
have high-resolution graphics and a larger address space than
is available on the timesharing systems most commonly used
for AI systems. They permit a scaling of ambitions with
respect to both user interfaces and complexity of computa-
tion. This emphasizes, rather than alleviates, the need for
the Interviewer/Reasoner model when implementing inter-
active intelligent systems: fancier interfaces, especially using
graphics, require more resources, whereas less stringent ad-
dress space limitations permit larger systems. This scaling of
ambitions can very well lead to ever-slower system response.

The implementation for a personal workstation environ-
ment that is most analogous to the timesharing one, if the
workstation supports multiple processes, is to run the Inter-
viewer and the Reasoner as separate processes on a single
machine. The ONCOCIN project is exploring this approach
as multiple process software becomes available. An ad-
vantage of this over a timesharing environment is that com-
munication is considerably simplified if the processes run
in the same address space (as is the case with most of the
available workstations). However, since some workstat,ions
have less computational power than large machines, this ap-
proach has the possible danger of exceeding the capabilities
of a single machine; this may make it unacceptable for some
problems.

An alternative implementation is to run the Interviewer
on one workstation, the Reasoner on another, and arrange
for communication via a network (some workstations have
multiple processors which can function separately; these are
included under this category). The primary advantage of
this approach is that the two processes do not contend for
a single machine’s resources, thus increasing the computa-
tional power available to the system. Another advantage
for system developers is that the Reasoner can maintain its
own display of its inner workings; a workstation’s graphics
capabilities permit more transparent high-level monitoring
of complex computational systems (Model, 1979). The
knowledge engineer can use this separate display to monitor
and debug the system unobtrusively (i.e., without having to
preempt the expert’s terminal) in a real-time manner. Its
major disadvantage is economic, in that, it requires more than
one workstation. This is not necessarily a disadvantage, since
two workstations are expected to cost much less than even a
part of a large timesharing system.

5. Other Applications and Extensions

Another kind of domain where the Interviewer/Reasoner
model would be appropriate is for real-time signal process-
ing problems. The Interviewer would not interact with a
human user but would monitor signal sources where the rcal-
time considerations demand greater responsiveness to the in-
put data than the Reasoner could supply. The Interviewer
could also order the data, passing critical information to the
Reasoner first.

There are several intriguing possible extensions to the
Interviewer/Reasoner model. First, one can imagine having
multiple Interviewers communicating with a single Reasoner.
This would be useful for systems which have several infor-
mants. Second, there could be a single Interviewer and mul-
tiple Reasoners. This can be useful in several settings:

Common interface for multiple systems: Each Reasoner
can be a different intelligent system. The Interviewer
is then a common interface between the user and the
several Reasoners, thus freeing the user from learning
several different protocols.
Concealing asynchronicity: The Reasoners can be
pieces of the same system (either a syst,em broken
into pieces by functionality or size, or a distributed
system). The Interviewer then presents a unified in-
terface, hiding the fact that t,hc user is interacting
with several asynchronous programs at, once.
Multiple problems at once: Two or more Reasoners
can perform the same intelligent task, but can be
working on separate problems (cases). For example,
one Reasoner can be finishing up one problem while
another starts a new case. This is done in ONCOCIN
to avoid waiting between patients; a new Reasoner
can begin on a new case immediately while the pre-
vious Reasoner performs file cleanup functions neces-
sary at the end of each consultation session.

Third, there could be multiple Interviewers and multiple
Reasoners. This brings to mind powerful combinations of
the first two extensions; for example, multiple informants to
a distributed intelligent system.

References

Model, Mitchell L., Monitoring System Behavior In a Complex
Computational Environment, Report No. CSL-79-1, XEROX
Palo Alto Research Center, Palo Alto, Calif., January, 1979.

Reiser, John F., ed., SAIL, Stanford Artificial Intelligence Laboratory
Memo AIM-289, Dept of Computer Science, Stanford Univer-
sity, Stanford, Calif., August, 1976.

Shortliffe, E. H., Computer-Based Medical Consultations. MYCIN,

Elsevier/North Holland, New York, 1976.
Shortliffe, E. H , Scott, A. C., Bischoff, M. B , Campbell, A. B.,

van Melle, W., and Jacobs, C. D., ONCOCIN: An expert syst,em
for oncology protocol management, Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, Vol II,
pp. 876-881, 1981.

Teitelman, Warren, Interlisp Reference Manual, XEROX Palo Alto
Research Center, Palo Alto, Calif. 1978.

THE AI MAGAZINE Fall 1982 27

