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Modern educational software is open ended and flex-
ible, allowing students to build scientific models
and examine properties of the models by running

them and analyzing the results (Amershi and Conati 2006;
Cocea, Gutierrez-Santos, and Magoulas 2008). Such
exploratory learning environments (ELEs) are distinguished
from more traditional e-learning systems in that students can
build models from scratch by choosing objects from a depos-
itory, modifying the objects, and using these modified
objects to construct new objects. They are also becoming
increasingly prevalent in developing countries where access
to teachers is limited. Such ELEs provide a rich educational
experience for students and are generally used in classes too
large for teachers to monitor all students and provide assis-
tance when needed. Thus, there is a need to develop tech-
niques that recognize and visualize students’ activities in a
way that supports students in their work and contributes to
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� This article presents new algorithms
for inferring users’ activities in a class
of flexible and open-ended educational
software called exploratory learning
environments (ELEs). Such settings pro-
vide a rich educational environment for
students, but challenge teachers to keep
track of students’ progress and to assess
their performance. This article presents
techniques for recognizing students’
activities in ELEs and visualizing these
activities to students. It describes a new
plan-recognition algorithm that takes
into account repetition and interleaving
of activities. This algorithm was evalu-
ated empirically using two ELEs for
teaching chemistry and statistics used
by thousands of students in several
countries. It was able to outperform the
state-of-the-art plan-recognition algo-
rithms when compared to a gold stan-
dard that was obtained by a domain
expert. We also show that visualizing
students’ plans improves their perform-
ance on new problems when compared
to an alternative visualization that con-
sists of a step-by-step list of actions.
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their learning by using the software. Such tools can
provide support for teachers and education
researchers in analyzing and assessing students’ use
of the software.

Students’ interactions with ELEs are complex, as
we illustrate using concepts from an ELE for teaching
the basics of chemistry. Students can engage in
exploratory activities involving trial and error, such
as searching for the right pair of chemicals to com-
bine in order to achieve a desired reaction. They can
repeat activities indefinitely in pursuit of a goal or
subgoal, such as adding varying amounts of an active
compound to a solution until a desired molarity is
achieved. Finally, students can interleave between
activities, such as preparing a solution for a new
experiment while waiting for the results of a current
experiment. These aspects make plan recognition a
challenging task in ELEs.

This article presents a plan-recognition algorithm
that works from the bottom up, matching students’
actions to a predefined grammar according to heuris-
tics that are informed by the way students use ELEs.
The algorithm works offline, decomposing a stu-
dent’s entire interaction with the software into hier-
archies of interdependent plans that best describe the
student’s work. It was evaluated in an extensive
empirical study that involved seven different types of
problems and 68 instances of students’ interactions
in two different ELEs for chemistry and statistics edu-
cation. These ELEs varied widely in the type of inter-
action they entailed from students. The hierarchy of
activities that was outputted by the algorithm was
compared to a gold standard that was generated by a
domain expert. The algorithm was able to achieve
comparable or better recognition performance than
the different state-of-the-art algorithms that were
designed separately for each of the ELEs. It executed
in reasonable time on real-world logs of students’ ses-
sions, despite the exponential worst-case complexity
of the algorithm.

The second part of this article describes a study
that demonstrates the benefit of visualizing plans to
students. Students were shown a visualization gener-
ated by the ELE of the plan for an expert’s solution to
a statistics problem. Another group of students was
presented with an ordered list of the actions com-
posing the solution to the problem. Such a list repre-
sents the sole option currently available for extract-
ing log activities from the software post hoc. Both
groups of students were subsequently asked to use
the statistics ELE to solve new problems that were
gradually more difficult than the example problem
and required students to generalize mathematical
concepts. Students’ performance for the new prob-
lems was analyzed using several measures, including
the length of interaction time with the ELE, the num-
ber of actions performed on the ELE, and the ratio of
extraneous actions representing mistakes. The results
showed that students who were presented with the

plan visualization outperformed those students who
were presented with the list of activities for all of
these measures.

These contributions demonstrate the benefit of
applying novel plan-recognition technologies toward
intelligent analysis of students’ interactions in open-
ended and flexible software. Such technologies can
potentially support teachers in their understanding
of student behavior as well as students in their prob-
lem solving and lead to advances in automatic recog-
nition in other exploratory domains.

Related Work
Early approaches to plan recognition have assumed a
goal-oriented agent whose activities were consistent
with its knowledge base and that formed a single
encompassing plan (Kautz 1987, Lochbaum 1998).
We refer the reader to Carberry (2001) for a detailed
account of these approaches and focus this section
on recent works that capture some of the qualities of
exploratory domains, such as extraneous actions or
mistakes and interleaving of activities. Avrahami-Zil-
berbrand and Kaminka (2005) handled temporal and
free-order constraints among actions by using tree
structures. They provided methods for plan recogni-
tion that traverse the tree in a manner that is tempo-
rally consistent with the observations while making
minimal commitments about matching actions to
the grammar. Pynadath and Wellman (2000) devel-
oped a probabilistic grammar for modeling agents’
plans that also included their beliefs about the envi-
ronment. These techniques were evaluated using
synthetic data and did not allow for interleaving
plans (all reordering among plan constituents was
restricted to local permutation among constituent
actions). Geib and Goldman (2009) presented a prob-
abilistic online plan-recognition algorithm that
builds all possible plans incrementally with each new
observation. This work maintains all possible expla-
nations for matching future unseen actions by the
agent. As we show in the article, naively applying this
approach to exploratory domains is unfeasible.

Gal et al. (2012) proposed two algorithms for infer-
ring students’ plans using an ELE for statistics educa-
tion. One of these algorithms used heuristics to
match students’ actions to the grammar. Another
reduced the plan-recognition task to a constraint sat-
isfaction process. This approach assumes a nonrecur-
sive grammar and cannot recognize students’ plans
in cases where students engage in indefinite repeti-
tion, as in physics or chemistry ELEs. Other works
(Amir and Gal 2013) allow for recursive grammars in
their plan-recognition algorithm for an ELE for
chemistry education but make greedy choices about
how to match students’ actions to the grammar. In
contrast, our algorithm makes more informed choic-
es about matching actions to the grammar that are
inferred by students’ sequential and interleaving
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Figure 1. Snapshot of VirtualLabs.

interaction styles. Also, none of these past approach-
es have been shown to work for more than a single
ELE, whereas one of our algorithms is shown to gen-
eralize to two ELEs for chemistry and statistics edu-
cation that are significantly different in their design
and interaction style with the student.

Finally, we mention works that use recognition
techniques to model students’ activities in intelligent
tutoring systems (ITSs) (VanLehn et al. 2005; Conati,
Gertner, and VanLehn 2002; Roll, Aleven, and
Koedinger 2010; Koedinger et al. 1997). Such systems
coach students during their problem solving, provid-
ing support with proven learning gains. Conati, Gert-
ner, and VanLehn (2002) used online plan-recogni-
tion algorithms to infer students’ plans to solve a
problem in an educational software for teaching
physics by comparing their actions to a set of prede-
fined possible plans. The number of possible plans
grow exponentially in the types of domains we con-
sider, making it unfeasible to apply this approach.

Actions and Plans
In this section we provide the basic definitions that
are required for formalizing the plan-recognition
problems in ELEs. Throughout the article we will use
an ELE called VirtualLabs to demonstrate our
approach. VirtualLabs allows students to design and
carry out their own experiments for investigating
chemical processes (Yaron et al. 2010) by simulating
the conditions and effects that characterize scientific
inquiry in the physical laboratory. We use the fol-
lowing problem called Oracle as a running example:

Given four substances A, B, C, and D that react in a
way that is unknown, design and perform virtual lab
experiments to determine the correct reaction
between these substances.

The flexibility of VirtualLabs affords two classes of
solution strategies to this problem (and many varia-
tions within each). The first strategy mixes all four
solutions together and infers the reactants by inspect-
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ing the resulting solution. The second strategy mixes
pairs of solutions until a reaction is obtained. A snap-
shot of a student’s interaction with VirtualLabs when
solving the Oracle problem is shown in figure 1.

We make the following definitions: We use the
term basic actions to define rudimentary operations
that cannot be decomposed. For example, the basic
“Mix Solution” action (MS1[s = 1, d = 3]) describes a
pour from flask ID 1 to flask ID 3. The output of a stu-
dent’s interaction with an ELE (and the input to the
plan-recognition algorithm described in the next sec-
tion) is a sequence of basic-level actions representing
students’ activities, also referred to as a log. Complex
actions describe higher-level, more abstract activities
that can be decomposed into subactions, which can
be basic actions or complex actions themselves. For
example, the complex action MSD[s = 6 + 8, d = 2]
represents separate pours from flask ID 6 and 8 to
flask ID 2.

A recipe for a complex action specifies the sequence
of actions required for fulfilling the complex action.
Figure 2 presents a set of basic recipes for VirtualLabs.
In our notation, complex actions are underlined,
while basic actions are not.

Recipe a in the figure, called mix to same destina-
tion (MSD), represents the activity of pouring from
two source flasks (s1 and s2) to the same destination
flask d. Recipe b, called mix through intermediate
flask (MIF), represents the activity of pouring from
one source flask (s1) to a destination flask (d2)
through an intermediate flask (d1). Recipes can be
recursive, capturing activities that students can
repeat indefinitely. For example, the constituent
actions of the complex action MSD in recipe a
decompose into two separate MSD actions. In turn
each of these actions can itself represent a mix to
same-destination action, an intermediate-flask pour
(by applying recipe c or a basic action mix, which is
the base-case recipe for the recursion (recipe d).
Recipe parameters also specify the type and volume
of the chemicals in the mix, as well as temporal con-
straints between constituents, which we omit for
brevity. More generally, the four basic recipes in the
figure can be permuted to create new recipes, by
replacing MSD on the right side of the first two
recipes with MIF or MS. An example of a derivation
is the following recipe for creating an intermediate
flask out of a complex mix to same destination action
and basic mix solution action.

MIF[s1, d2] → MSD[s1, d1], MS[d1, d2] (1)

Planning is defined as the process by which stu-
dents use recipes to compose basic and complex
actions toward completing tasks using TinkerPlots.
Formally, a plan is a tree of basic and complex
actions, such that each complex action is decom-
posed into subactions that fulfill a recipe for some
task. A set of nodes N in a plan is said to fulfill a recipe
RC if there exists a one-to-one matching between the
constituent actions in RC and their parameters to

nodes in N. For example, the nodes MSD[s = 6 + 8, d
= 2] and MS7[s = 2, d = 7] fulfill the mixing through
an intermediate flask recipe shown in equation 1.
Each time a recipe for a complex action is fulfilled in
a plan, there is an edge from the complex action to
its subactions, representing the recipe constituents.

Figure 3 shows part of a plan describing part of a
student’s interaction when solving the Oracle prob-
lem. The leaves of the trees are the actions from the
student’s log and are labeled by their order of appear-
ance in the log. A node representing a complex
action is labeled by a pair of indices indicating its
earliest and latest constituent actions in the plan. For
example, the node labeled with the complex action
MSD[s = 1 + 5, d = 3] includes the activities for pour-
ing two solutions from flask ID 1 and ID 5 to flask ID
3. The pour from flask ID 5 to 3 is an intermediate
flask pour (MIF[s = 5, d = 3]) from flask ID 5 to ID 3
through flask ID 4.

In a plan, the constituent subactions of complex
actions may interleave with other actions. In this
way, the plan combines with the exploratory nature
of students’ learning strategies. Formally, we say that
two ordered complex actions interleave if at least
one of the subactions of the first action occurs after
some subaction of the second action. For example,
the nodes MSD[s = 6 + 8, d = 2] and MS7[s = 2, d = 7]
fulfill the mixing through an intermediate flask
recipe shown in equation 1.

Plan Recognition
The plan-recognition problem in ELEs is defined as
follows: Given a set of temporally ordered actions
representing a student’s complete interaction
sequence with the software, and a set of recipes, out-
put the plan that correctly describes the student’s
interaction with the software. By “correct,” we mean
that the plan outputted by the algorithm complete-
ly agrees to the plan outputted by a domain expert
who was given the same set of inputs. We expand on

Figure 2. Recipes in VirtualLabs for Mix to Same Destination (MSD)
and Mix to Intermediate Flask (MIF) Actions 

(a) MSD[s1 + s2, d] MSD[s1, d], MSD[s2, d]

(b) MIF[s1, d2] MSD[s1, d1], MSD[d1, d2]

(c) MSD[s, d] MIF[s, d]

(c) MSD[s, d] MS[s, d]
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this further in the Empirical Methodology section.
This problem has been shown to be NP-hard (Gal et
al. 2012).

The algorithm we designed to solve the off-line plan-
recognition problem, called plan recognition through
interleaved sequential matching (PRISM), provides a
trade-off between the following two complementary
aspects of students’ interactions with ELEs.
First, students generally solve problems in a sequen-

tial fashion, by which we mean that actions that are
(temporally) closer to each other are more likely to
relate to the same subgoal. For example, in figure 3
the basic actions {MS1, MS5} are more likely to fulfill
the recipe MSD[s1 + s2, d] → MS[s1, d], MS[s2, d] than
the basic actions {MS1, MS6} because they appear clos-
er together in the log. Second, students may inter-
leave between activities relating to different subgoals.
For example, in figure 3, the node MS4[s = 8, d = 2]
(which is a constituent action of the complex action
MSD[s = 6 + 8, d = 2]) occurs in between the nodes
representing the constituent actions of the complex
action MIF[s = 5, d = 3].

Before presenting the algorithm we first make the
following definitions. Let P denote the current plan
at an intermediate step of the algorithm. The frontier
of P is all nodes in the plan that do not have parents.
For example, the frontier of the plan shown in figure
3 includes the nodes MS6 and MS7.

Let RC denote a recipe for a complex action C. We
say that a set of nodes N is frontier compatible with
a recipe RC if N is a subset of the frontier of P and N
fulfills RC in P. Intuitively, the nodes in a frontier
compatible set of RC may be used to fulfill the recipe
and add C to the plan. In figure 3, the set of nodes F
= {MSD[s = 6 + 8, d = 2], MS7[s = 2, d = 7]} is frontier

compatible with the mix intermediate flask recipe of
equation 1.

A match for recipe RC in P is a triple MC = (C, N, i,
j ) such that RC is a recipe for completing action C, N
is a set of nodes that is frontier compatible with RC
in P, and i, j are delimiters specifying the indices
corresponding to the earliest and latest actions in N.
For example, the triple (MIF[s = 6 + 8, d = 7], F, 2, 7
) is a match for the recipe of equation 1. For brevity,
we omit the frontier compatible set when referring
to matches and write MC = (MIF[s = 6 + 8, d = 2], 2,
7 ).

We define a function FINDMATCH(RC, P, D) that
returns the set of all matches for RC in P, where D is
in the frontier compatible set of RC. For example,
consider the call

FINDMATCH (RC, P, MSD[s = 6 + 8, d = 2])

where RC is the intermediate flask recipe of equation
1, and P is the plan from figure 3. This call will result
in a set containing the single match that was pre-
sented earlier: (MIF[s = 6 + 8, d = 7], F, 2, 7 ).

The main functions composing the algorithm are
shown in figure 4. The algorithm uses a global queue
for storing potential matches for updating the stu-
dent’s plan. The queue is sorted lexicographically by
the first and second indices in the delimiters of the
matches. The core of the algorithm is the CONSIDER-
MATCH(MC) function. This function begins by pop-
ping from the queue the first match with indices
between i, j (line 3). The function then recursively
updates the plan with all of the matches in P whose
delimiters lie between i and j (line 5).

After all inner matches are exhausted, the algo-
rithm checks whether MC itself can be added to the
plan (line 8), which is possible if the set of nodes N

Figure 3. A Partial Plan for a Student’s Log. 

The leaves of the plan refer to the basic actions in the student’s plan (numbered in order of appearance in the logs); other nodes in the plan
refer to complex activities performed by the student.

MSD[s=1+5,d=3]
1,5

MSD[s=6+8,d=2]
2,4

MIF[s=5,d=3]
3,5

MS1[s=1,d=3]
1

MS2[s=6,d=2]
2

MS3[s=5,d=4]
3

MS4[s=8,d=2]
4

MS5[s=4,d=3]
5

MS6[s=1,d=3]
6

MS7[s=2,d=7]
7



is still frontier compatible with RC. If MC can be added
to the plan, the function ADDMATCHTOPLAN(MC) is
called, which adds (1) a node to the plan with label
C and delimiters i and j, and (2) edges from C to all
of the nodes in M as they appear in the plan. At this
point, all of the matches in the queue involving
nodes represented in N are obsolete because C was
added to the plan, so they are no longer in the fron-
tier. Therefore we remove them from the queue (line
18). The final step is a call to the function EXTEND-
MATCH(MC) to update the queue with new matches in
which C is a constituent.

To demonstrate the algorithm, suppose that the
plan is initialized to include only the leaves shown
in figure 3, corresponding to the student’s log. The
initial queue will contain the following matches,
sorted by their delimiters from left to right as
described earlier:

(MSD[s = 1 + 4, d = 3], 1, 5 ), (MSD[s = 1 + 1, d = 3], 
1, 6 ),
(MSD[s = 6 + 8, d = 2], 2, 4 ), (MIF[s = 6, d = 7], 2, 7 ),
(MIF[s = 5, d = 3], 3, 5 ), (MIF[s = 8, d = 7], 4, 7 ),
(MSD[s = 1 + 4, d = 3], 5, 6 )

The first match to be popped out from the queue in
CONSIDERMATCH(*, (1, 7)) is (MSD[s = 1 + 4, d = 3], 1,
5 ).

The function performs a recursive call (line 5) to
update the plan with matches involving actions
occurring within the delimiters of 1 and 5. The next
match to be popped off the queue is (MSD[s = 6 + 8,
d = 2], 2, 4 ). The frontier compatible set of this
match is {MS2[s = 6, d = 2], MS4[s = 8, d = 2]}.

At this point, the queue subset is empty because
there are no matches between the delimiters 2, 4 , so
the function skips to line 8. Because the nodes (MS2,
MS4) in the frontier compatible set of the match have
no parents, we can add the MSD[s = 6 + 8, d = 2] com-
plex action to the plan, by calling ADDMATCHTO-
PLAN(MSD[s = 6 + 8, d = 2], 2, 4 ). This function also
removes the following matches, which involve MS2
or MS4 in their frontier compatible set from the
queue (line 18):

(MIF[s = 6, d = 7], 2, 7 ), (MIF[s = 8, d = 7], 4, 7 ),

(MSD[s = 6 + 8, d = 2], 2, 4 )

Finally, in line 10, the function
EXTENDMATCH(MSD[s = 6 + 8, d = 2], 2, 4 )

is called to find all matches that involve the action
MSD[s = 6 + 8, d = 2] in their frontier compatible set
and add them to the queue (line 27). The only one
such is the action (MSD[s = 6 + 8, d = 7], 2, 7 ).

Empirical Methodology
We evaluated the algorithm on real data consisting
of students’ interactions. To demonstrate the scala-
bility of the PRISM algorithm we evaluated it on two
different ELEs: the VirtualLabs system as well as an
ELE for teaching statistics and probability called Tin-

kerPlots (Konold and Miller 2004) that is used world-
wide in elementary school and colleges. In Tinker-
Plots, students build models of stochastic events, run
the models to generate data, and analyze the results.
It is an extremely flexible application, allowing for
data to be modeled, generated, and analyzed in
many ways using an open-ended interface. There are
two key differences between TinkerPlots and Virtual-
Labs. In TinkerPlots, recipes are question dependent
and include ideal solutions to specific problems. Sec-
ond, the TinkerPlots grammar is not recursive.

For VirtualLabs, we used four problems intended
to teach different types of experimental and analyt-
ic techniques in chemistry, taken from the curricu-
lum of introductory chemistry courses using Virtual-
Labs in the United States. One of these was the
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Figure 4. Main Functions of the PRISM Algorithm.



Oracle problem that was described earlier. Another,
called coffee, required students to add the right
amount of milk to cool a cup of coffee down to a
desired temperature. The third problem, called
unknown acid, required students to determine the
concentration level and Ka level of an unknown solu-
tion. The fourth problem, called dilution, required
students to create a solution of a base compound
with a specific desired volume and concentration.
For TinkerPlots, we used two problems for teaching
probability to students in grades 8 through 12. The
first problem, called ROSA, required students to build
a model that samples the letters A, O, R, and S and to
compute the probability of generating the name
ROSA using the model. The second problem, called
rain, required students to build a model for the
weather on a given day and compute the probability
that it will rain on each of the next four consecutive
days. In contrast to VirtualLabs, recipes in Tinker-
Plots are question dependent, and describe possible
solution strategies for solving each problem.

We compared PRISM to the best algorithms from
the literature for each ELE: (1) the algorithm of Gal et
al. (2012) for TinkerPlots, which reduces the plan-
recognition problem to a CSP, and is complete, and
(2) the algorithm of Amir and Gal (2013) for Virtual-
Labs, which uses heuristics to match recipes to
actions in the log, and is incomplete. For each prob-
lem instance, a domain expert was given the plans
outputted by PRISM and the other algorithm, as well
as the student’s log. We consider the inferred plan to
be “correct” if the domain expert agrees with the
complex and basic actions at each level of the plan
hierarchy that is outputted by the algorithm. The
outputted plan represents the student’s solution
process using the software.

To illustrate how plans were presented to domain
experts, figure 5 shows the visualization of the final

plan for the log actions in the leaves of figure 3. The
visualization groups all trees in the student’s plans as
children to a single root node “Solve Oracle prob-
lem.” Complex nodes are labeled with information
about the chemical reactions that occurred during
the activities described by the nodes.

For example, the node labeled A + B + C + D A +
B + D represents an activity of mixing four solutions
together, which resulted in a chemical reaction that
consumed substance C. The coloring of the labels indi-
cates the type of chemical reaction that has occurred.

Table 1 summarizes the performance of the PRISM
algorithm according to accuracy and run time of the
algorithm (in seconds on a commodity core i-7 com-
puter). The column SoA (state of the art) refers to the
appropriate algorithm from the literature for each
problem. For VirtualLabs, this algorithm was suggest-
ed by Amir and Gal (2013); for TinkerPlots, this algo-
rithm was suggested by Gal et al. (2012). All of the
reported results were averaged over the different
instances in each problem. As shown in the table, for
VirtualLabs, the PRISM algorithm was able to recog-
nize significantly more plans than did the state-of-the-
art (p = 0.001) using a proportion based Z test). The
state-of-the-art algorithm was not able to recognize 10
plan instances (3 for Oracle; 3 for unknown acid; 3 for
coffee; and 1 for dilution). In addition, the PRISM
algorithm was able to recognize all of the plans in Vir-
tualLabs that were correctly recognized by the state of
the art. In TinkerPlots, PRISM failed to recognize 2
plans (1 for ROSA; 1 for seatbelts). The instances that
the algorithms failed to recognize are false negatives
that represent bad matches in the plan-recognition
process. However, the fact that PRISM achieved com-
parable or better performance than both state-of-the-
art algorithms speaks well for its performance.

We conclude this section with discussing the limi-
tations of PRISM. First, PRISM is not a complete plan-

Articles

16 AI MAGAZINE

Figure 5. Visualization of Oracle Plan.

{A+B+C+D} –> {A+B+D}

{B+C+D} –> {A+B+D}
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recognition algorithm, as can be attested by the fact
that it failed to recognize 2 out of 64 instances in Tin-
kerPlots. Second, it was significantly slower than the
state-of-the-art approaches. This is not surprising giv-
en its worst case complexity. However, PRISM is
designed to run offline after the completion of the
student’s interaction. Therefore an average run time
of 30 seconds is a low price to pay given the signifi-
cant increase in performance and its ability to gener-
alize across different ELEs.

Visualizing Plans to Students
In this section we demonstrate the benefits of plan-
recognition technology in education, in that visualiz-
ing expert solutions to students improves their per-
formance on new problems. Presenting such “worked
examples” to students has already been shown to pro-
vide effective instructional strategies for teaching com-
plex problem-solving skills (Van Merriënboer 1997)
and is widely accepted as an effective learning tech-
nique (Catrambone 1994). Our hypothesis was that
showing plans of sample problems in TinkerPlots will
improve students’ performance on new problems
when compared to a default presentation method that
consisted of an ordered list of their activities. Such a
list is the sole visualization technique currently avail-
able for TinkerPlots. Specifically, we expected students
who were shown plans to be able to solve new prob-
lems that required generalization of mathematical
concepts more quickly, with fewer mistakes and with
committing less redundant actions when compared to
students who were shown the list.

We used the following problem, called COIN, to
visualize worked examples to students:
A fair coin with a side of “0” and a side of “1” is tossed three
times. What is the average expected sum of the tosses?

The all-purpose sampling object in TinkerPlots is

called a sampler. A sampler is an object into which
the user can place random devices, including spin-
ners and mixers, in order to create a stochastic mod-
el of the world. Examples of basic actions in Tinker-
Plots can be adding or running a sampler. Actions in
TinkerPlots represent higher-level activities such as
flipping a coin or solving the coin problem.

Figure 6 shows a snapshot of the TinkerPlots desk-
top when solving the COIN problem. The sampler
mechanism shown in the left contains a coin with
the elements 0 and 1. The parameter number of
draws in the sampler is set to 10 to represent 10 ques-
tions. The parameter number of repetitions in the
sampler is set to 2,000 so that the number of samples
will produce a representative sample. When a sam-
pler is run, it generates data according to the distri-
bution defined by the parameters of its model. The
results of this sample are shown on the right. Also
shown is the formula window, which is used to com-
pute the sum of the three tosses for each instance.

Using the PRISM algorithm, we created a visualiza-
tion of a worked example of a solution to the COIN
problem. Figure 7 shows part of this visualization as a
tree of basic actions (leaf nodes) and complex actions
(parent nodes). The root of the plan (Correct_Solution)
decomposes into three constituent complex actions
for creating the coin model (Create_Coin_Model), run-
ning the model (Generate Results) and computing the
average sum of tosses (Compute Average Sum). In
turn, the complex action Create_Coin_Model decom-
poses into the basic action of adding a sampler (add
sampler), the complex action of creating a coin (Cre-
ate_Coin), and the basic actions of setting the number
of times the coin should be tossed (set_draws_in_sam-
pler) and the number of times the experiment should
be repeated (set_repetitions). The leaves of the tree cor-
respond to the students’ action sequences recorded by
TinkerPlots. Actions appear in left-to-right order in a
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Table 1. Results of PRISM Algorithm.

Number of 
Instances 

PRISM  
Accuracy

PRISM Run 
Time 

SoA 
Accuracy 

SoA Run 
Time 

Virtual 
Labs 

Camping 2 100% 1.107 100% 0.548 

Coffee 9 100% 21.075 67% 2.781 

Dilution 4 100% 1.720 75% 0.437 

Oracle 6 100% 9.675 50% 2.689 
Unknown 

Acid 
7 100% 53.561 57% 4.441 

TinkerPlots Earrings 10 90% 27.514 100% 1.004 

Rosa 25 100% 4.430 100% 0.049 

Rain 18 100% 6.334 100% 38.576 

Seatbelts 11 90.9% 6.064 100% 1.121 



way that is consistent with the temporal order of stu-
dents’ activities. For expository convenience, only part
of the plan is shown in the figure (for example, the
Compute_Sum complex action is not presented). The
plan visualization was introduced to the students using
an interactive tool that allowed them to drill down to
reveal the constituents actions of each node in the tree.

The list visualization presented students with a
bulleted list of the basic actions performed to solve
the example problem. This visualization is obtained
from a linear sequence of temporally ordered actions.
It represents the default support that is currently
available to students using the software. A partial list
of these actions is shown in figure 8.

Articles

18 AI MAGAZINE

Figure 6. Solving the COIN problem Using TinkerPlots.

Figure 7. Tree Visualization of the Expert Solution to the COIN Problem.l f h l h bl

Correct_Solution

Create_Coin_Model

Generate_Results

Compute_Average_Sum
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Create_Coin_Side
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change_element_in_device

change_element_in_device

Compute_Sum
Compute_Average

Run_Coin_Model
generate_table

Create_Tosses_Of_Coin

set_repetitions

Create_Coin

add_sampler



Participants
The study involved 61 first-year undergraduates stu-
dents enrolled in a statistics and probability course
for engineering majors at Ben-Gurion University. The
study was carried out during the middle of the semes-
ter after the students had acquired basic knowledge
of probability theory and undergone a midterm. All
students were given a home exercise to familiarize
with the TinkerPlots software. In total 32 students
were presented with a plan solution, and 29 were pre-
sented with a list solution.

The study was conducted in a designated lab in
which each student was situated in front of a com-
puter. In the first part of the study, all students were
provided with the COIN problem description in writ-
ing, and the expert solution to the problem was sub-
sequently presented to them using the list or plan
visualization, depending on their assigned condition.
In addition, all students were shown an (identical)
snapshot of the TinkerPlots desktop following the
solution procedure. The students were asked several
comprehension questions about the solution, such as
whether (and why) the interaction shown to them
constitutes a correct solution to the COIN problem;
to indicate the role in the solution of one of the
actions in interaction; to explain the solution to a
friend using free text. There were two purposes for
these questions: First, to confirm that the students
comprehended the solution; and second, to compare
between students’ self-explanations of the solution to
the COIN problem in the two experimental condi-
tions. Students were allocated up to 20 minutes to
complete this part of the study.

In the second part of the study, students were
asked to solve two new problems in sequence using
TinkerPlots. Students were allocated up to 30 minutes
to complete this part of the study. The problems were
taken from the curriculum of an introductory course
in probability. We wanted the problems to be non-
trivial but still possible to solve by the majority of
students in the allocated 30 minutes. We chose prob-
lems whose solutions exhibited similar concepts (rea-
soning about combinations and events in sample
space). The test problem, called DICE, did not men-
tion explicitly the notion of expectation, and it
required students to reason about the disjunction of
complex events that relate to the sample space.

John and Mary compete in a dice-tossing game. They
take turns tossing a die, and sum the result of each
toss. The winner is the first to accumulate more than
10 points. Compute the probability that (1) John will
win after two rounds of the game. (2) Either John or
Mary will win after two rounds of the game.

We collected the TinkerPlots log from each student’s
interactions as well a snapshot of their desktop
recording during the activity.

Results
We hypothesized that students assigned to the plan
condition would exhibit better performance than
students assigned to the list condition when using
TinkerPlots to solve the test problems. We measured
student performance using the following metrics: the
length of interaction (in minutes); the total number
of actions in an interaction; the ratio of redundant
actions in an interaction, which represent mistakes;
and exogenous actions that do not play a part in the
students’ solution.

We provide a description of students’ performance
for the DICE problem. All of the results we report
below were statistically significant p = 0.04 using a
nonparameterized two-tailed Mann-Whitney test.
We found that the plan visualization significantly
improved students’ performance across all measures.
These results are summarized in table 2.

Specifically, the average interaction length of the
students in the plan condition (AVG = 9.01 minutes,
SD = 3.92) was significantly shorter than the average
interaction length for students in the list condition

Articles

SUMMER 2015   19

Figure 8. List Visualization of the Expert 
Solution to the COIN Problem.

 Add device 1 to sampler1
 Change the label of element 0 in device 1 in sampler 1 to “0”
 Change the label of element 1 in device 1 in sampler 1 to “1”
 Set the repetitions in sampler 1 to “1500”
 Set the draws in sampler 1 to “3”
 Run sampler 1 and generate columns Draw1,Draw2 and Draw3
 Add an attribute named "Sum" to table 2 
 Edit the formula of attribute "Sum" in table 2 to  Draw1+Draw2+Draw3
 Add plot 3
 Drag the attribute "Sum" to plot 3
 Divide the values in plot 3
Average on plot 3 of attribute "Sum"

Table 2. Performance Measures on DICE Problems
for Students in Plan and List Conditions.

 Time (Minutes) Number of Actions Redundancy

Plan 9.01 39.65 28% 

List 12.47 57.06 46% 
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(AVG = 12.47 minutes, SD = 6.6). Additional analysis
reveals that the total number of actions in a student’s
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problems (in our case, the use of expectation to rea-
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Finally, there were striking differences in the way
students explained the solution to the COIN problem
based on their respective visualization condition.
Overall, 75 percent of the students in the plan con-
dition used and referred to subgoals when describing
the solution to the COIN problem, as compared to 66
percent of the list students. In our study, subgoals
represent higher-level activities such as generating
and running a sampler, projecting the results to a
plot, and computing the average sum of a random
variable. These activities recur in all three of the prob-
lems in the study, and recognizing and internalizing
these concepts may have contributed to the success
of the plan visualization. The students in the list con-
dition were far less likely to use such concepts when
describing the problem.

Conclusion and Future Work
This article proposed new algorithms for recognizing
students’ plans in exploratory learning environ-
ments, which are open-ended and flexible educa-
tional software. Our algorithm is shown to outper-
form (or perform comparably with) the
state-of-the-art plan-recognition algorithms for two
different ELEs for teaching chemistry and statistics. It
is also the first recognition algorithm that is shown to
generalize successfully to several ELEs. It demon-
strates that using hierarchical visualizations of expert
solutions positively affects students’ problem solving
in ELEs. We are currently applying these results in
several directions. First, we are designing plan-recog-
nition algorithms for ELEs that do not depend on a
predefined grammar. Second, we are designing intel-
ligent tutors in ELEs that use plan recognition to
guide their interactions with students. Finally, we are
designing automatic methods for aggregate analysis
of students’ activities that is based on students’ plans.
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