
The idea of using a computer program to help discover
theorems is an old one and will not surprise anyone
nowadays. In late 1950s, logician Hao Wang at IBM

wrote a code called Program II (Wang 1960) to discover deep
theorems in propositional logic. For Wang, a theorem is deep
if it is short but requires a long proof. Understandably,
Wang’s program did not produce any really deep theorems,
perhaps for the simple reason that there are no tautologies
that are short and require a long proof.

A better-known example in AI is the Automated Mathe-
matician (AM) that Douglas Lenat developed in 1976 as part
of his PhD dissertation (Lenat 1979). While not strictly about
discovering theorems, AM uses heuristic search to simulate
how mathematicians discover interesting concepts and con-
jectures in number theory. It caused some excitement in the
community as Lenet claimed that one of the Lisp functions
it generated represented the fundamental theorem of arith-
metic.

Articles

SUMMER 2018 53Copyright © 2018, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Machine Theorem
Discovery

Fangzhen Lin

n This article describes a framework
for machine theorem discovery and
illustrates its use in discovering state
invariants in planning domains and
properties about Nash equilibria in
game theory. It also discusses its poten-
tial use in program verification in soft-
ware engineering. The main message of
the article is that many AI problems can
and should be formulated as machine
theorem discovery tasks.

A more impressive system is Siemion Fajtlowicz’s
Graffiti (Fajtlowicz 1988), which generates conjec-
tures in graph theory. More recently, Craig Larson
extended Fajtlowicz’s Graffiti into a more general
framework for mathematical conjecture making in
discrete math (Larson and Cleemput 2016; 2017). For
an early survey on these systems, see Larson (2005).

However, these examples all focus on a general
theory like propositional logic, number theory, or
graph theory. For AI applications, more often we
want to prove theorems in a very specific theory for
some very specific purpose. For instance, we could be
given a planning domain such as the logistics
domain, and we want to know if there are special
properties about the domain that can help prune the
search space for the planner in hand. Finding these
properties is the same as discovering theorems, once
the domain is axiomatized by a formal theory, for
example, in the situation calculus. As another exam-
ple, in software verification, we may want to prove
that a certain postcondition holds when the input
satisfies a certain precondition. This relationship can
be naturally formulated as a theorem-proving prob-
lem and is, in general, intractable. It helps, then, to
discover some useful properties about the program in
question to make the theorem-proving task easier. In
fact, much of the formal work on verifying sequential
programs can be said to be about discovering suitable
loop invariants as pioneered in Hoare’s logic (Hoare
1969).

In the past, my colleagues and I have developed
programs for discovering state invariants in planning
(Lin 2004), for discovering theorems that capture
strong equivalence in logic programming (Lin and
Chen 2007), for identifying conditions that capture
the uniqueness of pure Nash equilibria in games in
normal form (Tang and Lin 2011a), and for checking
the consistency of social choice axioms by translat-
ing them to SAT (Tang and Lin 2009). Our work has
inspired others to apply similar approaches to other
problems (for example, Geist and Endriss 2011; Bran-
dl et al. 2015; Brandt and Geist 2016; Brandl, Brandt,
and Geist 2016). For instance, instead of SAT, Brandl,
Brandt, and Geist (2016) used SMT in their work on
showing the incompatibility of certain notions of
efficiency and strategy-proofness.

In this article, I will outline a general approach to
machine theorem discovery. I will review some of our
earlier work and recast it in a general framework. As
it will become clear, the key is to formulate hypothe-
ses in a formal logical language.

Theorem Discovery
In a nutshell, theorem discovery can be viewed as an
iterative two-step process:

while (true) do

1. Find a reasonable conjecture;

2. Verify the conjecture.

Articles

54 AI MAGAZINE

Figure 1. An Algorithm for Machine Theorem Discovery.

Input

1 Language description: sorts, predicates, constants, functions.

2 A collection of sets of objects to construct models of the language.

3 A model con!rmation relation between models M and sentences ϕ:
 M con!rms ϕ if M satis!es the required property about ϕ, provided
 that M is a model of the domain theory.

4 (Optional) A theorem prover for checking if a sentence is a theorem
 in the given theory.

5 A speci!cation of the space of hypotheses: by defaults, all atomic
 sentences, binary clauses, type information (unary predicates),
 functional dependencies will be in the space. The user can also
 specify more.

Output: Weakest conjectures.

Articles

SUMMER 2018 55

Of course, it all comes down to what reasonable con-
jectures are, how to search for them, and once
they’ve been found, how to verify them as a theorem
of the given background theory. A key point of this
article is that current knowledge representation (KR)
formalisms, particularly those of first-order logic, are
good for specifying the space of conjectures. Further-
more, solvers such as those for SAT and CSP go a long
way in pruning the search space, identifying good
conjectures, and verifying them in the end.

In this article I focus on machine theorem discov-
ery using the algorithm depicted in figure 1. Here, a
conjecture is a hypothesis that is confirmed by all
models that can be constructed using the domains
given in input 2, and a conjecture is a weakest one if
there is no other conjecture that is properly entailed
by it. If the optional theorem prover in input 4 is giv-
en, it is used to check entailment. Otherwise, entail-
ment is decided using all models that can be con-
structed using the domains given in input 2. If no
theorem prover is given, then the weakest conjec-
tures thus generated may be too strong, and the sys-
tem may miss some possible conjectures. For exam-
ple, if conjecture A implies another conjecture B in
all constructed models, A will be pruned. However, it
may well be possible that A does not entail B in gen-
eral.

I will illustrate this algorithm by showing how two
of our earlier systems — one for discovering state
invariants in planning, and the other on discovering
theorems about pure Nash equilibria — can be cast in
this general framework.

Discovering State Invariants in
Dynamic Systems

The state of a dynamic system can change according
to some natural events or as a result of some actions
done by agents. However, there are some properties
— for example, that at any given time an object can
be at only one location — that will persist no matter
what. These properties are called state invariants and
they are useful in planning for pruning search spaces.
In fact, several systems have been designed specifi-
cally for learning state constraints (Huang, Selman,
and Kautz 2000; Gerevini and Schubert 1998).

To make learning state invariants a theorem dis-
covery problem, we need to make precise the notion
of state invariants, as well as to formalize the given
planning domain.

A dynamic system consists of states and the tran-
sitions between states. A planning domain is like a
dynamic system, but typically with states described
by a logic language and transitions by actions. In my
paper on state invariants (Lin 2004), I start with a
domain language to describe states and extend it
with actions. Briefly, states are models of a first-order
language called a domain language. As usual, proposi-
tions in the domain language whose truth values can

be changed by actions are called fluents. To formalize
the effects of actions, we extend the domain lan-
guage with a special sort action. For each predicate in
the domain language, we introduce a new predicate
with the same name but with an extra argument of
sort action. Intuitively, if p is a fluent, and a an
action, then p(a) denotes the truth value of p after a
is successfully performed in the current state. I call
these new predicates successor state predicates. For
instance, if clear is a fluent, then we write clear(x) to
mean that block x is clear in the given initial state
and we write clear(x, unstack(x, y)) to mean that x is
clear in the successor situation of doing unstack(x, y)
in the initial state. I also assume a special unary pred-
icate, Poss, to denote the action precondition. Thus,
Poss(unstack(x, y)) will stand for the precondition of
doing unstack(x, y).

So formally, an action theory is a family of first-
order theories {TA | A is an action type}, where for
each action type A, TA consists of the following
axioms:

An action precondition axiom of the form

(1)
where Ѱ is a formula in the domain language
whose free variables are in x. (Thus Ѱ cannot
mention Poss and any successor state predicates.)

For each domain predicate F, an axiom of the form

(2)
where x and y do not share common variables,
and ΦF is a formula in the domain language
whose free variables are from x and y.

Example 1
In the blocks world, for the action type stack, we have
the following axioms (all free variables below are uni-
versally quantified from outside):

Poss(stack(x, y)) ≡ holding(x) ∧ clear(y),
on(x, y, stack(u, v)) ≡ (x = u ∧ y = v) ∨ on(x, y),
ontable(x, stack(u, v)) ≡ ontable(x),
handempty(stack(u, v)) ≡ true,
holding(x, stack(u, v)) ≡ false,
clear(x, stack(u, v)) ≡ clear(x) ∧ x ≠ v.

The following definition captures the intuition
that a state invariant is a formula that if true initial-
ly, will continue to be true after the successful com-
pletion of every possible action.

Definition 1
Given an action theory {TA | A is an action type}, a
formula W in the domain language is a state invari-
ant if for each action type A,

(3)

where W(A(y)) is the result of replacing each atom
F(t) in W by F(t, A(y)), and ⊨ is the logical entailment
in first-order logic.

Thus, the problem of discovering and learning
state invariants becomes a problem of discovering
theorems of the form (equation 3). Based on this set-

!x.Poss(A(x)) " #,

(!x,y).F(x, A(y)) " #F (x,y),

TA |=!y.W " Poss(A(y))#W(A(y)),

up, I described a system (Lin 2004) for discovering
various types of state invariants in planning domains
such as functional constraints, type constraints, and
domain closure constraints. The system performs
remarkably well for almost all known benchmark
planning domains. For instance, for the popular
logistics domain, it returns a complete set of state
invariants in the sense that a state is “legal” if it sat-
isfies all the constraints.

In terms of the general algorithm outlined in the
last section, to discover state invariants in a planning
domain, the required inputs are as follows:

Language: domain language extended with actions.

Sets of objects: for each sort, sets of up to a small num-
ber, say three, objects.

Model confirmation: given an interpretation M for the
domain language, and a sentence φ in domain lan-
guage, M confirms φ if for every action A, when M is
extended to be a model of TA, it satisfies ∀y.φ ∧
Poss(A(y)) ⊃ φ(A(y)). In other words, φ is a state invari-
ant in M according to equation 3.

Space of hypotheses:

Functional constraints: sentences of the form

Type constraints: sentences of the form

Domain closure constraints: these constraints
say that certain objects must belong to one of the
predefined categories, for example, a package
needs to be either at a location or inside a vehi-
cle.

A precise definition of these constraints can be
found in Lin (2004).

A theorem in Lin (2004) shows that a theorem
prover is often not needed, as it can be replaced by
model checking. For many action theories and for
most of the constraints considered here, once a con-
straint is confirmed by all models up to a certain
finite size, it is guaranteed to be a state invariant. A
similar, but simpler theorem is given in the next sec-
tion in the context of discovering theorems in game
theory.

Two-Person Games
As another example of machine theorem discovery,
consider the problem of finding conditions under
which a two-person game has a unique pure Nash
equilibria payoff. The key idea again is to formulate
the background theory and the hypotheses in first-
order logic. This was the joint work I undertook with
Pingzhong Tang (Tang and Lin 2011a).

A two-person game is a tuple (A, B, ≤1, ≤2), where
A and B are sets of (pure) strategies of players 1 and

!x, y1, y2.at(x, y1)"at(x, y2)#

y1 = y2.

!x, y.at(x, y)"

package(x)#vehicle(x)[]$ location(y).

2, respectively, and ≤1 and ≤2 are total orders on A ⨉
B, called preference relations for players 1 and 2,
respectively.

For each b ∊ B, the set of best responses by player 1
to the action b by player 2 is defined as follows:

Similarly, for each a ∊ A, the set of best responses by
player 2 is:

A profile (a, b) ∊ A ⨉ B is a (pure-strategy) Nash
equilibrium if both a ∊ B1(b) and b ∊ B2(a). A game
can have one, more than one, or no Nash equilibria.
Properties of pure Nash equilibria have been studied
extensively. For instance, if a game is strictly com-
petitive (Friedman 1983; Moulin 1976), then it has a
unique Nash equilibria payoff in the sense that if
both s and sʹ are Nash equilibria of the game, then
the payoffs for them are the same for each player,
that is, s ≤i sʹ and sʹ ≤i s for i = 1, 2. This outcome is
also true for weakly unilaterally competitive games
(Kats and Thisse 1992). It is also known that ordinal
potential games (Topkis 1998) and super-modular
games (Monderer and Shapley 1996) always have
Nash equilibria.

I now show how two-person games and some key
notions about them can be formulated in first-order
logic.

Consider a first-order language with two sorts, α
and β. Sort α is for player 1’s actions, and β for play-
er 2’s actions. In the following, I use variables x, x1,
x2, .. to range over α, and y, y1, y2, ... to range over β.
The players’ preferences are represented by two infix
predicates ≤1 and ≤2 of the type (α, β) ⨉ (α, β). Giv-
en that the preferences are total orders, these two
predicates need to satisfy the following axioms (all
free variables in a displayed formula are assumed to
be universally quantified from outside):

(4)

(5)

(6)

where i = 1, 2. In the following, I denote by Σ the set
of these sentences. Thus, two-person games corre-
spond to first-order models of Σ, and two-person finite
games correspond to first-order finite models of Σ.

I write (x1, y1) <i (x2, y2) as shorthand for

and now the condition for a profile (ξ, ζ) to be a Nash
equilibrium is captured by the following formula:

(7)

B1(b) = {a | a ! A,

and for all a" ! A,(a",b) #1 (a,b)}.

B2(a) = {b | b ! B,

and for all b" ! B,(a,b") #2 (a,b)}.

(x,y) !i (x,y),

(x1,y1) !i (x2 ,y2)"(x2 ,y2) !i (x1,y1),

(x1, y1) !i (x2 , y2)"(x2 , y2) !i (x3, y3)#

(x1,y1) !i (x3,y3),

(x1,y1) !i (x2 ,y2)"¬(x2 ,y2) !i (x1,y1),

!x.(x,!) "1 (" ,!)#!y.(! ,y) "2 (! ,")

Articles

56 AI MAGAZINE

In the following, I shall denote the above formula by
NE(ξ, ζ). The following sentence expresses the
uniqueness of Nash equilibria payoff:

(8)

where for i = 1, 2, (x1, y1) ≃i (x2, y2) is shorthand for

A game is strictly competitive if it satisfies the fol-
lowing property:

(9)

Thus, it should follow that

(10)

Notice that I have assumed that all free variables in a
displayed formula are universally quantified from
outside. Thus, formula 9 is a sentence of the form∀x1, x2, y1, y2 φ. Similarly for formula 8.

Thus, to discover conditions Q for a game to have
unique Nash equilibria payoff is to discover theorems
of the form Σ ⊨ Q ⊃ (8). Of course, there are an infi-
nite number of such theorems, so practically speak-
ing, we have to restrict the type of conditions we
want a program to search for. A good starting point
is to try prenex formulas Q of the following form:

where Q0 does not mention any quantifiers. A theo-
rem from Lin (2007) says that such Q is a sufficient
condition for the uniqueness of Nash equilibria iff it
is so for all games of sizes up to (|x1| + 2) ⨉ (|y1| + 2),
and it is a sufficient condition for the nonexistence
of Nash equilibria iff it is so for all games of sizes up
to (|x1|+1) ⨉ (|y1|+1). Effectively, this reduces theo-
rem proving such as showing Σ ⊨ Q ⊃ (8) to finite
model checking.

This also holds for many specialized games, such as
the class of strict games: a game is strict if for both
players, different profiles have different payoffs, that
is, (a, b) = (aʹ, b΄) whenever (a, b) ≤i (al, bl), and (aʹ, bʹ)≤i (a, b), where i = 1, 2.

Based on this axiomatization of two-person games,
we wrote a computer program (Tang and Lin 2011a)
that generates many interesting theorems. It redis-
covers Kats and Thisse’s class of weakly unilaterally
competitive games that correspond to the following
condition:

It also returns some very strong conditions for strict
two-person games to have unique Nash equilibrium,
and led to some new theorems (Tang and Lin 2011b).

Again, this work can be easily cast into the gener-
al algorithm given earlier. The inputs can be
described as follows:

NE(x1, y1)!NE(x2 , y2)"

(x1,y1) ;1 (x2 ,y2)!(x1,y1) ;2 (x2 ,y2),

(x1, y1) !i (x2 , y2)"(x2 , y2) !i (x1, y1).

(x1, y1) !1 (x2 , y2) " (x2 , y2) !2 (x1, y1).

! |= 9() " 8().

!x1!y1"x2"y2Q0

(x1,y) !1 (x2 ,y)" (x2 ,y) !2 (x1,y)#

(x,y1) !2 (x,y2)" (x,y2) !1(x,y1).

Sorts: α and β.

Predicates: ≤1 and ≤2, both of type (α, β) ⨉ (α, β).

Collection of domains: just two elements for each sort,
so for both sorts, their domains are D = {1, 2}.

Confirmation relation: a model is an interpretation in
D ⨉ D that satisfies Σ, and a model confirms

a hypothesis φ if either sentence φ is not true in the
model or the game corresponding to the model

has a unique Nash equilibria payoff. In other words, M⊨ φ ⊃ (8).

Theorem prover: there is no need for a separate theo-
rem prover for the hypotheses defined next. In this
case, checking all models up to a certain size is suffi-
cient.

Hypotheses: conjunctions of binary clauses.

Computer Program Verification
Computer program verification is a perfect applica-
tion domain for machine theorem discovery. It is a
very difficult but important problem given how cru-
cial it is to have reliable software these days. It is also
closely related to logic and theorem proving. There
has been much work about it in software engineering
and formal methods. An example system is Facebook
infer1, a formal program analyzer initially developed
by Monoidics in London and acquired by Facebook
in 2013. It’s said that all Facebook software has to go
through infer before being released. Infer is based on
separation logic (Reynolds 2002), an extension of
Hoare’s logic for reasoning about mutable data struc-
tures like pointers.

My colleagues and I are currently working on pro-
gram verification based on a translation from pro-
grams to first-order logic that I proposed recently (Lin
2016). We have implemented a prototype system for
programs with integer operations (Rajkhowa and Lin
2017). It makes use of off-the-shelf tools such as alge-
braic simplification system SymPy2 and the SMT
solver Z3 (de Moura and Bjorner 2012), and can
already verify many nontrivial programs without
user-provided loop invariants. It can also be extend-
ed to handle more complex data structures. In fact, it
can easily be extended to handle arrays, and a ver-
sion of it finished second in the array subcategory of
the 2018 SV-COMP competition.3

However, to be able to handle more difficult pro-
grams, we need to have more effective proof strate-
gies and this is where machine theorem discovery
comes in. Consider the verification problem in a
recent SV-COMP competition,4 displayed in figure 2.

Effectively, our system (Rajkhowa and Lin 2017)
will translate it into the problem of proving

under axioms:

a7(N1) + b7(N1) = 3!N

Articles

SUMMER 2018 57

where N1 is a natural number constant denoting the
number of times the loop is executed before exiting;
N the initial value of program variable ;, f(n) an inte-
ger value function representing the nondeterminis-
tic function __VERIFIER_nondet_int() in the program;
ite(c, e1, e2) the conditional expression “if c then e1
else e2”; and ∀n ranges over natural numbers.

SMT solvers like Z3 (de Moura and Bjorner 2012)
cannot prove this directly, but can be used to prove
it from the following more general theorem:

which can be proved by simple induction. The chal-
lenge is, of course, to formulate a space of hypothe-
ses so lemmas like this can be discovered. I hope to
have results to report on this in the near future.

Concluding Remarks
Theorem proving and theorem discovery are tradi-
tionally the job of mathematicians and theoreticians.

0 ! N !1000000,

"n.a7(n+1) = ite(f (n) > 0,a7(n)+1,a7(n)+2),

"n.b7((n+ 1)) = ite(f (n) > 0, b7(n) + 2, b7(n) + 1),

a7 0() = 0,

b7 0() = 0,

N1# N ,

"n.n < N1$ n < N ,

!n.a7(n)+ b7(n) = 3"n,

Engineers just make use of discovered theories and
theorems. However, in computer science at least,
many “engineering” problems such as finding a plan
to achieve a goal or writing an error-free program can
be formulated as theorem proving, and one message
of this article is that once a problem is formulated
this way, machine theorem discovery becomes a part
of the problem.

One may argue that machine theorem discovery is
a type of machine learning. This depends on how
broadly one defines machine learning. What should
be clear is that machine theorem discovery is con-
ceptually different from current machine learning
problems. However, this does not mean that current
machine learning techniques cannot be used to dis-
cover theorems. For example, to discover a closed-
form formula W(n) to make

true for all n, one can generate as many data as one
needs — W(0) = 0, W(1) = 1, W(2) = 5, and so on —
and then use a supervised learning algorithm to
“learn” W(n). However, this is not likely to work
unless the target function W(n) is very simple. It is
clear that machine theorem discovery requires new
tools and techniques. This is a rich area with many
potential applications. I hope to have more results to
report soon.

Acknowledgments
Foremost, I want to thank Yin Chen with whom I
have collaborated on theorem discovery in logic pro-
gramming, and Pingzhong Tang with whom I’ve col-
laborated on game theory. In particular, the work
that I described above on two-person games was
done jointly with Pingzhong. I also thank my other
past and current collaborators on this project: Ning
Ding, Jianmin Ji, Pritom Rajkhowa, and Haodi
Zhang. I have also benefited from fruitful discussions
on topics related to this work with Mordecai Golin,
Jérôme Lang, Hector Levesque, Yidong Shen, Yisong
Wang, Mingsheng Ying, Jiahua You, Mingyi Zhang,
Yan Zhang, and Yi Zhou, among others.

Notes
1. fbinfer.com.

2. www.sympy.org/en/index.html.

3. sv-comp.sosy-lab.org/2018/.

4. v-comp.sosy-lab.org/2018/.

References
Brandl, F.; Brandt, F.; and Geist, C. 2016. Proving the Incom-
patibility of Efficiency and Strategyproofness via SMT Solv-
ing. In Proceedings of the 25th International Joint Conference
on Artificial Intelligence, 116–122. Palo Alto, CA: AAAI Press.

Brandl, F.; Brandt, F.; Geist, C.; and Hofbauer, J. 2015. Strate-
gic Abstention Based on Preference Extensions: Positive

0!i!n" i2 =W(n)

Articles

58 AI MAGAZINE

Figure 2. Verification Problem.

int i=0, a=0, b=0, n;

__VERIFIER_assume(n >= 0 && n <= 1000000);

while (i < n) {

if (__VERIFIER_nondet_int()) {

a = a + 1;

b = b + 2;

} else {

a = a + 2;

b = b + 1;

}

i = i + 1; }

__VERIFIER_assert(a + b == 3*n) ;

Results and Computer-Generated Impossibilities. In Pro-
ceedings of the 24th International Joint Conference on Artificial
Intelligence, 18–24. Palo Alto, CA: AAAI Press.

Brandt, F., and Geist, C. 2016. Finding Strategyproof Social
Choice Functions via SAT Solving. Journal of Artificial Intel-
ligence Research 55: 565–602.

de Moura, L., and Bjorner, N. 2012. The Z3 SMT Solver. In
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 337–340. Lecture Notes in
Computer Science 4963. Berlin: Springer.

Fajtlowicz, S. 1988. On Conjectures of Graffiti. Discrete
Mathematics 72(1–3): 113–118. doi.org/10.1016/0012-
365X(88)90199-9

Friedman, J. 1983. On Characterizing Equilibrium Points in
Two-Person Strictly Competitive Games. International Jour-
nal of Game Theory 12(4): 245–247. doi.org/10.1007/
BF01769094

Geist, C., and Endriss, U. 2011. Automated Search for
Impossibility Theorems in Social Choice Theory: Ranking
Sets of Objects. Journal of Artificial Intelligence Research 40:
143–174.

Gerevini, A., and Schubert, L. 1998. Inferring State Con-
straints for Domain-Independent Planning. In Proceedings of
the 15th National Conference on Artificial Intelligence, 905–
912. Menlo Park, CA: AAAI Press.

Hoare, C. 1969. An Axiomatic Basis for Computer Program-
ming. Communications of the ACM 12(10): 576–580.

Huang, Y.-C.; Selman, B.; and Kautz, H. A. 2000. Learning
Declarative Control Rules for Constraint-Based Planning. In
Proceedings of the 17th International Conference on Machine
Learning, 415–422. San Francisco: Morgan Kaufmann.

Kats, A., and Thisse, J. 1992. Unilaterally Competitive
Games. International Journal of Game Theory 21(3): 291–299.
doi.org/10.1007/BF01258280

Larson, C. E. 2005. A Survey of Research in Automated
Mathematical Conjecture-Making. In Graphs and Discovery,
297–318. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science 69. Providence, RI: American
Mathematical Society.

Larson, C. E., and Cleemput, N. V. 2016. Automated Con-
jecturing I: Fajtlowicz’s Dalmatian Heuristic Revisited. Arti-
ficial Intelligence 231: 17–38. doi.org/10.1016/j.artint.2015.
10.002

Larson, C. E., and Cleemput, N. V. 2017. Automated Con-
jecturing III: Property-Relations Conjectures. Annals of
Mathematics and Artificial Intelligence 81(3-4): 315–327.
doi.org/10.1007/s10472-017-9559-5

Lenat, D. B. 1979. On Automated Scientific Theory Forma-
tion: A Case Study Using the AM Program. In Machine Intel-
ligence 9, edited by J. Hayes, D. Michie, and L. I. Mikulich,
251–283. Chichester: Ellis Horwood

Lin, F. 2004. Discovering State Invariants. In Proceedings of
the Ninth International Conference on Principles of Knowledge
Representation and Reasoning, 536–544. Palo Alto, CA: AAAI
Press.

Lin, F. 2007. Finitely-Verifiable Classes of Sentences. In Log-
ical Formalizations of Commonsense Reasoning: Papers from the
2007 AAAI Spring Symposium. Technical Report SS-07-05.
Palo Alto, CA: AAAI Press.

Lin, F. 2016. A Formalization of Programs in First-Order Log-
ic with a Discrete Linear Order. Artificial Intelligence 235: 1–
25. doi.org/10.1016/j.artint.2016.01.014

Lin, F., and Chen, Y. 2007. Discovering Classes of Strongly
Equivalent Logic Programs. Journal of Artificial Intelligence
Research 28: 431–451.

Monderer, D., and Shapley, L. S. 1996. Potential Games.
Games and Economic Behavior 14(1): 124–143.
doi.org/10.1006/game.1996.0044

Moulin, H. 1976. Cooperation in Mixed Equilibrium. Math-
ematics of Operations Research 1(3): 273–286. doi.org/10.
1287/moor.1.3.273

Rajkhowa, P., and Lin, F. 2017. VIAP: Automated System for
Verifying Integer Assignment Programs with Loops. In 19th
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Reynolds, J. C. 2002. Separation Logic: A Logic for Shared
Mutable Data Structures. In Logic in Computer Science: Pro-
ceedings of 17th Annual IEEE Symposium, 55–74. Piscataway,
NJ: IEEE. doi.org/10.1109/LICS.2002.1029817

Tang, P., and Lin, F. 2009. Computer-Aided Proofs of Arrow’s
and Other Impossibility Theorems. Artificial Intelligence
173(11): 1041–1053. doi.org/10.1016/j.artint.2009.02.005

Tang, P., and Lin, F. 2011a. Discovering Theorems in Game
Theory: Two-Person Games with Unique Pure Nash Equi-
librium Payoffs. Artificial Intelligence 175(14–15): 2010–
2020. doi.org/10.1016/j.artint.2011.07.001

Tang, P., and Lin, F. 2011b. Two Equivalence Results for
Two-Person Strict Games. Games and Economic Behavior
71(2):479–486. doi.org/10.1016/j.geb.2010.04.007

Topkis, D. 1998. Supermodularity and Complementarity.
Princeton, NJ: Princeton University Press.

Wang, H. 1960. Toward Mechanical Mathematics. IBM Jour-
nal of Research and Development 4(1): 22–22.
doi.org/10.1147/rd.41.0002

Fangzhen Lin (PhD, Stanford University) is a professor of
computer science at the Hong Kong University of Science
and Technology. He is an AAAI fellow.

Articles

SUMMER 2018 59

