
When we were invited to write a retrospective article
about our 1999 AAAI conference paper on mutual
bootstrapping (Riloff and Jones 1999), our first

reaction was hesitation because, well, that algorithm seems
old and clunky now. But upon reflection, we realized that
this early work shaped a great deal of subsequent work on
bootstrapped learning for natural language processing, both
by ourselves and others. So our second reaction was enthusi-
asm for the opportunity to think about the path from 1999
to 2018 and to share the lessons we’ve learned about boot-
strapped learning along the way.

This article begins with a brief history of related research
that preceded and inspired the mutual bootstrapping work, to
position it with respect to that period of time. We then
describe the general ideas and approach behind the mutual
bootstrapping algorithm. Next, we survey several types of
research that have followed and that share similar themes:
multiview learning, bootstrapped lexicon induction, and
bootstrapped pattern learning. Finally, we discuss some of the
general lessons that we have learned about bootstrapping
techniques for natural language processing (NLP) to offer guid-
ance to researchers and practitioners who may be interested in
exploring these types of techniques in their own work.
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Mutual Bootstrapping

Ellen Riloff, Rosie Jones

� This retrospective article discusses
the mutual bootstrapping technique for
weakly supervised learning of extraction
patterns and semantic lexicons from
unstructured text, originally published
in AAAI’99 (Riloff and Jones 1999). We
present an overview of the mutual boot-
strapping approach, describe related
research that has followed from the
original work, and discuss lessons
learned about bootstrapped learning for
natural language processing.



Background
The early 1990s marked a sea change in the natural
language processing community as statistical meth-
ods and machine learning techniques took hold of
imaginations and rapidly proliferated. Researchers
began collecting large text corpora, annotating data,
computing probabilities and statistical metrics, and
training machine learning classifiers. Research in
information extraction (IE) was a prime example of
the statistical revolution, as people enthusiastically
transitioned from systems built upon handcrafted
rules and patterns to systems that learned rules and
patterns from manually annotated data or hand-
crafted knowledge (for example, AutoSlog [Riloff
1993], PALKA [Kim and Moldovan 1993], CRYSTAL
[Soderland et al. 1995], LIEP [Huffman 1996], RAPI-
ER [Califf 1998], SRV [Freitag 1998], WHISK [Soder-
land 1999]).

The term extraction pattern was coined to describe
a lexico-syntactic context surrounding a noun phrase
(NP) that describes its relationship to an event, an
entity, or a concept. These patterns were originally
used for information extraction tasks related to
events. For example, some of the patterns generated
by AutoSlog for WEAPONS were <Subject> was hurled,
confiscated <DirectObject>, and explosion of <NP>,
where the WEAPON term (for example, “grenade”)
occurred in the bracketed position. This notation is
shorthand for the sake of readability, but the actual
patterns have to match a specific syntactic structure
based on a shallow parse of the sentence. For exam-
ple, the pattern <Subject> was hurled requires the
word hurled to be in a passive voice verb phrase, and
the subject of hurled is the extracted NP.

While AutoSlog learned from a manually annotat-
ed text collection, AutoSlog-TS (Riloff 1996) succeed-
ed AutoSlog as a weakly supervised extraction pattern
learner that required only (unannotated) relevant
and irrelevant documents as input. AutoSlog-TS
exhaustively generates a pattern to extract every NP
in the corpus, and then ranks the patterns based on
the strength of their association with the relevant
documents. In a final step, a human reviews the pat-
terns to assign types and ensure their integrity.

Although all of these methods required human
supervision in the form of annotated data, knowl-
edge, or manual review, the learned IE systems took
far less effort to build than the previous generation of
IE systems. Before these learning methods, IE system
developers would spend months, if not years, hand-
crafting rules and patterns, assessing their perform-
ance on individual documents through manual
observation, and continually refining them to
improve system performance. This process was
painstaking and time intensive, so the prospect of
automating the task was a welcome advance. The
proverbial knowledge-engineering bottleneck that
had plagued NLP systems was beginning to show
cracks.

In 1995, David Yarowsky published a seminal
paper about bootstrapped learning for word sense
disambiguation. This paper showed how a few seed
words could jumpstart a learning process that itera-
tively improved classification performance without
additional human supervision. This idea was utterly
captivating, offering the possibility of learning
semantic knowledge with just a tiny amount of
human input. Bootstrapped learning with only ini-
tial human seeding had the potential to finally shat-
ter the knowledge-engineering bottleneck.

Inspired by Yarowsky’s work, Ellen Riloff’s research
group began exploring bootstrapped learning to cre-
ate semantic dictionaries. For many NLP tasks, it is
important to know the semantic types of words, for
example that a dog is an ANIMAL, a sofa is FURNI-
TURE, and a truck is a VEHICLE. Of course, words
have richer semantics than this, but NLP systems
often lack even this basic semantic knowledge.
Around the same time, WordNet (Miller 1990) was
created as a lexical resource of English words and
their senses organized in a semantic hierarchy. Word-
Net quickly became a highly used resource, and still
is today. But information extraction systems typical-
ly focus on a specific domain, and general-purpose
resources are rarely sufficient for text processing in
specialized domains because of domain-specific ter-
minology and biases. The domain of veterinary med-
icine, to take one example, is characterized by med-
ical vocabulary (for example, diseases, symptoms,
drugs), idiosyncratic abbreviations (for example, abx
for antibiotics, pred for prednisone, dachsie for
dachsund), and atypical word senses (for example,
mix and cross commonly refer to animals, as in terri-
er/beagle cross) (Huang and Riloff 2010).

When an NLP system is being designed to process
texts in a specific topic area, then it is extremely ben-
eficial to have a semantic dictionary tailored for that
domain. One reason is that domain-specific vocabu-
lary is often missing from general resources. Another
reason is that the most common sense for a word in
general texts may be different from the dominant
sense of the word in a specific domain. For example,
a bat is nearly always an instrument in baseball arti-
cles, but often refers to a flying mammal in other
types of articles. Even familiar domains that fre-
quently appear in the news often have domain-spe-
cific vocabulary that cannot be adequately covered
by general-purpose resources. For example, sports
articles frequently mention sports teams, which
often have unique names such as Phillies, Lakers, or
Knicks, or they are named after other types of entities
such as animals (for example, Tigers, Eagles, Panthers).
As another example, news articles about terrorism
frequently mention terrorist organizations (for exam-
ple, ETA, FARC, FMLN) and numerous types of
weapons (for example, arms, AK-47, M-16).

The task of automatically creating domain-specific
semantic dictionaries is called semantic lexicon induc-
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tion. The early algorithms for bootstrapped semantic
lexicon induction exploited the observation that
semantically related nouns often co-occur in con-
junctions (for example, lions and tigers and bears), lists
(for example, lions, tigers, bears ...), appositives (for
example, stallions, male horses), and compound
nouns (for example, tuna fish). These bootstrapping
algorithms began with a few seed nouns for the
semantic category of interest and identified nouns
that co-occurred with the seeds, in close proximity or
in specific syntactic constructions (Riloff and Shep-
herd 1997; Roark and Charniak 1998). The resulting
dictionaries were far from perfect, but they showed
that bootstrapped learning of semantic dictionaries
was possible and that this approach was a promising
direction to pursue.

The mutual bootstrapping algorithm described in
the next section brought together these seemingly
different tasks of learning information extraction
patterns and learning semantic dictionaries. Mutual
bootstrapping showed that both types of knowledge
could be learned at the same time, and that doing so
was mutually beneficial.

Mutual Bootstrapping
The mutual bootstrapping algorithm in our 1999
AAAI conference paper hinged on two key ideas: (1)
words and contextual patterns can be used inde-
pendently to identify instances of a semantic catego-
ry, and (2) multiple knowledge sources can serve as
the foundation for bootstrapped learning when
played off each other. The process of simultaneously
learning two different types of knowledge by alter-
nately leveraging one type of knowledge to learn the
other was called mutual bootstrapping.

In our work, we identified two types of knowledge
that are often sufficient to identify the semantic cat-
egory of a noun phrase (NP) in context: (1) the head
noun of the NP itself, and (2) the context surround-
ing the NP. For example, consider the sentence: The
brown dog barked at the cat. We can infer that The
brown dog is an ANIMAL in two ways: (1) because we
know that the word dog commonly refers to ANI-
MALS, or (2) because barking is an action usually per-
formed by ANIMALS. Of course, there are exceptions,
for example a hot dog often refers to FOOD, and peo-
ple can also bark when they are angry. But either type
of knowledge, lexical or contextual, is usually suffi-
cient by itself to make a strong inference about the
meaning of a phrase in context.

Figure 1 illustrates the mutual bootstrapping learn-
ing process. The bootstrapping cycle begins with a
text corpus and a small set of manually defined seed
words for the targeted semantic category. For exam-
ple, suppose you want to learn words and patterns
for the semantic category DISEASE. The input would
consist of a large collection of texts that frequently
mention diseases and a small set of seed words that

refer to diseases, such as cholera, flu, listeria, measles,
and tuberculosis. The seed words are used as the initial
semantic lexicon, which is iteratively expanded dur-
ing the bootstrapping process.

The AutoSlog pattern generator (Riloff 1993) was
then applied to the text corpus in an exhaustive fash-
ion to produce an extraction pattern for literally
every noun phrase (NP) in the corpus. This process
produces an enormous set of patterns paired with the
NPs that they extract, which collectively represent all
of the noun phrase contexts in the corpus. The mutu-
al bootstrapping algorithm uses this data, along with
the initial semantic lexicon, both to induce a pattern
dictionary for the semantic category and to grow the
semantic lexicon. The learning process has two alter-
nating steps. First, all of the patterns are scored based
on their strength of association with the terms in the
semantic lexicon (for details, see Riloff and Jones
1999). The highest-scoring pattern is added to the
pattern dictionary. Second, in a leap of faith, all of
the NPs extracted by the newly added pattern are
assumed to belong to the targeted semantic category
and their head nouns are added to the semantic lex-
icon. The process then iterates: all of the patterns are
rescored based on the expanded semantic lexicon, a
new pattern is selected and added to the pattern dic-
tionary, its extracted head nouns are added to the
lexicon, and so on.

To return to figure 1, imagine that the pattern
infected with <NP> is the highest-scoring pattern
because many of the seed terms occur in that con-
text. This pattern would be added to the pattern dic-
tionary, and the head nouns of all NPs that occurred
in this pattern context are assumed to be DISEASES
and added to the semantic lexicon. In the example,
the newly added terms would be ebola, malaria,
plague, pneumonia, and tularemia. The expanded
semantic lexicon then serves as a larger set of seed
terms for the next iteration of bootstrapping.

While this approach worked well in many cases,
one problem was the leap of faith that all NPs extract-
ed by a pattern belong to the same semantic catego-
ry. Even when strongly associated with a category,
contextual patterns can co-occur with NPs of differ-
ent semantic categories because very few contexts
occur with a single semantic category 100 percent of
the time. Occasional incorrect lexicon entries typi-
cally will not change the course of bootstrapping
very much, especially if the errors are distributed
across different competing categories (that is, if the
errors represent a variety of different semantic class-
es). But a serious problem exists when many incor-
rect lexicon entries belong to the same (incorrect)
semantic class. This phenomenon arises when some
contexts systematically occur with multiple seman-
tic categories. For example, locations and temporal
expressions both frequently occur with event phras-
es and the preposition in or on, such as happened in
(Boston/November) and occurred on (Wall Street/Mon-



day). As another example, weapons, people, and nat-
ural disasters frequently occur in expressions that
describe the cause of injuries or damage, such as a
(grenade/sniper) killed three people or a (bomb/tornado)
caused massive damage.

To address this problem, we added a second layer
of bootstrapping, called meta-bootstrapping. After the
mutual bootstrapping process completed, the learned
lexicon entries were reevaluated and only the five
most trusted entries were retained. The mutual boot-
strapping process was then restarted using the five
new category members as additional seed words. The
criteria for reevaluating the lexicon entries was based
on the number of different patterns that occurred
with the term.

The meta-bootstrapping solution was a bit ad hoc
and it was expensive because the learning process
now involved nested bootstrapping processes. Since
then, better solutions have been found that induce
semantic dictionaries based on multiple contextual
patterns, rather than a single pattern, and that can
detect semantic drift during bootstrapping. Never-
theless, the mutual bootstrapping idea at the heart of
this work has proven to be useful in a variety of sub-

sequent research efforts, including research on
semantic lexicon induction and other tasks, as we
discuss in the next section.

Subsequent Work
In the years since our mutual bootstrapping paper, a
wide variety of related research has appeared. Here,
we present a brief overview of some of the most
closely related work that has emerged, with the
caveat that this summary aims to highlight different
avenues of follow-on work and as such, it is not
intended to be a comprehensive literature survey.

Learning with Multiple Views
An important aspect of the mutual bootstrapping
algorithm is that it uses two facets of the data, the
noun phrases and their contexts, to learn from a
small initial set of seeds. The idea of learning from
multiple knowledge sources also arose contempora-
neously in Collins and Singer’s (1999) work on boot-
strapped learning for named entity recognition and
in Blum and Mitchell’s (1998) work on cotraining.
Collins and Singer’s procedure for named entity
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Figure 1: The Mutual Bootstrapping Process.
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recognition (NER) is an iterative learning process that
exploits the same types of dual knowledge sources as
the mutual bootstrapping algorithm did. Specifically,
their NER system learned by exploiting the fact that
named entities can often be classified into types
based on (1) the presence of specific words in the
phrase (for example, Contains(X, “Mr.”) ⇒ PER-
SON(X)) or (2) the context surrounding the phrase
(for example, “CEO of <X>” ⇒ ORGANIZATION(X)).
However, their work focused on learning a classifier
to assign types to named entities in context, while
the mutual bootstrapping work produced two dic-
tionaries, a semantic lexicon and a set of patterns.

For the document classification task, cotraining
(Blum and Mitchell 1998) used two different classi-
fiers to train each another, starting from a few seed
training instances, based on the observation that
classifiers capturing different views of the data tend
to be complementary and make independent errors.
Under independence assumptions, strong perform-
ance guarantees can be provided for this algorithm.
Cotraining was later used for semantic lexicon induc-
tion by capturing multiple views based on different
types of syntactic constructions (Phillips and Riloff
2002). More recently, Mitchell et al. (2015) extended
the cotraining insight to include large numbers of
different learning tasks, whose complementary
natures help improve precision and prevent seman-
tic drift. Other lines of work have examined the
mutual learning of relations and the concepts that fill
those relations (for example, Bing et al. [2017]).

It is tempting to use self-training algorithms,
which train a classifier from a small set of initial data,
apply the classifier to unlabeled data, and then
retrain themselves based on their predictions in an
iterative loop. However, Nigam and Ghani (2000)
showed that self-training, for example with expecta-
tion maximization (EM), does not always work with-
out the two complementary data views. In our expe-
rience, a typical self-training process will often
improve the recall of a classifier, but with a compara-
ble, or sometimes larger, drop in precision.

Bootstrapping Semantic Lexicons
The original mutual bootstrapping algorithm
hypothesized new category members based on a sin-
gle contextual pattern. This strategy was identified as
a source of errors that led to the addition of a second
layer of meta-bootstrapping to selectively choose the
best candidates from among the induced terms and
then restart the entire bootstrapping process.

For semantic lexicon induction, the immediate suc-
cessor to the mutual bootstrapping algorithm was
another bootstrapped learner called Basilisk (Thelen
and Riloff 2002). Basilisk introduced two new ideas
that improved the quality of lexicon induction: (1)
learning based on collective evidence over a set of
contextual patterns, and (2) learning multiple seman-
tic classes simultaneously. Rather then rely on a sin-

gle contextual pattern to generate category members
during bootstrapping, Basilisk identifies a set of con-
textual patterns that frequently co-occur with known
category members. All terms in these contexts are
considered as candidates for the lexicon. The candi-
dates are then scored based on all of the contexts in
which they occur, and the best candidates are added
to the lexicon. With the focus on an aggregate con-
textual profile, a term is selected as a category mem-
ber only if it consistently occurs in the same types of
contexts as known category members.1 Basilisk’s
bootstrapping process is depicted in figure 2.

The second novelty of Basilisk was the idea that
learning multiple semantic classes simultaneously
can help to constrain and steer the bootstrapping
process. Since the learning process is fully automatic
with no human feedback, bootstrapped learners can
easily stray from the original target concept. But if
you are willing to make the assumption that a term
can belong to only one semantic class, then learning
multiple semantic classes at the same time can pro-
vide much-needed guidance because terms learned
for one class serve as negative examples for the oth-
er classes. In general, words are highly polysemous in
natural language, so this assumption is usually not
valid. But the main motivation for bootstrapped
semantic lexicon induction was to enable the rapid
creation of semantic dictionaries for specialized
domains. Within the confines of a limited domain,
most words have a dominant meaning, so in this
context a one-sense-per-domain assumption is quite
reasonable. Basilisk uses this assumption to score
each pattern based on its co-occurrence with both
category members (positive examples) and noncate-
gory members (negative examples). The negative
examples help the learner recognize when it is drift-
ing into another category’s territory.

McIntosh and Curran (2008) later developed a
similar bootstrapped learner for semantic lexicon
induction called WMEB (Weighted Mutual Exclusion
Bootstrapping). Their goal was to generate semantic
lexicons for the biomedical domain for categories
such as cells, mutations, and tumors. Their work used
N-gram pattern contexts (specifically, 5-grams) to
avoid the need for syntactic analysis. Researchers
have observed that bootstrapped learners can be
prone to semantic drift (Komachi et al. 2008; McIn-
tosh and Curran 2009; Vyas and Pantel 2009), where
the terms learned for one category gradually drift
toward a different category. This drift can occur when
there is systematic polysemy of terms across two cat-
egories. For example, celestial bodies are often named
after Roman Gods (Vyas and Pantel 2009). As men-
tioned earlier, drift can also happen when certain
types of contexts systematically occur with multiple
semantic categories. McIntosh and Curran (2009)
devised a clever solution to proactively identify
semantic drift by comparing the distributional simi-
larity of new candidates both with recently learned
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terms and with terms learned in the early iterations
of bootstrapping. Candidates that are more similar to
recently learned terms than to earlier terms are like-
ly to have drifted.

Subsequent research has also recognized the value
of learning multiple categories during bootstrapping
as a source of negative feedback. McIntosh and Cur-
ran (2010) developed a method to automatically dis-
cover new semantic categories that can be beneficial
as negative examples during learning. Vyas and Pan-
tel (2009) also recognized the importance of identi-
fying negative classes in their work on set expansion.
They had a human manually identify errors and
automatically removed additional words that had
high distributional similarity with the errors, under
the hypothesis that they were likely to belong to the
same negative class. Learning multiple categories
simultaneously has also been shown to be useful as
counter-training for pattern learning (Yangarber
2003) and for cross-category learning in a boot-
strapped contextual semantic tagger (Huang and
Riloff 2010).

Bootstrapping New Types of Lexicons
Natural language processing systems need many

types of knowledge, and the same bootstrapped
learning mechanisms used to create semantic dic-
tionaries have proven to be beneficial for creating
other types of dictionaries as well.

In the years since the Basilisk algorithm was
developed for semantic lexicon induction, Basilisk
has been used to generate several novel types of lex-
icons. Given a seed list of subjective nouns, which
represent private states and opinionated language,
Basilisk learned to identify many new subjective
nouns to produce a subjectivity lexicon (Riloff,
Wiebe, and Wilson 2003; Wilson et al. 2005). Exam-
ples of the subjective nouns learned are barbarian,
atrocities, and exaggeration. For event extraction,
Basilisk learned to identify role-identifying nouns,
which are nouns whose semantics reveal the role of
an entity with respect to an event (Phillips and
Riloff 2007). For example, words such as assassin,
burglar, and sniper refer to people who participated
as the agent of an event, while casualty, fatality, and
victim refer to people who represent the patient of
an event.

For work on generating plot unit representations
(Goyal, Riloff, and Daumé III 2010, 2013), Basilisk
was used to identify patient polarity verbs (PPVs),
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Figure 2: The Basilisk Algorithm.
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which are verbs that affect their patients in positive
or negative ways. For example, being fed, paid, or
adopted are typically desirable events for the entities
that are acted upon, but being eaten, chased, or hos-
pitalized are usually undesirable events. Basilisk
learned to identify many PPVs using separate boot-
strapping processes to learn positive and negative
PPVs, given 10 manually defined examples of each.
The contextual patterns, however, were quite differ-
ent from the lexico-syntactic patterns used in previ-
ous Basilisk work. For the task of learning PPVs, con-
junction patterns were defined to exploit a previous
observation from sentiment analysis that conjunc-
tions usually join items with the same polarity
(Hatzivassiloglou and McKeown 1997). For example,
if rescued is known to be a positive verb, then seeing
the conjunction rescued and adopted should lead us to
believe that adopted is probably also a positive verb.

Research on sarcasm recognition by Riloff et al.
(2013) demonstrated that different types of lexicons
can be learned simultaneously if they co-occur in a
shared structure. This work used just one seed word,
love, as an example of a positive sentiment, and a col-
lection of tweets that contain a #sarcasm hashtag.
The key idea behind this work is that sarcasm often
emerges from the juxtaposition of a positive senti-
ment and a negative situation (for example, I love
being ignored or I just adore waiting for the doctor). Giv-
en a sarcastic tweet that has a positive sentiment (for
example, love), we can infer that the target of the sen-
timent is probably a negative situation. Conversely,
given a sarcastic tweet that mentions a negative situ-
ation (for example, being ignored), we can infer that
the sentiment is probably positive. Using these dual
sources of knowledge in an alternating bootstrapping
cycle, the system learned lists of positive sentiments
and negative situations simultaneously.

These research efforts illustrate the flexibility and
generality of bootstrapped lexicon induction. Given
different types of seed words, patterns, and corpora,
this paradigm can be used to learn many different
kinds of knowledge.

Bootstrapped Pattern Learning
Bootstrapping has also been used to learn patterns
in several novel ways. The Ex-Disco system (Yangar-
ber et al. 2000) added a bootstrapping mechanism
around a pattern learner modeled after AutoSlog-TS,
which used relevant and irrelevant texts for train-
ing. Ex-Disco used a small set of manually defined
seed patterns to heuristically partition a collection
of unannotated texts into relevant and irrelevant
sets. Patterns were then ranked based on their asso-
ciation with the relevant texts, the best pattern(s)
were added to the pattern set, and the corpus was
repartitioned into new relevant and irrelevant sets
for the next iteration. Stevenson and Greenwood
(2005) also began with seed patterns and used
semantic similarity measures to iteratively rank and

select new candidate patterns based on their simi-
larity to the seeds.

Riloff and Wiebe (2003) used a bootstrapping
mechanism to learn lexico-syntactic patterns that
represent subjective expressions. A novel aspect of
that work was the use of high-precision (but low-
recall) classifiers as the basis for seeding. Lukin and
Walker (2013) adopted a similar bootstrapping
approach to learn patterns associated with sarcasm
in dialogue. Recently, Gupta and Manning (2014)
used several types of unsupervised class predictors,
such as distributional similarity, to better estimate
the likelihood that an unlabeled term belongs to a
negative class during pattern scoring. They also
showed that incorporating distributed word repre-
sentations to enhance the training sets during learn-
ing can improve results (Gupta and Manning 2015).

Lessons Learned
Bootstrapped learning can seem like a black art to
people who do not yet have experience with it. But
many lessons have been learned by researchers who
work in this paradigm. In this section, we discuss
some of the most important (but often unspoken)
principles behind bootstrapped learning techniques,
extrapolating both from the literature and from our
own personal experiences.

Seeding Principles
In NLP, the paradigm of bootstrapped learning takes
human input in the form of seeding heuristics and
applies those heuristics to unannotated texts to pro-
duce labeled examples. The heuristically labeled data
is then used to train a learning algorithm, which
kicks off an iterative process.

Since the seeding heuristics are a proxy for manu-
ally labeled data, it is critical that they be able to
assign labels with reasonably high accuracy. Heuris-
tics will rarely be as accurate as human annotators,
but they can be applied automatically to large vol-
umes of unannotated text, yielding a potentially
enormous amount of labeled training data. The
expectation is that large volumes of slightly noisy
training data will be nearly as good as, or potentially
better than, presumably smaller amounts of “per-
fectly” labeled training data (which is typically avail-
able only in limited quantities). With this in mind,
we lay out three general principles for identifying
effective seeding heuristics: high frequency, high pre-
cision, and diversity.

High Frequency 
Simply put, you want the seeding heuristics to be
able to label as many examples as possible. The more
instances they label, the more training data the learn-
ing algorithm gets. Many people have observed that
using different seeds can produce dramatically dif-
ferent results (for example, McIntosh and Curran
2009). One of the reasons is that different seeds can
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result in vastly different amounts of labeled data.
Consequently, a learner trained with one set of seeds
may have, say, twice as much training data as a learn-
er trained with a different set of seeds. A common
mistake is for people to identify seeds by hand,
assuming that they know what the most frequent
words will be. Corpora are highly idiosyncratic, and
words that may often be common will not necessar-
ily be common in any particular text collection. Fur-
thermore, people can miss words that are extremely
common in the corpus and that could therefore be
valuable seeds. Looking at corpus statistics is the
most reliable way to know that your seeds are aligned
with your actual data. 

For lexicon induction, we typically follow a proce-
dure first suggested by Roark and Charniak (1998) to
ensure high-frequency seeding. To select seed words,
sort all of the candidates (for example, nouns) in the
unannotated text corpus by frequency. Then manu-
ally review the list, selecting the first (most frequent)
k words that belong to the category of interest. This
process ensures that the seeds will be highly frequent
in the corpus.

High Precision
The seeding heuristics are used to automatically label
data for training, so the accuracy of the heuristics
directly correlates with the quality of the training
data. Consequently, the heuristics should have high
precision. However, high precision can be at odds
with high frequency because there is often a trade-off
between precision and recall (that is, high-precision
rules are often low recall, and vice versa). Conse-
quently, it is sometimes difficult to identify seeding
heuristics that satisfy both the high-precision and
high-frequency goals. When forced to choose, high
precision is usually preferable for two reasons: (1) too
much noise in the training data can render it inef-
fective, and (2) low recall can often be compensated
for by increasing the size of the text corpus. Since
only unannotated texts are needed, obtaining more
texts is often feasible.

Diversity
The seeding heuristics should be able to label a
diverse set of examples, so as to produce labeled data
that is (reasonably) representative of the corpus as a
whole. If the seeding heuristics only label instances
that are highly similar, or if they have poor coverage
across subclasses, then the resulting data will be
strongly biased. Of course, by definition the labeled
instances will share whatever properties are selected
for by the seeding mechanism. But diversity can
often be achieved by defining seeding heuristics that
are not too specific and by using multiple seeding
heuristics that cover different parts of the search
space. It has been shown that if we characterize the
corpus in terms of connectivity of seeds and contexts
as a graph, then we should try to cover any sub-
graphs disconnected from the main graph (Jones
2004).

Seeding Mechanisms
Bootstrapped learning has been applied to a wide
variety of NLP tasks, using many types of seeding
strategies. Here we take a brief look at some of the
seeding mechanisms that have been used successful-
ly, to emphasize that bootstrapping can be initiated
in many different ways.

Seed words are a common form of seeding that has
been used for lexicon induction, pattern learning,
and word sense disambiguation (Yarowsky 1995).
Seed patterns have been used to identify relevant
contexts, for example to classify relevant and irrele-
vant texts for bootstrapped pattern learning (Yangar-
ber et al. 2000) and to identify relevant regions to
train a sentence classifier (Patwardhan and Riloff
2007). Seeding rules have been used for named entity
recognition and coreference resolution. Collins and
Singer (1999) heuristically labeled named entities to
create training data by defining rules such Con-
tains(X, “Mr.”) ⇒ PERSON(X). Bean and Riloff (2004)
used lexical and syntactic seeding rules to generate
labeled data for coreference resolution.

Another approach is to create an initial seeding
classifier that is applied to unlabeled texts to produce
an initial set of labeled instances, which are then
used as training data to jumpstart a bootstrapped
learning process. This scenario makes sense when it
is possible to easily construct a high-precision, but
potentially low-recall, classifier. This type of classifi-
er can initially label some instances with high accu-
racy, which the bootstrapping process can use to
learn new information. This approach has been used
for opinion analysis, to learn patterns representing
subjective expressions (Riloff and Wiebe 2003) and to
train subjective and objective sentence classifiers
without annotated data (Wiebe and Riloff 2005).

It is worth noting that distant supervision is also a
seeding method, although it is typically used to gen-
erate a large set of labeled data to train a supervised
learner in a single step. Distant supervision takes
advantage of an existing knowledge base (KB) to
heuristically label instances that correspond to data
found in the KB. For example, distant supervision has
been applied to relation extraction by identifying
pairs of entities listed in a knowledge base as having
a relation, and then heuristically labeling instances
of the entity pairs that appear in close proximity as
positive instances of the relation (Mintz et al. 2009).

Secondary Benefits of Bootstrapping
The primary benefit of bootstrapped learning is that
it eliminates the need for manually annotated train-
ing data, which is expensive and time consuming to
obtain. However, bootstrapping methods have sever-
al secondary benefits as well, which are often under-
appreciated.

First, bootstrapped learning allows for easier and
more freewheeling system design, development, and
experimentation. Since supervised learning depends
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on manually annotated data, system development
often must wait until annotated data has been col-
lected. And then, system developers are handcuffed
to that data set because it is the only available train-
ing data. In contrast, with bootstrapped learning sys-
tems, the only input consists of unannotated texts
for the domain and a seeding mechanism. Unanno-
tated text corpora are relatively easy to obtain, and
most seeding strategies are lightweight. As a result, it
is blissfully easy to try bootstrapped learning on dif-
ferent domains, text corpora, and tasks.

For example, suppose someone is interested in
semantic lexicon induction for a new domain. If the
person has an interest in creating an NLP system for
the domain, then they probably already have (or
know where to find) a large collection of texts for
that domain. Given the text corpus, the person needs
only to define a small number of seed terms for each
semantic category. A key question is what the ideal
set of semantic categories should be. That’s where the
benefits of the bootstrapping paradigm become
apparent. The developer can choose an initial set of
categories based on their domain knowledge and
define a small set of seed words for each one. This
process may take as little as an hour. Then the devel-
oper can apply the learning algorithm and inspect
the results. If new words are learned that clearly
belong to different categories, then new categories
can be added simply by defining a few seed words for
them. If some categories are behaving similarly, then
the developer may choose to merge categories to rep-
resent a higher-level concept. If the frequencies look
small, the developer can expand the size of the cor-
pus simply by obtaining more unannotated texts.
Furthermore, cross-resource experimentation is also
relatively straightforward. Experimenting with dif-
ferent text corpora and even languages (depending
on the task) can be as simple as replacing one text
collection with another and mapping the seeding
strategy onto the new resource. While these changes
may not be trivial, explorations like these are sub-
stantially easier in a bootstrapping paradigm than
they would be in a supervised learning paradigm that
requires manually annotated training data.

Another advantage of learning with seeding strate-
gies as opposed to manually annotated data is that
the former is typically easier for people to produce
than the latter. In natural language processing, man-
ually annotating texts can be deceptively difficult
because of issues pertaining to phrase boundaries,
edge cases (borderline concepts), and idiosyncratic
expressions. Given any set of natural language docu-
ments, many of these issues are likely to appear and
can be impossible to avoid. Overall, bootstrapped
learning offers many advantages, from the perspec-
tive of data requirements as well as research and sys-
tem development efforts.

Summary
Nineteen years after appearing in the AAAI’99 con-
ference, our paper continues to be cited. As we have
tried to show, we did not start the revolution alone,
but were part of a movement that has continued to
have an impact on research today.

It is difficult to believe that the long-term success
of natural language processing will rely on manually
annotated text corpora for every conceivable task,
domain, and language. Bootstrapping, weakly super-
vised learning, and distant labeling are important
tools for the future, especially as text corpora contin-
ue to grow in size, massive computing power
becomes increasingly available to support large-scale
text processing, and NLP applications are ever more
ubiquitous in everyday life.

There remain many open questions and research
avenues for future work, both within natural lan-
guage processing in general and for bootstrapped
learning methods in particular. Accuracies are still far
from perfect for many NLP tasks, and new applica-
tions for NLP are constantly emerging. Our hope is
that the next generation of researchers will continue
investigating and improving bootstrapping learning
methods for natural language processing and that
these techniques will play a major role in future NLP
technologies.

Notes
1. This is essentially a form of distributional similarity,
which has become a widely used NLP tool for empirical
semantic analysis.
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