
It is becoming increasingly clear that there is an infinite
number of definitions of intelligence. Machines that are
intelligent in different narrow ways have been built since

the 50s. We are entering now a golden age for the engineer-
ing of intelligence and the development of many different
kinds of intelligent machines. At the same time there is a
widespread interest among scientists in understanding a spe-
cific and well defined form of intelligence, that is human
intelligence. For this reason we propose a stronger version of
the original Turing test. In particular, we describe here an
open-ended set of Turing++ questions that we are developing
at the Center for Brains, Minds, and Machines (CBMM) at
MIT — that is, questions about an image. Questions may
range from what is there to who is there, what is this person
doing, what is this girl thinking about this boy, and so on.
The plural in questions is to emphasize that there are many
different intelligent abilities in humans that have to be char-
acterized, and possibly replicated in a machine, from basic
visual recognition of objects, to the identification of faces, to
gauge emotions, to social intelligence, to language, and
much more. Recent advances in cognitive neuroscience have
shown that even in the more limited domain of visual intel-
ligence, answering these questions requires different compe-
tences and abilities, often rather independent from each oth-
er, often corresponding to separate modules in the brain. The
term Turing++ is to emphasize that our goal is understanding
human intelligence at all Marr’s levels — from the level of
the computations to the level of the underlying circuits.
Answers to the Turing++ questions should thus be given in
terms of models that match human behavior and human
physiology — the mind and the brain. These requirements
are thus well beyond the original Turing test. A whole scien-
tific field that we call the science of (human) intelligence is
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� There is a widespread interest among
scientists in understanding a specific
and well defined form of intelligence,
that is human intelligence. For this rea-
son we propose a stronger version of the
original Turing test. In particular, we
describe here an open-ended set of Tur-
ing++ questions that we are developing
at the Center for Brains, Minds, and
Machines at MIT — that is questions
about an image. For the Center for
Brains, Minds, and Machines the main
research goal is the science of intelli-
gence rather than the engineering of
intelligence — the hardware and soft-
ware of the brain rather than just
absolute performance in face identifica-
tion. Our Turing++ questions reflect ful-
ly these research priorities.



required to make progress in answering our Turing++
questions. It is connected to neuroscience and to the
engineering of intelligence but also separate from
both of them. 

Definitions of Intelligence 
We may call a person intelligent and even agree
among us. But what about a colony of ants and their
complex behavior? Is this intelligence? Were the
mechanical computers built by Turing to decode the
encrypted messages of the German U-boats, actually
intelligent? Is Siri intelligent? The truth is that the
question of What is intelligence is kind of ill-posed as
there are many different answers, an infinite num-
bers of different kinds of intelligence. This is fine for
engineers who may be happy to build many different
types of intelligent machines. The scientists among
us may instead prefer to focus on a question that is
well defined and can be posed in a scientific way, on
the question of human intelligence. In the rest of the
paper we use the term intelligence to mean human
intelligence.

Understanding Human Intelligence 
Consider the problem of visual intelligence. Under-
standing such a complex system requires under-
standing it at different levels (in the Marr sense; see
Poggio [1981, 2012]), from the computations to the
underlying circuits. Thus we need to develop algo-
rithms that provide answers of the type humans do.
But we really need to achieve more than just simulate
the brain’s output, more than what Turing asked. We
need to understand what understanding an image by
a human brain means. We need to understand the
algorithms used by the brain, but we also need to
understand the circuits that run these algorithms.
This may also be useful if we want to be sure that our
model is not just faking the output of a human brain
by using a giant lookup table of what people usually
do in similar situations, as hinted at the end of the
movie Ex Machina. Understanding a computer means
understanding the level of the software and the level
of the hardware. Scientific understanding of human
intelligence requires something similar — under-
standing of the mind as well as of the brain.

Using Behavior and 
Physiology as a Guide

To constrain our search for intelligent algorithms, we
are focusing on creating computational models that
match human behavior and neural physiology. There
are several reasons why we are taking this approach.
The first reason, as hinted above, is to avoid superficial
solutions that mimic intelligent behavior under very
limited circumstances, but that do not capture the true

essence of the problem. Such superficial solutions
have been a prominent approach to the traditional
Turing test going back to the ELIZA program written in
the 1960’s (Weizenbaum 1966). While these approach-
es might occasionally fool humans, they do not
address many of the fundamental issues and thus this
approach will fail to match many aspects of human
behavior. A second related reason is that algorithms
might appear to perform well when tested under lim-
ited circumstances, but when compared to the full
range of human abilities they might not do nearly as
well. For example, deep neural networks work very
well on object-recognition tasks, but also fail in simple
ways that would never be seen in human behavior
(Szegedy et al. 2006). By directly comparing computer
systems’ results to human behavioral results we
should be able to assess whether a system that is dis-
playing intelligent behavior is truly robust (Sinha et al.
2006). A final reason is that studying primate physiol-
ogy can give us guidance about how to approach the
problem. For example, to recognize people based on
their faces appears to occur in discrete face patches in
the primate brain (see Freiwald and Tsao [2010], and
the section below). By understanding the computa-
tional roles of these patches we aim to understand the
algorithms that are used by primates to solve these
tasks (Meyers et al. 2015). 

Intelligence Is One Word 
but Many Problems

Recent advances in cognitive neuroscience have
shown that different competencies and abilities are
needed to solve visual tasks, and that they seem to
correspond to separate modules in the brain. For
instance, the apparently similar questions of object
and face recognition (what is there versus who is
there) involve rather distinct parts of the visual cor-
tex (for example, the lateral occipital cortex versus a
section of the fusiform gyrus). The word intelligence
can be misleading in this context, like the word life
was during the first half of the last century when pop-
ular scientific journals routinely wrote about the
problem of life, as if there was a single substratum of
life waiting to be discovered to unveil the mystery
completely. Of course, speaking today about the
problem of life sounds amusing: biology is a science
dealing with many different great problems, not just
one. Thus we think that intelligence is one word but
many problems, not one but many Nobel prizes. This
is related to Marvin Minsky’s view of the problem of
thinking, well captured by the slogan Society of
Minds. In the same way, a real Turing test is a broad
set of questions probing the main aspects of human
thinking. Because “intelligence” encompasses a large
set of topics, we have chosen visual intelligence in
human and nonhuman primates as a primary focus.
Our approach at the Center for Brains, Minds, and
Machines to visual intelligence includes connections
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to some developmental, spatial, linguistic, and social
questions. To further sharpen our focus, we are
emphasizing measuring our progress using questions,
described in more detail below, that might be viewed
as extensions of the Turing test. We have dubbed
these Turing++ questions. Computational models we
develop will be capable of responding to queries
about visual scenes and movies — who, what, why,
where, how, with what motives, with what purpose,
and with what expectations. Unlike a conventional
engineering enterprise that tests only absolute (com-
putational) performance, we will require that our
models exhibit consistency with human perform-
ance/behavior, with human and primate physiology,
and with human development. The term Turing++
refers to these additional levels of understanding that
our models and explanations must satisfy.

The Turing++ Questions
Our choice of questions follows in part from our
understanding of human intelligence grounded in
the neuroscience of the brain. Each question rough-
ly corresponds to a distinct neural module in the
brain. We have begun defining an initial set of such
problems/questions about visual intelligence, since
vision is our entry point into the problem of intelli-

gence. We call such questions Turing++ questions
because they are inspired by the classical Turing test
but go well beyond it. Traditional Turing tests permit
counterfeiting and require matching only a narrow-
ly defined level of human performance. Successfully
answering Turing++ questions will require us not
only to build systems that emulate human perform-
ance, but also to ensure that such systems are consis-
tent with our data on human behavior, brains, neu-
ral systems, and development. An open-ended set of
Turing++ questions can be effectively used to meas-
ure progress in studying the brain-based intelligence
needed to understand images and video. 

As an example consider the image shown in figure
1. A deep-learning network might locate faces and
people. One could not interrogate such a network,
however, with a list of Turing++ questions such as
What is there? Who is there?  What are they doing?
How, in detail, are they performing actions? Are they
friends or enemies or strangers? Why are they there?
What will they do next? Have you seen anything like
this before? 

We effortlessly recognize objects, agents, and
events in this scene. We, but not a computer pro-
gram, could recognize that this is a street market; sev-
eral people are shopping; three people are conversing
around a stroller; a woman is shopping for a shirt;

Figure 1. Street Fair.

Courtesy of Boris Katz, CBMM, from the LableMe database.



although the market takes place on a street, clearly
no cars are permitted to drive down it; we can dis-
tinguish between the pants that are for sale and the
pants that people are wearing. We, but not a com-
puter program, could generate a narrative about the
scene. It’s a fairly warm, sunny day at a weekend mar-
ket. The people surrounding the stroller are a moth-
er and her parents. They are deciding where they
would like to eat lunch. 

We would assess the performance of a model built
to answer questions like these by evaluating (1) how
similarly to humans our neural models of the brain
answer the questions, and (2) how well their implied
physiology correlates with human and primate data
obtained by using the same stimuli.

Our Turing++ questions require more than a good
imitation of human behavior; our computer models
should also be humanlike at the level of the implied
physiology and development. Thus the CBMM test
of models uses Turing-like questions to check for
humanlike performance/behavior, humanlike physi-
ology, and humanlike development.

Because we aim to understand the brain and the
mind and to replicate human intelligence, the chal-
lenge intrinsic to the testing is not to achieve best
absolute performance, but performance that corre-
lates strongly with human intelligence measured in
terms of behavior and physiology. We will compare
models and theories with fMRI and MEG record-
ings, and will use data from the latter to inform our
models. Physiological recordings in human patients
and monkeys will allow us to probe neural circuitry
during some of the tests at the level of individual
neurons. We will carry out some of the tests in

babies to study the development of intelligence.
The series of tests is open ended. The initial ones,

such as face identification, are tasks that computers
are beginning to do and where we can begin to devel-
op models and theories of how the brain performs
the task. The later ones, such as generating stories
explaining what may have been going on in the
videos and answering questions about previous
answers, are goals for the next few years of the center
and beyond.

The modeling and algorithm development will be
guided by scientific concerns, incorporating con-
straints and findings from our work in cognitive
development, human cognitive neuroscience, and
systems neuroscience. These efforts likely would not
produce the most effective AI programs today (mea-
suring success against objectively correct perform-
ance); the core assumption behind this challenge is
that by developing such programs and letting them
learn and interact, we will get systems that are ulti-
mately intelligent at the human level.

An Example of a Turing++ Question:
Who Is There (Face Identification)

The Turing++ question that is most ripe, in the sense
of possibility to answer it at all the required levels, is
face identification. We have data about human per-
formance in face identification — from a field that is
called psychophysics of face recognition. We know
which patches of visual cortex in humans are
involved in face perception by using fMRI tech-
niques.

We can identify the homologue areas in the visual
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Figure 2.  Macque Visual Cortex Patches Involved in Face Perception.

Courtesy of Winrich Freiwald, CBMM. Modified from Tsao, D. Y.; Moeller, S.; Freiwald, W. A. Comparing Face Patch Systems in Macaques
and Humans. In Proceedings of the National Academy of Sciences of the United States of America. 2008;105(49): 19514–9.



cortex of the macaque where there is a
similar network of interconnected
patches shown in figure 3. In the mon-
key it is possible to record from indi-
vidual neurons in the various patches
and characterize their properties. Neu-
rons in patch ML are view- and identi-
ty-tuned, neurons in AM are identity-
specific but more view-invariant.
Neurons in the intermediate patch AL
tend to be mirror-symmetric: if they
are tuned to a view they are also likely
to be tuned to the symmetric one.

We begin to have models that per-
form face identification well and are
consistent with the architecture and
the properties of face patches (that is,
we can make a correspondence
between stages in the algorithm and
properties of different face patches).
The challenge is to have performance
that correlates highly with human per-
formance on the same data sets of face
images and that predict the behavior
of neurons in the face patches for the
same stimuli.

In September of 2015, CBMM organ-
ized the first Turing++ questions work-
shop, focused on face identification.
The title of the workshop is A Turing++
Question: Who Is There? The work-
shop introduced databases and
reviewed the states of existing models
to answer the question who is there at
the levels of performance and neural
circuits.

The Science of Intelligence
For the Center for Brains, Minds, and
Machines the main research goal is the
science of intelligence rather than the
engineering of intelligence — the
hardware and software of the brain
rather than just absolute performance
in face identification. Our Turing++
questions reflect fully these research
priorities. 

The emphasis on answers at the dif-
ferent levels of behaviour and neural
circuits reflects the levels-of-under-
standing paradigm (Marr 2010). The
argument is that a complex system —
like a computer and like the
brain/mind — must be understood at
several different levels, such as hard-
ware and algorithms/computations.
Though Marr emphasizes that expla-
nations at different levels are largely

independent of each other, it has been
argued (Poggio 2012) that it is now
important to reemphasize the connec-
tions between levels, which was
described in the original paper about
levels of understanding (Marr and Pog-
gio 1977). In that paper we argued that
one ought to study the brain at differ-
ent levels of organization, from the
behavior of a whole organism to the
signal flow, that is, the algorithms, to
circuits and single cells. In particular,
we expressed our belief that (1)
insights gained on higher levels help to
ask the right questions and to do
experiments in the right way on lower
levels and (2) it is necessary to study
nervous systems at all levels simulta-
neously. Otherwise there are not
enough constraints for a unique solu-
tion to the problem of human intelli-
gence.
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