
The Direct Labor Management System (DLMS) (Rychty-
ckyj 1999) was initially developed and deployed in Ford
Motor Company’s North American assembly plants

back in the early 1990s. It was recognized that an ontology
and a reasoner were required to represent the complex
knowledge in the manufacturing process. This was done by
creating an implementation of the KL-ONE language using
the LISP programming language and developing a classifier
that could reason with the ontology. This implementation
turned out to be extremely successful and became the pro-
duction version as the system was expanded to assembly
plants first in Europe and then the rest of the world.
Throughout this, the KL-ONE architecture remained in place
as the ontology was expanded and maintained through thou-
sands of updates.

As the semantic web architecture and standards were
developed, it became obvious that the Global Study Process
Allocation System (GSPAS) KL-ONE ontology would be much
more usable and of better value to Ford if it could be rewrit-
ten into OWL/RDF. An ontology based on modern semantic
web standards would be much easier to maintain and could
be extended and utilized for other applications in the com-
pany. The main issue was in terms of time and resources:
GSPAS was a production system with high value to the busi-
ness customers and it was impossible to spare the people to
redo the ontology and keep the existing system in produc-
tion. An alternative solution was needed and Ford found it by
partnering with the Indian Institute of Technology Madras
(IITM) in Chennai, India. Ford elected to partner with IITM
because the university has an excellent reputation with a
strong background in artificial intelligence (Khemani 2013),
and moreover, Ford wanted to develop a strong relationship
with the university.

The results of this project were very successful. The IITM
team delivered a reengineered OWL/RDF ontology that con-
tained the knowledge in the existing KL-ONE ontology. The
Ford team validated and updated the ontology to meet Ford’s
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n For more than 25 years Ford Motor
Company has been utilizing an AI-
based system to manage process plan-
ning for vehicle assembly at its assem-
bly plants around the world. The scope
of the AI system, known originally as
the Direct Labor Management System
and now as the Global Study Process
Allocation System (GSPAS), has
increased over the years to include addi-
tional functionality on ergonomics and
powertrain assembly (engines and
transmission plants). The knowledge
about Ford’s manufacturing processes is
contained in an ontology originally
developed using the KL-ONE represen-
tation language and methodology. To
preserve the viability of the GSPAS
ontology and to make it easily usable
for other applications within Ford, we
needed to reengineer and convert the
KL-ONE ontology into a semantic web
OWL/RDF format. In this article, we
will discuss the process by which we
reengineered the existing GSPAS KL-
ONE ontology and deployed semantic
web technology in our application.



requirements and has deployed the lexical ontology
into the GSPAS application. In the rest of the article
we will describe the structure and usage of the exist-
ing KL-ONE ontology, and then describe the conver-
sion approach and the conversion process.

In this article, we refer to the GSPAS KL-ONE ontol-
ogy as GSPAS KB or as GSPAS ontology or as KL-ONE
ontology, and refer to the reengineered GSPAS OWL
ontology as new ontology or as OWL ontology.

GSPAS and the KL-ONE Ontology
Ford’s DLMS was developed to standardize vehicle
assembly, improve efficiency, and reduce cost
throughout the entire manufacturing process plan-
ning system. DLMS was then integrated into Ford’s
Global Study Process Allocation System, which is cur-
rently used across all of Ford’s global vehicle assem-
bly and powertrain plants.

Artificial intelligence in GSPAS is used for several
different purposes: (1) Validate the correctness of
process sheets that describe assembly operations. (2)

Develop a list of operator work instructions and asso-
ciated MODAPTS (modular arrangement of predeter-
mined time standards) codes (Sullivan, Carey, and
Farrell 2001) for each assembly operation in the
process sheet. (3) Check the process sheet for
ergonomic concerns. (4) Translate the process sheets
into the language used at a particular assembly plant.

Figure 1 shows the architecture of the GSPAS AI
application. Figure 2 shows a sample process sheet
with five build steps and two tool specifications; at
such granularity, thousands of process sheets are used
to document the build steps for a whole vehicle. The
core of the GSPAS AI application is an ontology that
contains relevant knowledge about Ford’s manufac-
turing processes including the labor requirements for
the assembly operations, part and tooling informa-
tion, workplace ergonomic concerns, linguistic rep-
resentation of Standard Language (Rychtyckyj 2006)
and other concepts. Figure 3 shows how this ontol-
ogy is used to generate operator work instructions
and MODAPTS codes. Each build step in the process
sheet is parsed and transformed into a KL-ONE
description, which is then classified to find the
matching concepts in GSPAS KB. The matching con-
cepts provide meaning to a build step and also sup-
ply the necessary work steps and MODAPTS codes.

The ontology was developed inhouse using the KL-
ONE knowledge representation language and
includes a graphic user interface for ontology editing
as well as a classifier. The GSPAS ontology has been
updated frequently to keep in sync with all of the
changes that have occurred to Ford and the automo-
bile industry in general. The automotive business has
evolved dramatically and Ford itself bought and then
sold off companies such as Jaguar, Land Rover, and
Volvo. The manufacturing process, technology, and
tooling have all changed dramatically over the last
few years, and all of these changes needed to be
reflected in the GSPAS ontology. Technology and
parts for new products like electric and hybrid-elec-
tric vehicles, in-vehicle infotainment, and aluminum
bodies all became part of the Ford manufacturing
process and consequently needed to be added into
Standard Language and the GSPAS ontology. On the
other hand, different concepts in the ontology
became obsolete and were no longer needed.
Throughout the intervening years and all of the
changes, the KL-ONE ontology model and classifier
proved to be robust enough to support GSPAS and
Ford’s manufacturing plants.

Ford adapted the KL-ONE knowledge representa-
tion system during its initial development of DLMS.
There were no KL-ONE tools or editors available so
Ford built both a KL-ONE editor as well as the code
for classification and reasoning (Rychtyckyj 1994).
The knowledge base update module, an in-house
developed graphic user interface, allowed us to main-
tain the KL-ONE knowledge base and also performed
error checking as part of the update process.
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Figure 1. GSPAS AI Application.
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Figure 2. Process Sheet.

TITLE: ASSEMBLE IMMERSION HEATER TO ENGINE

10 OBTAIN ENGINE BLOCK HEATER ASSEMBLY FROM STOCK
20 LOOSEN HEATER ASSEMBLY TURNSCREW USING POWER TOOL
30 APPLY GREASE TO RUBBER O-RING AND CORE OPENING
40 INSERT HEATER ASSEMBLY INTO RIGHT REAR CORE PLUG HOSE
50 ALIGN SCREW HEAD TO TOP OF HEATER

TOOL 20 1 P AAPTCA TSEQ RT ANGLE NUTRUNNER
TOOL 30 1 C COMM TSEQ GREASE BRUSH
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The KL-ONE knowledge representation system
(Brachman and Schmolze 1985) was first developed
in the late 1970s. KL-ONE was selected for use on the
DLMS project because of its adaptability as well as the
power of the KL-ONE classification algorithm (Lipkis
1981).

The KL-ONE knowledge base as used in DLMS can
be described as a network of concepts with the gen-
eral concepts being closer to the root of the tree and
the more specific concepts being the leaves of the
tree. A concept in a KL-ONE knowledge base inherits
attributes from the nodes that subsume it. The pow-
er of the KL-ONE system lies in the classification
scheme. The system will place a new concept into its
appropriate place in the taxonomy by utilizing the
subsumption relation on the concept’s attributes. A
detailed description of the KL-ONE classification
scheme can be found in the papers by Lipkis (1981)
and Schmolze and Lipkis (1983).

The existing KL-ONE ontology proved to be very
robust and flexible as Ford made hundreds of
changes to it on an annual basis. Both the business
and the technology changed dramatically, but Ford
managed to keep the system fully functional as its
scope increased. However, it also became obvious
that the KL-ONE framework was limiting the useful-
ness of the GSPAS ontology. It was difficult to extract
and share knowledge with other applications because
custom code was needed. The graphic user interface
was rewritten several times as the application migrat-
ed to new platforms, and maintaining it was time
consuming. In the meantime semantic web technol-
ogy had matured to a point where it was certainly
feasible to move into this space. We had previously
explored using an automated learning approach to
reengineer our KL-ONE ontology, but the results
showed that the new ontology was not as intuitive
and understandable to users and developers.

Reengineering GSPAS into OWL
The goal is to reengineer the GSPAS ontology into an
OWL ontology that will preserve the existing rela-
tions and links. This reengineering involves ontology
translation, which maps GSPAS ontology to an OWL
ontology, and ontology modeling, which identifies a
design for the OWL ontology while resolving some
of the issues in the existing design.

GSPAS to OWL translation follows a four-layered
translation model (Corcho and Gómez-Pérez 2005,
Euzenat 2001) consisting of lexical, syntactic, seman-
tic, and pragmatic levels. This model covers all
aspects of ontology translation, including semantics
preservation, which is a key requirement that is not
always easy to satisfy.

In this model, the lexical and syntactic levels deal
with the translation of characters, words, values,
strings, and sentences between knowledge represen-
tation (KR) languages. The semantic level deals with

KR framework translation and semantics preserva-
tion. The pragmatic level deals with the choice of
modeling and encoding that relates to scalability,
maintainability, and ontology usage. For example, an
entity can be modeled as a class (red as a class of col-
or) or as an individual (red is a color). And a binary
relation can be modeled as a subclass relation (obtain
as a class of verb) or as a role restriction (obtain has
part-of-speech some verb) or as a role assertion (obtain
has part-of-speech verb). The choice is between stor-
ing information in the taxonomy versus storing it in
role links. Further, one can find attach application
data to classes, individuals, or roles; and interpret it
before or after building the taxonomy.

As shown in figure 4, our approach to reengineer-
ing (modeling and translation) starts with the study
phase and works through three levels of abstraction,
namely, framework, design, and ontology levels, and
finally, ends with the validation phase. We follow a
spiral development model, which makes several iter-
ations through the various phases. The framework-
mapping and design phases incorporate the semantic
and pragmatic aspects from the four-layered model.
The ontology conversion tool implements, among
other things, the lexical and syntactic translations.
The remainder of this section describes the various
phases in figure 4.

Study Phase
In this phase, the goal is to study the GSPAS and
OWL (Bechhofer et al. 2004) frameworks and the
GSPAS ontology and further understand the reengi-
neering problem and identify areas that need
improvement.

To accomplish this goal, the IITM team studied the
GSPAS, KL-ONE, Description Logics (DL), and OWL

Figure 3. Ontology Use Cases.
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frameworks, and with the help of the Ford team ana-
lyzed the GSPAS ontology. Then the IITM team devel-
oped a document that presented (1) their under-
standing of the KR frameworks, (2) a potential
mapping between GSPAS and OWL, (3) their under-
standing of the design, organization, and use cases of
GSPAS ontology, and (4) a high-level approach to
GSPAS ontology reengineering.

The Ford team then reviewed the understanding
document and worked with the IITM team to vali-
date their understanding of the ontology and to
address the questions and fill in the blanks where
needed.

Framework Mapping
An ontology describes terms in a domain and cap-
tures their association with other terms in that
domain. A structure-preserving transformation maps
each term and its associations and subsumptions
from a source ontology to a term with corresponding
associations and subsumptions in a target ontology,
and thereby preserves the semantics of these terms.

GSPAS implements a subset of KL-ONE that satis-
fies Ford’s AI needs. We worked with this subset
instead of the full KL-ONE. Accordingly, the goal of
framework mapping is to create a semantics-preserv-
ing mapping between GSPAS (a subset of KL-ONE)
and OWL frameworks. This mapping is created for
each of vocabulary, representation, and reasoning
components of these frameworks.

Vocabulary
GSPAS, KL-ONE, DL, and OWL frameworks, though
related, were developed by different groups across
space and time. This naturally led to the use of dif-
ferent names to refer to a given idea. Table 1 docu-
ments the various vocabularies and their correspon-
dences. It also shows the GSPAS features (un)
sup ported in other frameworks.

Representation
To encode knowledge, the GSPAS ontology uses two
kinds of concepts (primitive and defined) and two
concept-forming operators (value-restriction and
conjunctions), further, it uses classifiable attributes
(roles) to define value restrictions, and two kinds of
nonclassifiable attributes (nondefinitional roles) to
store application data, where one is inherited by sub-
classes and the other is noninheritable. In KL-ONE
and so in GSPAS, a primitive-concept provides neces-
sary conditions for membership, whereas a defined-
concept provides both necessary and sufficient con-
ditions for membership. And a value restriction
restricts all fillers of a role to a given type or concept,
and allows us to describe concepts based on these
restrictions, like things whose tires are slick. Consider
the statement, Formula One car has slick tires. If this is
taken to provide a necessary condition about F1 cars
(a primitive concept) then it states that tires of F1 car
are slick tires. Instead, if it is taken to provide both
necessary and sufficient condition about F1 cars (a
defined concept) then it states that tires of F1 car are
slick tires, and things whose tires are slick are F1 cars. In
short, the GSPAS KR language permits the following:

A ⊑ C (primitive concepts);  A ≡ C (defined concepts)

where A is any concept name, and C is a concept
forming expression which can be a concept-name or
a value-restriction or a conjunction, as shown below.
Here A1, A2 are concept names, R is role name, and
C1, C2 are concept forming expressions.

C → A1 C → (∀R.A2 ⊓ ∃R)     C → C1 ⊓ C2

Using this notation, we can describe F1-Car as a prim-
itive concept: F1-Car ⊑ Car ⊓ (∀tire.Slick-Tire ⊓ ∃tire),
which states that F1-Car is a car and all its tires are
slick tires and has some tires. See how the textual
description resembles the expression.

For a lossless translation, we have to map the
GSPAS KR language to OWL constructs that will pre-
serve the meaning of domain terms and their sub-
sumptions. One such mapping (table 2) is discussed
next.

First, the primitive concepts are mapped to partial
concepts in OWL and are encoded as subclass
axioms. And defined concepts are mapped to com-
plete concepts in OWL and are encoded as class-
equivalence axioms. Further, concept names and
concept conjunctions are mapped, respectively, to
class names and class intersections in OWL. These
four mappings are exact.

Next, GSPAS roles are mapped to object properties.
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Figure 4. Ontology Reengineering.

The figure shows the current and end states of the ontology, the inputs to
reengineering (solid line), and the various phases and deliverables (dashed
line).
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And nondefinitional attributes are mapped to anno-
tation properties. The inheritable nondefinitional
attributes (not supported in KL-ONE and OWL) are
modeled as annotation properties and the attribute
inheritance is handled in the application. These three
mappings are lossless, and the logical (roles and con-
cepts) versus nonlogical (annotation properties and
application data) separation remains intact.

Finally, GSPAS value restriction (∀R.A ⊓ ∃R), which
restricts all fillers of R to concept A, is remodeled as
existential restriction ∃R.A in the OWL ontology,
which restricts R to have some fillers from concept A
and, optionally, other fillers from other concepts. It is
our observation that, in the GSPAS ontology, con-
cepts that are best modeled using existential restric-
tion are modeled using value restriction.

Observe that (∀R.A ⊓ ∃R) is a subclass of ∃R.A, and
so, the existential restriction admits more models
than the corresponding value restriction. This is a
widening or relaxing transformation that preserves
subsumption structure (subclass or is-a relation). We

will justify this for both assertion and inference links.
Consider two value restrictions in figure 5, and

their translation given by is-a1 and is-a2. If is-a3 is
asserted in the GSPAS ontology then is-a4 will be
asserted during ontology conversion. By is-a3 and is-
a1 all individuals of (∀R.A2 ⊓ ∃R) will belong to ∃R.A1,
making is-a5 true. By similar argument, is-a2 and is-a4
also make is-a5 true. As a result, the asserted is-a4
agrees with the assertion is-a3 (figure 5).

The sufficient conditions for inferring is-a link
between a concept Sub and a concept Super is stated
in Lipkis (1981). Two of the relevant conditions are
(1) Each role of Super is modified by a role of Sub. (2)
Each value description of each role of Super subsumes
a value description of the corresponding role of Sub.
Accordingly, if A1 subsumes A2, then is-a3 will be
inferred, and correspondingly, is-a4 will be inferred
in OWL. Therefore is-a3 (be it an assertion or an infer-
ence) will have a corresponding is-a in the OWL
ontology, and thus subsumption links will be pre-
served.
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Table 1. Vocabulary Mapping.

 GSPAS KL-ONE DL OWL 

1 THING THING Top concept ‘T’ owl:Thing 

2 Concept Concept Concept Class 

3 Primitive Concept Primitive Concept Atomic Inclusion Partial Concept 

4 Generic Concept De!ned Concept De!nition Complete Concept 

5 Individual Individual Concept Individual Object 

6 Role Restriction Role Restriction Role Restriction Property Restriction 

7 Value Restriction Value Restriction Value Restriction Value Restricti 

8 Number Restriction Number Restriction Number Restriction Cardinality restriction 

9 Classi!able Attribute Role Role Object Property 

10 Nonde!nitional Attribute Nonde!nitional Role n/a Annotation Property 

11 Nonde!nitional Inheritable Attribute n/a n/a n/a 

12 Classi!er Classi!er Reasoner Reasoner 

Table 2. GSPAS KR Primitives (Modeling Elements) and Their OWL Translation.

*In DL expression, A is concept name; C, C1, C2 are concept forming expressions; R is role name.

 GSPAS KL-ONE DL* OWL 

1 Primitive Concept Primitive Concept A !  C rdfs:subClassOf 

2 Generic Concept De!ned Concept A "  C owl:equivalentClass 

3 Value Restriction (#R.A $  R) Value Restriction R.A owl:someValuesFrom 

4 Conjunction Conjunction C1 $  C2 owl:intersectionOf 

5 Classi!able Attribute Role Role owl:ObjectProperty 

6 Nonde!nitional Attribute Non-de!nitional Role n/a owl:AnnotationProperty 

7 Nonde!nitional Inheritable Attribute n/a n/a n/a 



Next, we offer three reasons for choosing existen-
tial restrictions over value restrictions: (1) Between
KL-ONE and OWL there is a paradigm shift. OWL
ontologies use variants of existential restriction to
model common use cases found in real-world ontolo-
gies. (2) It reduces the computational complexity of
the resulting ontology. (3) It tends to reduce the
number of base terms in the ontology. For example,
we can model car owners in two ways. First, using
value restriction a car owner is someone whose owns-
car role is filled only by cars (∀owns-car.Car ⊓ ∃owns-
car), and second, using existential restriction it is
someone whose owns role is filled with a car
(∃owns.Car). For ship owners, we get (∀owns-
ship.Ship ⊓ ∃owns-ship) and (∃owns.Ship), respec-
tively. The first model uses different roles to describe
different owner concepts, whereas the second model
uses just one role (owns) for that purpose.

In this section, we have presented a structure-pre-
serving mapping between GSPAS and OWL primi-
tives. Based on this mapping, the KR language of the
new OWL ontology is:

A ⊑ C A ≡ C
C → A1  C → ∃R.A2 C → C1 ⊓ C2

Reasoning
The GSPAS classifier, a derivative of the KL-ONE clas-
sifier (Lipkis 1981), uses structure matching to com-
pute subsumptions, whereas OWL reasoners use log-
ic-based tableau algorithms for this purpose. It is
known that structural subsumption is sound but
incomplete with respect to logical subsumption
(Baader et al. 2003); in fact, structure matching is
complete only for a small subset of OWL-DL (Khe-
mani 2013; Brachman and Levesque 2004); that is,
for a given knowledge base, logical subsumption will
find all inferences that structural subsumption can
find and possibly more. Moreover, the mapping from
GSPAS KR language to the new KR language preserves
subsumption links. Therefore, we conclude that each
subsumption link in the GSPAS ontology will have a
corresponding link in the OWL ontology. Further, a

GSPAS concept will be a subclass of the correspon-
ding OWL class.

Furthermore, the new OWL ontology allows
domain restriction, range restriction, and subroles:

domain(R) ⊑ A1 range(R) ⊑ A2 R ⊑ S

where R, S are role names, and A1, A2 are concept
names. Now, the profile of the new OWL ontology is
a subset of ℇℒ++ profile (Baader, Brandt, and Lutz
2008; Motik et al. 2012), which in turn is a subset of
OWL-DL profile. ℇℒ++ runs in polynomial time for
common reasoning tasks. We experimented with
other DL profiles and selected ℇℒ++ because it pro-
vides a good balance between expressiveness and per-
formance for the GSPAS ontology.

Ontology Design and Organization
The GSPAS ontology supports two use cases (figure 3):
to parse build-steps written in Standard Language,
and to interpret parsed build steps. As a result, there
are two sets of terms in the ontology — one that
describes words in the Standard Language and the
other that describes build steps, parts, tools, and so
on. All terms reside in a common namespace, and a
term is identified by its name (label).

Ontology Organization
Each term (concept, individual, role, or attribute) in
the new ontology is assigned a namespace, a label,
and a unique identifier. The unique identifier1 is gen-
erated from the namespace2 and label. Namespaces
have a hierarchical structure, which allows top-down
organization of the ontology to arbitrary depth.

The new ontology is divided into subject areas,
namely, language and manufacturing. Each subject
area is divided into smaller areas (like verbs, parts,
tools, and others), and so on to arbitrary depth. One
or more namespaces are used to organize a subject
area. Figure 6 shows the differences between the
GSPAS ontology and the new ontology.

Ontology Design
The various concept types, role types, and modeling
choices (like entity as concept versus individual,
binary relation as subclass-relation versus role versus
annotation property,  and others) and the various
hierarchies (lexical hierarchy, operations, parts, tools,
and others) in the GSPAS ontology are mostly stable
and are retained as such in the new ontology. We
reused the working parts of the design and remodeled
only the problematic cases. Here, we describe how
the new ontology models three interesting problems:
homonyms (one-spelling, many-meanings), syn-
onyms (many-spellings, one-meaning), and part-of-
speech information.

Homonyms
Terms in the GSPAS ontology reside in a single name-
space, and a term is identified by its name (label). As
a result, a term like HAMMER that occurs as a lexical
term, a tool, and an operation will have a single rep-
resentation overloaded with three meanings. Such
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Figure 5. Translation of Value Restriction.
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terms will cause interleaving of unrelated hierarchies
and produce spurious inferences. For example, given
that HAMMER is a TOOL and HAMMER is also an
OPERATION, if POWER-HAMMER is a HAMMER,
then POWER-HAMMER becomes a TOOL as well as
an OPERATION. The latter inference is spurious.

Homonyms can cause incorrect descriptions; for
example, a concept can be either primitive or defined;
if HAMMER as a tool is a primitive concept, and as an
operation it is a defined concept, then choosing either
type will lead to incorrect description.

Homonyms can also cause punning. OWL-DL
requires the identifiers of objects, classes, and prop-
erties to be mutually disjoint. Punning is the result of
violating this constraint. For example, prepositions
like USING and WITH occur as concepts in the lan-
guage ontology and as properties in the manufactur-
ing ontology.

The new ontology adopts the one term, one mean-
ing (OOM) principle, where a new term will carry
only one meaning. Therefore, each sense of a homo-
nym will be independently represented. Thus, HAM-
MER will split into three terms, each with a single
meaning and a distinct namespace.

lex:HAMMER   opr:HAMMER   tool:HAMMER

This solves the homonym problem. Now, homonyms
will have matching labels but different IRIs and will
not cause spurious inferences.

Synonyms
In the GSPAS ontology, name variations (like syn-
onyms, acronyms, abbreviations, misspellings,
regional variations, names given by external sources,
and others) are treated as synonyms (call them GSPAS
synonyms). GSPAS synonyms are stored as data val-
ues in the associated term and so the classifier does
not process them. The same approach is used in the
new ontology where GSPAS synonyms are stored in
OWL annotation property. Next, we present an alter-
native approach and give reasons for rejecting it.

GSPAS synonyms of classes and objects can be
modeled using the predefined properties owl:equiva-
lentClass and owl:sameAs, respectively. Now, GSPAS
synonyms become logical terms and the classifier will
process them. This has some side effects. First, we
cannot tell apart a term and its synonym because
both are first-class terms; this is not wrong, but the
synonym relation goes out of sight. Second, the syn-
onym relation is neither symmetric nor transitive,
but owl:equivalentClass and owl:sameAs are both
symmetric and transitive and so will induce spurious
synonym relationships. Third, the GSPAS synonyms
become new terms and may cause homonym prob-
lems. This can be solved at the expense of introduc-
ing spurious homonyms (matching labels but differ-
ent IRIs). For these reasons we reject this approach
and treat synonyms as data values.

Part-of-Speech Information
In GSPAS ontology, part-of-speech (POS) information

is modeled in two ways: POS tags (like noun, verb,
and others) appear as concepts in the taxonomy (so
words in Standard Language can specialize them),
and POS tags are stored as data values in a nondefin-
itional attribute. In the new ontology, we model POS
tags as concepts in the taxonomy. The tags stored in
the attributes are remodeled into the taxonomy by
creating suitable POS concepts and subsumption
links.

Ontology Conversion
HAMMER has three senses: As an OPERATION it
operates on an OBJECT restricted to HAMMERABLE
type, and as a TOOL its SIZE is restricted to HAM-
MER-SIZE. In the interest of space we will ignore the
lexical sense of HAMMER. 

HAMMER ⊑ OPERATION ⊓ TOOL ⊓
(∀OBJECT.HAMMERABLE ⊓ ∃OBJECT) ⊓
(∀SIZE.HAMMER-SIZE ⊓ ∃SIZE)

Conceptually, ontology conversion takes a GSPAS
term description and creates one or more new
descriptions after resolving homonyms and imple-
menting the various design choices. For the case of
hammer, our goal is to split its description into two
new descriptions:

HAMMERopr ⊑ OPERATIONopr ⊓∃OBJECTopr.HAMMERABLEobj
HAMMERtool ⊑ TOOLtool ⊓∃SIZEtool.HAMMER-SIZEtool

where each new term is assigned a single namespace
that is denoted by its subscript, the left side of a
description is a name, and the right side is an expres-
sion that refers to other term descriptions in the
ontology.

Technically, the GSPAS ontology conversion
reduces to the problem of assigning one or more
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Figure 6. Reengineered Ontology.
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namespaces to each name in a description and then
extracting new descriptions. The description of
HAMMER after namespace assignment is shown
below; from this, HAMMERopr and HAMMERtool will
be extracted after resolving namespace  ambiguity.

HAMMERopr,tool ⊑ OPERATIONopr,lex ⊓ TOOLtool,lex⊓
(∀OBJECTopr.HAMMERABLEobj ⊓ ∃OBJECTopr) ⊓

(∀SIZEtool.HAMMER-SIZEtool ⊓ ∃SIZEtool)

In the presence of namespace ambiguity, ontology
conversion becomes an inverse problem and so it has
several solutions. The corresponding forward prob-
lem is to recover the GSPAS ontology from the new
ontology, that is, drop the namespaces and merge the
descriptions. The conversion is lossless if the GSPAS
ontology can be fully recovered from the new ontol-
ogy. To choose the correct description of HAMMERo-

pr and HAMMERtool, we need a set of rules, also called
choice functions, that will depend on the list of
homonyms, list of namespaces, and the organization
of GSPAS ontology.

In what follows, we describe the conversion
process (figure 7) with the help of term-mapping
functions and choice functions. In figure 7, parent
denotes a named parent concept, role denotes a role
name, and filler denotes a value restriction (which is
a concept name). For the concept HAMMER, parents
are {OPERATION, TOOL}, roles are {OBJECT, SIZE},
and filler of OBJECT is {HAMMERABLE}. The term-
mapping functions track the link between GSPAS
terms and new terms: tof (target-of) maps a GSPAS

term to a set of new terms, and sof (source-of) maps a
new term to a GSPAS term.

tof(HAMMER) = {HAMMERopr, HAMMERtool}
sof(HAMMERopr) = HAMMER

The choice functions are used to resolve homonyms
and select admissible terms. Given a new concept,
chooseP takes candidate parents and returns the
admissible parents; similarly, chooseR takes candidate
roles and returns the admissible roles, and further,
chooseF returns the admissible fillers for a new con-
cept-role pair. Given HAMMERopr, chooseP takes
{OPERATIONopr, OPERATIONlex} and returns {OPER-
ATIONopr}, similarly, chooseR takes {OBJECTopr, SIZE-

tool} and returns {OBJECTopr}. Given HAMMERopr and
OBJECTopr, chooseF takes {HAMMERABLEobj} and
returns {HAMMERABLEobj}.

Ontology conversion creates new descriptions by
making several passes over the GSPAS ontology: (Step
A) it first creates new terms, with empty descriptions,
(Step B) then adds parents to the newly created terms,
(Step C) then adds roles, (Step D) and finally role
fillers (value restrictions). (See Listing 1.) 

Step A.
To create a new term we need a namespace and a
label. First, we identify the namespaces of the new
ontology then we assign GSPAS terms to namespaces.
Homonyms will show up in multiple namespaces.
Now, we create one new term for each GSPAS term
and its namespace combination, and we track this
association using sof and tof functions (listing one).
At this point we will have new terms with empty
descriptions; each new term will link to one GSPAS
term, and each GSPAS term will link to one or more
new terms. Use sof and tof to complete the rest of the
conversion process.

Step B.
To populate new parents, follow the edges 1, 2, 3, 4
in figure 7. For each new concept and its GSPAS par-
ent, fetch the candidate parents, if a GSPAS parent is
a homonym, it will return multiple candidates. Now,
select the admissible parents and add them to the
new concept (listing one).
Step C.
To populate new roles, follow the edges 1, 5, 6, 7 in
figure 7. For each new concept and its GSPAS role,
fetch the candidate roles, which will be a singleton
set because GSPAS roles have only one meaning.
Now, select the admissible role, and add it to the new
concept (listing one). Now, populate attributes in a
similar manner.

Step D.
To populate role fillers, continue from the previous
step and follow the edges 8, 9, 10 in figure 7. For a
GSPAS role and its GSPAS filler, fetch the candidate
fillers. Now, select the admissible fillers, and add it to
the new role in new concept (listing one). Add select-
ed fillers to new concept. Now populate attribute
fillers in a similar manner.
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Numbers indicate flow sequence. Nodes are sets; edges are functions. A dou-
ble arrowhead indicates a set valued input/output. The items to be com-
puted are in dashed lines.



At the end of step D, all term descriptions are com-
plete and we have a reengineered namespace-aware
ontology that is ready for lexical and syntactic trans-
lation.

In the conversion process, namespace assignment
and the choice functions are two important decision
points, and the remaining is routine processing. The
choice functions use a set of cascading rules to dis-
ambiguate terms. Given a concept and a set of can-
didate parents, chooseP returns the parents from the
concept’s namespace; otherwise it returns the parents
that have a preference to children from the concept’s
namespace, and otherwise it returns the candidate
set.

For each role, its namespace and the namespaces
in which it can be used are determined during the
design phase. Also, its domain and range are prede-
termined. Given a concept and a candidate role,
chooseR returns the role if it is admissible in that con-
cept’s namespace.

Given a concept, a role, and a set of candidate
fillers, chooseF filters the candidate list progressively
until only one candidate is left. First, it selects fillers
that are subtypes of the role’s range, next it selects
fillers from the concept’s namespace, and finally it
selects fillers from the role range’s namespace.

The choice functions and their rules were deter-
mined by profiling the GSPAS ontology and by exper-
imentation. These rules are specific to GSPAS ontol-
ogy, its design and organization, and the choice of
namespaces and homonyms. These rules were tuned
to the ontology instance that was used for final con-
version and testing.

Verification
Verification is done at three levels: framework level,
ontology level, and application level.

At the framework level, (1) we verified the correct-
ness of framework mapping (table 2) by first compar-
ing the asserted hierarchies of the new and GSPAS
ontologies, and then by comparing the respective
inferred hierarchies. The new asserted hierarchy had
four missing subsumption links (out of 12,600+
direct links); these were manually added to the OWL
ontology. Next, we manually compared the inferred
hierarchies; most of the hierarchy matched; there
were about 20 cases where a subconcept became
equivalent to its parent. These cases were manually
corrected in the new ontology. (2) Further, we veri-
fied the profile of the new ontology. We used Pellet
info tool to compute OWL and DL profiles of the new
ontology. It turned out to be OWL 2 EL and ℇℒ++ (see
table 4) as expected.

At the ontology level, (1) we verify that every
GSPAS term has a representation in the new ontology
and that every new term description is part of some
GSPAS term description. This is done by a reverse
transformation from the new ontology to GSPAS
ontology, by dropping the namespaces and merging

terms. We manually compared the two versions of
GSPAS ontology and found no significant differ-
ences. This verification alone does not establish the
validity of the new ontology, but checks whether the
conversion is lossless. It is a good first line of defense
and helps in accounting for terms in the new ontol-
ogy. (2) Further, we checked for the case of punning
using the Pellet lint tool, and found one violation,
which was fixed manually.

The application-level verification provides the
final validation of the new ontology. It is discussed
in the Deployment and Maintenance section.

Performance Testing
In the GSPAS ontology, all terms are modeled as con-
cepts, but primitive concepts that occur as leaves in
the taxonomy, and without any role restriction,
qualify as individuals. To explore alternate models of
GSPAS ontology, qualifying individuals in the part-
of-speech hierarchy and object hierarchy were mod-
eled as individuals.

We created five OWL ontologies from GSPAS
ontology (see table 3). Each differs in the number of
individuals it models. (1) LEX1 is the language ontol-
ogy where leaves are individuals. (2) ONT1 is the full
ontology where all terms are concepts. (3) ONT2 is
ONT1 with lexical leaves as individuals. (4) ONT3 is
ONT2 with object leaves as individuals. (5) ONT4 is
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Listing 1.

  // Step A: Create new terms. 
1  for each ns in Namespaces 
2     ns-terms = identify all terms that belong to ns 
3     for each term in ns-terms 
4        n-term = create-new-term(ns, term) 
5       sof (n-term) = term 
6       tof (term) = tof(term) ⋃ {n-term} 
 
  // Step B: Populate new parents. 
7  for each n-concept 
8     concept = sof(n-concept)       // 1 
9     for each parent of concept      // 2 
10        candidates = tof(parent)     // 3 
11        n-parents = chooseP(candidates)     // 4 
12        add n-parents to n-concept 
 
   // Step C: Populate new roles. 
13   for each n-concept 
14      concept = sof(n-concept)       // 1 
15      for each role of concept       // 5 
16         candidates = tof(role)        // 6 
17         n-role = chooseR(candidates)    // 7 
18         add n-role to n-concept 
 
   // Step D: Populate new !llers. 
19   for each !ller of role          // 8 
20      candidates = tof(!ller)         // 9 
21      n-!llers = chooseF(candidates)      // 10 
22      add n-!llers to n-role of n-concept 



ONT2 with nominals rolled back to concepts. The
first four cases were created for performance testing,
The fifth one was the result of performance tuning.

We tested three reasoners (FacT++ v1.6.3, Pellet
v2.2.0, and HermiT v1.3.8.) on the five ontologies
using Protégé v4.3.0 on Intel i7-4770 with 16 GB
RAM running 64-bit Ubuntu 12.04. The execution
times are given in table 4. We make the following
observations: (1) Of the reasoners, FacT++ has the
best overall performance, followed by HermiT and
Pellet. (2) Of the ontologies, LEX1 has the best over-
all performance, it has a 1:21 class to individual ratio;
and ONT1 has good overall performance and has no
individuals. (3) The performance, though within
acceptable limits, begins to degrade for ONT2 and
ONT3. HermiT and Pellet are up to two orders of mag-
nitude slower than FacT++ for these ontologies.

To understand where the reasoner was spending
time, we profiled ONT3 using Pellet3 and computed
the classification time for each concept. Using this, a
Pareto  chart was prepared; see figure 8. Observe that
96 percent of the reasoner’s time is spent in classify-
ing 20 percent of the terms.

We analyzed these terms and found that most of
these had owl:hasValue restriction in its definition.
To verify the impact of owl:hasValue on performance,
we created ONT4 from ONT2 by changing fillers of
owl:hasValue into concepts and rewriting owl:has-
Value as existential restriction. Now, ONT4 outper-
forms ONT2 and ONT3, and has a comparable per-
formance to ONT1 (table 4).

From this we conclude that creation of individuals
has less impact on performance, as seen in LEX1, but
using them in owl:hasValue restriction degrades per-
formance, as seen in ONT2, ONT3. This is true for Her-
miT and Pellet. In our test, FacT++ consistently out-
performs HermiT and Pellet, and for our ontology
FacT++ is unaffected by nominals.

This performance test is solely based on execution
time. We did not compare the inferences from these
reasoners, so we do not know if there is any qualita-
tive difference in the inferences from these reasoners.

Deployment and Maintenance
We (Ford) verified the completeness of the new OWL
ontology by developing a tool to compare it to the
KL-ONE version. The delivered OWL ontology need-
ed to be validated and verified as the first step toward
deployment. This process consisted of several steps.
Initially, the OWL ontology was loaded into an Alle-
grograph server and we wrote various SPARQL queries
to determine if the results returned were as expected.
In cases where the results were not satisfactory, we
then examined the ontology and made modifications
if they were required. This manual validation went
on for a period of several weeks until we were certain
that the OWL ontology was complete and usable.

The next phase of the validation process utilized
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Table 3. Ontology Test Cases.

Case Individuals Individuals Classes 

LEX1 lex leaves 6,780 317 

ONT1 none       0 12,815 

ONT2 lex leaves 5,679 7,136 

ONT3 lex and obj leaves 6,898 5,917 

ONT4 lex leaves minus nominals 5,136 7,679 

Table 4. Classification Time (in Seconds).

In DL profile, AL stands for attributive language, E for existential restriction,
H for subrole, and O for nominals.

 Language Pro!le Classi!cation Time 

Case OWL DL* FacT++ HermiT Pellet 

LEX1 OWL 2 EL AL 0.2 0.8 0.7 

ONT1 OWL 2 EL ALEH 1.6 12 4 

ONT2 OWL 2 EL ALEHO 2.3 74 564 

ONT3 OWL 2 EL ALEHO 2.7 352 716 

ONT4 OWL 2 EL ALEH 1.7 13 4 
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Figure 8. Pareto Chart. Time Versus Terms for ONT3.



an automated set of regression tests
that were run against the new OWL
ontology. This is a set of more than
1000 use cases that access the OWL
ontology to parse and process the
assembly build instructions. In this
case, we replaced the KL-ONE ontology
with the OWL ontology and ran the
entire suite of regression tests and
compared the results with the baseline.
As with the manual tests we found a
number of differences that needed to
be analyzed and addressed. These dif-
ferences fell into the following cate-
gories. First, OWL representation was
different than KL-ONE but was part of
the reengineering process. In this case
we adjusted the regression tests to
reflect how the knowledge was repre-
sented in OWL. Second, discrepancies
were caused because of formatting,
punctuation, special characters, and
related syntax errors. In these cases, we
wrote a routine that would fix these
errors as part of the OWL retrieval
process, but our intention is to go back
and fix these in OWL. Third, in some
cases, the OWL representation was not
what we wanted. In this case we went
back to OWL and made the appropri-
ate fixes.

At this point we were confident that
the lexical ontology was fairly com-
plete and would be usable after the

changes made above were completed.
The next step was to build an image

using the new OWL ontology and
deploy it for user acceptance testing.
This testing pointed out some per-
formance issues that were addressed by
rewriting the code to make the OWL
interface work more efficiently. After
these performance issues were fixed
the new AI system with the OWL
ontology was deployed into the testing
environment. No other major issues
were discovered during the user-accep-
tance testing phase and the application
with the embedded lexical OWL ontol-
ogy was deployed for use.

We were able to take advantage of
the extensibility of the OWL ontology
by developing a script that could load
a class of parts known as wire assem-
blies directly from an external data-
base. This allows us to add additional
knowledge into OWL much more
quickly. Another of the main advan-
tages of using OWL was the capability
to use standard tools for ontology
maintenance such as Top Braid Com-
poser, which provides additional capa-
bility. The OWL/RDF system has
proven to be easier to maintain and
utilize for reusing knowledge.

The OWL ontology is also available
for use through Allegrograph and is
being utilized by other applications
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Figure 9. Ford Semantic Web Framework.
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that need the information. Figure 9
shows the structure of our semantic
web architecture.

Conclusions and 
Future Steps

In this article we described a project
where Ford collaborated with the Indi-
an Institute of Technology Madras to
reengineer and convert an existing
ontology into a semantic web
OWL/RDF architecture. There were a
number of compelling reasons that
motivated the reengineering of the
ontology from KL-ONE to OWL. The
most important ones were based on
maintainability and extensibility. The
original software was written before any
software tools for ontology mainte-
nance were available. The KL-ONE
ontology could only be maintained
using a specialized tool. This tool had to
be rewritten several times as operating
systems and hardware were being
upgraded, and it was becoming a bot-
tleneck for future ontology develop-
ment. It was extremely tedious and
time consuming to manually create
reports and to extract knowledge from
the KL-ONE ontology. In the meantime
business requirements for the ontology
were rapidly increasing and the existing
architecture could not support them.
The conversion of the ontology to OWL
was a critical requirement for the future
usage of the AI application. Our experi-
ence was somewhat unique in that we
have been using KL-ONE since the
1990s and much of the work in seman-
tic web had taken place after we had a
deployed application.

The conversion from KL-ONE to
OWL required a significant amount of
work, but the advantages from moving
into a semantic web architecture made
this a worthwhile investment. It
enables us to take advantage of exist-
ing tools and processes and to make
our ontology reusable and extensible
using existing standards. Queries can
easily be developed using SPARQL,
which allow other applications to
access our ontology.

The semantic web infrastructure also
gives us the capability to link to other
ontologies and take advantage of the
linked open data world. Therefore, the
return on investment for this project
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includes a number of benefits that will
pay dividends in the future. The stan-
dards and tools built around semantic
technologies make our ontology easily
accessible to other applications and will
reduce future expenses in terms of
maintenance and development costs.
In addition, this project has helped us
build the infrastructure needed to sup-
port semantic technology and allow for
the development of other projects that
could benefit from the semantic web.

Our future work will include the
deployment of other ontologies into
production as well as the use of seman-
tic web tools and semantic web archi-
tecture for ontology development and
maintenance. However, the real bene-
fit will occur as we leverage semantic
technology across other areas of the
company and integrate this into our
development and manufacturing
processes.

Notes
1. International Resource Identifier (IRI).

2. International Resource Identifier (IRI).

3. In Pellet, concept classification is done
by a series of subsumption tests. Pellet
reports the execution time for each test,
and we sum up these times to compute
the classification time for a concept.
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