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B Ecological systems are inherently complex.
The processes that affect the distributions of
animals and plants operate at multiple spa-
tial and temporal scales, presenting a unique
challenge for the development and coordina-
tion of effective conservation strategies, par-
ticularly for wide-ranging species. In order to
study ecological systems across scales, data
must be collected at fine resolutions across
broad spatial and temporal extents. Crowd-
sourcing has emerged as an efficient way to
gather these data by engaging large numbers
of people to record observations. However,
data gathered by crowdsourced projects are
often biased due to the opportunistic approach
of data collection. In this article, we propose
a general class of models called AdaSTEM
(for adaptive spatiotemporal exploratory
models) that are designed to meet these chal-
lenges by adapting to multiple scales while
exploiting variation in data density common
with crowdsourced data. To illustrate the use
of AdaSTEM, we produce intraseasonal dis-
tribution estimates of long-distance migra-
tions across the Western Hemisphere using
data from eBird, a citizen science project that
utilizes volunteers to collect observations of
birds. Subsequently, model diagnostics are
used to quantify and visualize the scale and
quality of distribution estimates. This analy-
sis shows how AdaSTEM can automatically
adapt to complex spatiotemporal processes
across a range of scales, thus providing essen-
tial information for full-life cycle conserva-
tion planning of broadly distributed species,
communities, and ecosystems.
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... there is no single natural scale at which ecological phenomena

should be studied — systems generally show characteristic variabil-

ity on a range of spatial, temporal and organizational scales.
(Levin 1992)

nate as simultaneous processes operating across a range

of spatiotemporal scales. To study and conserve these
systems it is crucial to understand the multi-scale structure of
underlying processes. For example, consider some of the
processes affecting birds during migration. Climatic phe-
nomena, like El Nifo southern oscillation and the North
Atlantic oscillation (Grosbois et al. 2008) can affect migration
timing and direction at hemispheric spatial scales for years at
a time. Regional migration pathways are affected by
mesoscale spatial processes that define boundaries between
major ecosystems like prairies and forests (Fortin and Dale
2005). At a local scale, individual foraging decisions may be
based on the availability of specific plants or insects within
small habitat patches (Bonter et al. 2009).

B road-scale environmental and ecological systems origi-
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An important goal for many conservation applica-
tions is spatial prioritization, the identification,
delineation, and ranking of regions for management
actions (Moilanen, Wilson, and Possingham 2009).
For applications with large geographic extents, mul-
tiscale spatial prioritization is essential for land man-
agers to identify land parcels for acquisition (Schus-
ter and Arcese 2013) or remediation. For example,
with declining populations of long-distance migrat-
ing birds, a key question is whether declines are
caused by events on breeding grounds, nonbreeding
grounds, or during migrations. Answering this ques-
tion requires the comparison of regional population
estimates across continents. Once important large-
scale regions are identified, fine-scale information is
needed to identify critical habitat patches and indi-
vidual migration stopover sites.

Multiscale information is also vital to a broad
range of related sustainability applications. Scientists
need to prioritize regions for disease control man-
agement (Ostfeld, Glass, and Keesing 2005). Policy
makers need to select sites for human development
while trying to minimize ecological costs, for exam-
ple, when developing wind farms (Drewitt and
Langston 2006). In these examples, multiscale infor-
mation is valuable because it allows managers to
inform policy and make objective decisions at the
appropriate spatial and temporal scale (Gomes 2009).

One of the fundamental challenges of studying
multiscale processes is the collection of data. Consis-
tent sources of fine-resolution data are needed across
broad extents. For many types of biodiversity data,
the largest collection programs are national in scope.
Unfortunately, the variation among national pro-
grams hinders ecological study and conservation
planning for broadly distributed species. Because of
the difficulty and expense of collecting systematic
biodiversity data across large extents, many
researchers are beginning to use data collected by cit-
izen science projects through crowdsourcing tech-
niques (Dickinson, Zuckerberg, and Bonter 2010).

Crowdsourcing projects that engage the public to
collect data have been very successful at collecting
data across large areas. However, these data tend to be
irregularly and sparsely distributed. When partici-
pants opportunistically choose where to report their
observations, the data tend to follow patterns of
human activity (Hochachka et al. 2012), for example,
figure 1. This structure presents a challenge for the
analysis of multiscale processes because variation in
data density translates into variation in scale at
which valid inferences can be made. Intuitively, as
data density increases at a particular location, the
information available for estimating processes oper-
ating there also increases, allowing study of smaller
scale processes. In addition to the density of data, the
scale structure of analytical models affects the scale at
which valid inference can be made (Dungan et al.
2002). Thus, to take full advantage of crowdsourced
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data, models that can discover multiscale structure
by adapting to the varying density of irregularly dis-
tributed observations are needed. Additionally, to
make full use of these models tools are needed to
quantify and communicate the finest scales at which
inferences can reliably be made.

The most common approach to account for spatial
and spatiotemporal scale has been to model how cor-
relation varies as a function of proximity. This has
been an active research area in statistics and machine
learning for the past two decades (Cressie 1993; Ras-
mussen and Williams 2006; Cressie and Wikle 2012).
Methodologies such as Kriging (Cressie 1986), Gauss-
ian processes (Paciorek and Schervish 2004), Gauss-
ian Markov random fields (Rue and Held 2005),
splines (Pintore, Speckman, and Holmes 2006; Kam-
mann and Wand 2003), and autoregressive models
(Huang, Cressie, and Gabrosek 2002; Tzeng, Huang,
and Cressie 2005) have been proposed to estimate
and account for spatial correlation in stationary set-
tings, where the effects of proximity are assumed to
be constant. More recently, research has focused on
accounting for nonstationary spatial correlation that
allows for varying scales. Nonstationary covariance
functions have been proposed for Gaussian process-
es and Kriging models (Stein 2005, Paciorek and
Schervish 2004, Jun and Stein 2008, Pintore and
Holmes 2004). Similarly, spline methods have been
developed with spatially varying penalties (Pintore,
Speckman, and Holmes 2006; Crainiceanu et al.
2007). However, the computational complexity of
many of these models is high (Cressie and Johannes-
son 2008, Gelfand 2012) necessitating trade-offs
between computational efficiency and the scale of
analysis for large data sets where the number of
observations and locations is in the millions.

In this article we present an ensemble model
designed to discover scale-dependent, nonstationary
predictor-response relationships from large, irregu-
larly distributed observational data (Fink, Damoulas,
and Dave 2013). We call this model AdaSTEM, an
extension to the spatiotemporal exploratory model
(Fink et al. 2010) based on a simple yet effective
divide and recombine strategy. The first stage of the
model divides the extent of analysis into regional
units based on data density using tree data structures.
Next, a mixture model is used to organize regional
units into a cohesive framework while facilitating
discovery of nonstationary patterns of predictor-
response associations among regions. Within the
regional units, a user-specified model carries out the
supervised learning task that associates predictors
and responses. AdaSTEM is a highly automated
ensemble model with a pleasingly parallel imple-
mentation that scales to big data. The experiments
described here were conducted on the Lonestar clus-
ter through an allocation on XSEDE (www.xsede.
org).

We illustrate the use of AdaSTEM with an analysis



of crowdsourced data from eBird (www.ebird.org)
(Sullivan et al. 2009). The goal was to estimate the
daily distributions of long-distance migratory birds
across the Western Hemisphere (figure 4) with the
finest spatial resolution possible. Using AdaSTEM, we
produced the first hemispherewide population-level
distribution estimates for three species of long-dis-
tance migratory birds. To facilitate the interpretation
and application of the distribution estimates we then
used model diagnostics to quantify and visualize the
spatial variation in scale, bias, and uncertainty.
Together, these results provide the information nec-
essary to make statistical comparisons and ecological
interpretations across a range of spatial scales.

In the sections following we will describe the fixed-
scale ensemble framework STEM and then discuss the
AdaSTEM extension. We will then describe the analy-
sis of the eBird data in detail and assess the scale and
quality of the AdaSTEM estimates. Finally, we will fol-
low up with a brief discussion of our findings and
methodology.

STEM: Spatiotemporal
Exploratory Models

STEM (Fink et al. 2010) is a mixture model designed
to adapt to nonstationary, scale-dependent processes.
This is achieved by creating a dense mixture of local
learning models with compact overlapping support.
A user-specified supervised learning model, the base
model, accounts for variation as a function of pre-
dictor values within its support set, which we call a
stixel (for spatiotemporal pixel). Because the stixels
are compact sets, the learning model can adapt to
local predictor-response associations while limiting
long-range extrapolation. Utilizing the fact that stix-
els overlap, predictions at a specified location, s, are
made by taking an average across all base models
whose stixels include that location. This combines
the bias-reducing properties of local models (for
example, decision trees [Breiman et al. 1984]) with
the variance-reducing properties of randomized
ensembles (for example, bagging [Breiman 1996]). In
this article we consider two classes of base modes —
linear models fit through least squares for the syn-
thetic experiments and logistic generalized additive
models (GAM) (Wood 2006) for the binary classifica-
tion of eBird data.

The Mixture Model

The approach described here is based on ensemble or
mixture modeling (Kuncheva and Whitaker 2003;
Hastie, Tibshirani, and Friedman 2009) with a focus
on prediction for large data sets. To this end we treat
the estimation of the base models independently.
The ensemble response is computed as the weighted
average taken across base models with shared sup-
port, that is, within overlapping stixels; see figure 1
(center). For simplicity, all supporting base models

are weighed equally. STEM can be considered as a
spatiotemporal wrapper for any user-specified base
model.

Formally, let {y,(s), X,,(s)}V,_, be the set of observed
responses and predictors Xx,(s) = [xi,l(s),---, x,./d(s)]
indexed by locations! s € RX within the study area D
c RX. y(s) is modeled as the ensemble response:

1) = D0 (9, (x(), D,.18) 1)

with M base models f, each defined on its own stix-
el D < D with mixture weights a_(s). Each base
model f_ is independently fit to N, observations
falling within D_. The mixture weights at coordi-
nates s are

o, (s)=n"'()I(s€D,,) @)

where the indicator function I(s € D, ) indicates
membership of s in the support set D_. The ensem-
ble support n(s) is the number of base models that
support coordinate

s:n(s)=>Y I(seD,) (3)

with the sum taken over the M base models.

STEM uses a simple ensemble design with fixed
size stixels. The ensemble is created by partitioning
the study extent D into a regular set of M square stix-
els D with sides of length A. Second, P such parti-
tions are sampled, randomizing the position of each
left corner m to form an ensemble of overlapping stix-
els. Within each stixel D, we require that the num-
ber of observations N, meet a minimum sample size,
y, to fit a base model. Stixels where N <y are omit-
ted from the ensemble. Thus, the maximum ensem-
ble support n(s) at location s is P the number of par-
titions. The algorithm is given in algorithm 1. Note
that estimates of parameters are indicated by placing
a hat over the corresponding symbol.

For mixture models the smallest scale signal that
can reliably be estimated at a given location s is deter-
mined by characteristics of both the stixels support-
ing s and the choice of base model f, . In general, for
a given class of base model, the smallest scale signal
that can be estimated will increase with the size of
the stixels. For a single base model, variation that
cannot be explained will tend to be averaged out
across larger areas as stixel size increases. Similarly, at
the ensemble level, base model estimates will be aver-
aged across larger areas as stixel size increases. Thus,
for the mixture model, the range over which infor-
mation is shared and averaged increases for larger
stixels. As a result of this, the minimum scale over
which inferences can be made will also increase with
larger stixels.

Adaptive Multiscale
Modeling with AdaSTEM

The parameter A controls the size of the stixels, which
indirectly controls the minimum scale of the signal
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Figure 1. Quadtree.

Left: eBird data locations showing the varying density of observations. Center: Two realizations of quadtree generated stixels, red and blue.
Right: Average quadtree stixel size (in degrees) follows the density of observations. (Color version of figure presented in electronic version

of Al Magazine).

for p=1to P do

if N, > v then

PRIRsRE

_.
e

Input: Spatial dataset with extent D
Output: Ensemble model estimator 7. (s)
Set A by cross-validation

Randomize partition corner ), ~ U/(0, \)
Partition D into M|, stixels each with length A
for m=1to M, do

Fit base model f1, in Dy,, get estimator fm

Je(s) = Yom—1 m(5) fn(s) (Bq. 1)

Algorithm 1. STEM.

that can be modeled by the mixture. In STEM A is a
fixed, universal parameter that does not vary with
location. It can be estimated through cross-validation
to identify the scale of analysis best supported by
data.

AdaSTEM proposes an adaptive scheme based on
tree data structures (Samet 2006) where stixel size A(s)
varies with location s as a function of data density
(Fink, Damoulas, and Dave 2013). Letting the stixel
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size A vary with data density allows the mixture bet-
ter to exploit unevenly distributed data in the pres-
ence of a multiscale signal. In densely sampled
regions A will be small and the base models can adapt
to fine-scale signals producing low bias estimators. In
sparsely sampled regions A will be large and base
models are forced to adapt to large-scale signals pro-
ducing low variance estimators.

The center panel of figure 1 shows two partitions



for p=1to P do

for m=1to M, do
if Ny, > v then

PP Re

_
e

Input: Spatial dataset with extent D
Output: Ensemble model estimator 7. ()
Set A by cross-validation

Randomize partition corner 7, ~ (0, \)

Partition D into M, stixels each with length A

Fit base model f, in Dy,, get estimator fm

Je(s) = Som_y am(5) fm(s) (Eq. 1)

Algorithm 2. AdaSTEM.

of the study extent generated using quadtrees where
each stixel corresponds to a leaf node in a tree. The
right panel of figure 1 shows the quadtree stixel size
averaged across 100 partitions. Note how the distri-
bution of data-driven stixel sizes A(s) follows the pat-
tern of data density shown in the left panel of figure
1.

Variance between base models is controlled by
ensemble averaging (Breiman 1996) and lower
covariance between the base models in a neighbor-
hood {m|s € D_} is encouraged by bootstrapping the
data and randomizing the angle 6 ~ ‘U(0, 360] and
center ¢ ~ ‘U (D) of each tree partition P. The algo-
rithm is given in algorithm 2.

To investigate the value of letting the stixel size A(s)
vary with data density we conducted a synthetic
experiment comparing the performance of STEM and
AdaSTEM. Both models were repeatedly trained with
realizations of noisy data and then evaluated against
the true regression function. This was done for two
separate two-dimensional regression functions, one
single-scale and one multiscale function, each fit
with observations sampled from two different densi-
ties, one where observations were uniformly distrib-
uted and another where observations came from a
nonuniform multiscale density. STEM and AdaSTEM
were specificed as spatial mixtures of linear regression
base models for these experiments.

Figure 2 shows results from a typical realization of
the four synthetic experiment scenarios. These
results show how AdaSTEM can adapt to multiscale
structure when it is present and data density is suffi-
cient, while retaining predictive performance when
there is only coarse-scale signal or data are sparse. For
the single-scale function and when data are too

sparse to detect multiscale signal, performance
between the models is comparable.

When multiscale signal is present and there is suf-
ficient data density, the AdaSTEM surface estimate
correctly captures both fine- and coarse-scale pat-
terns while the STEM surface estimate does not. We
refer the reader to Fink, Damoulas, and Dave (2013)
for a more detailed description of the experimental
setup and analysis.

eBird

The ecological goal for developing AdaSTEM was to
estimate the daily distribution of terrestrial, diurnal
bird species across the Western Hemisphere, exclud-
ing Greenland, throughout their annual cycle. The
bird observation data come from the citizen science
project, eBird (Sullivan et al. 2009). eBird is a broad-
scale bird monitoring project that collects observa-
tions made throughout the year. Participants follow a
protocol in which they collect observations of the
bird species that they see — checklists — along with
ancillary information about the time, location, and
search effort. By asking participants to indicate when
they have contributed complete checklists of all the
species they detect on a search, we assume that lack of
detection conveys partial information about absence.
Together, the reports of absence and effort add infor-
mation that we use to capture and control for sources
of variation associated with the detection process.
The results from analyses shown in this article
used presence-absence data from complete checklists
collected with effort data from January 1, 1900, to
December 31, 2011, within the Western Hemisphere.
The data set, figure 1 (left panel), consisted of
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Left Panel
AdaSTEM STEM

Target Data

Right Panel

Target Data AdaSTEM STEM

Figure 2. AdaSTEM Versus STEM Synthetic Data Experiment for
Uniform or Nonuniform Density of Observations and Single- or Multiscale Signal.

Left Panel: For the single-scale function both models perform comparably for both uniform (row a) and nonuniform (row b) data density.
Right Panel: In the presence of multiscale signal AdaSTEM clearly outperforms STEM when the density of observations is sufficient (row b)
to capture the small scale correlation. (Color version of figure presented in electronic version of Al Magazine).

approximately 2.5 million checklists collected across
385 thousand unique locations. All models were
trained with 2.25 million checklists made across 360
thousand unique locations, with the remaining held
out for model evaluation. At small spatial scales, the
data density can be seen to correlate with human
population and travel patterns. At larger spatial scales
the observations are seen to be most densely distrib-
uted in the United States where eBird originated, and
sparser in Central and South America even in regions
of high human density (see the left panel, figure 1).
The spatiotemporal distributions presented here
were modeled as a spatial mixture of local temporal
trajectories. We estimated the trajectory within each
stixel using a binary response GAM as the class of
base model. The binary response indicates the pres-
ence or absence of a single bird species recorded on a
given search. The logit of the probability of occur-
rence was modeled as an additive function of the day
of the year and several other factors describing the
effort spent searching for birds. Seasonal variation is
captured by a smooth function of the day-of-year
covariate and fit with a penalized cyclic spline basis.
To account for variation in detection rates we includ-
ed effort covariates for the amount of time spent on
a search, the distance traveled while searching, and
the number of observers in the search party. The time
of the day was used to account for diurnal variation
in behavior, suchas higher detectability of birds dur-
ing their participation in the dawn chorus (Diefen-
bach et al. 2007), which make species more or less
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conspicuous. The ensemble was created by parti-
tioning the study extent into square stixels measured
in units of degrees latitude and longitude with P =
200. The minimum sample size per base model was
y = 500.

The predictive performance of STEM and
AdaSTEM were compared using distribution esti-
mates for Barn Swallow (Hirundo rustica) in (Fink,
Damoulas, and Dave 2013). In these tests, AdaSTEM
outperformed STEM for all measures of predictive
performance for all 12 months of the year. These
results demonstrated the ability of AdaSTEM to take
advantage of the varying eBird observation density
by reducing bias in regions with high data density
and controlling variance in regions with low data
density.

Autumn Migration Estimates

To demonstrate how AdaSTEM can adapt to different
distributional dynamics across a range of extents and
scales we estimated the distributions for Barn Swal-
low (Hirundo rustica), Blackpoll Warbler (Setophaga
striata), and Black-throated Blue Warbler (Setophaga
caerulescens). These three species are all broadly dis-
tributed migratory birds with very different autumn
migration strategies — different distribution loca-
tions, distribution extents, and timing of movement.

To develop rangewide estimates of species’ distri-
butions we selected the smallest stixel size necessary
to achieve at least half the maximum ensemble sup-
port, B, across 90 percent of the Western Hemisphere.
Then we used this model to estimate one daily dis-



tribution surface per week for 52 weeks of the year.
The surface is the probability of occurrence on the
given day estimated at 130 thousand locations from
a geographically stratified random design. All effort
predictors were held constant to remove variation in
detectability. The precise quantity estimated is the
relative probability that a typical eBird participant
will detect the species on a search at a given location
from 7 to 8 AM while traveling 1 kilometer on the
given day of the year.

Figure 3 shows the distribution estimates for Barn
Swallow (top), Blackpoll Warbler (middle), and
Black-throated Blue Warbler (bottom) on June 28
(left), October 11 (center), and December 20 (right).
For the three species these dates fall in the breeding
season, during autumn migration, and in the non-
breeding season, respectively. To control for season-
al variation in detectability when comparing distri-
butions across dates and species, we standardized
the predicted probability of occurrence across dis-
tributions.

Across their annual cycle, Barn Swallow occur
throughout most of the longitudinal extent of the
terrestrial Western Hemisphere with broad and com-
plex movements during autumn migration (figure 3,
top and center), which occur over several months.
This contrasts with the Blackpoll Warbler, a neotrop-
ical migrant that breeds in large numbers in the
boreal forests of North America and undertakes one
of the longest migrations of any North American
warbler (DeLuca et al. 2013). During autumn migra-
tion, it travels first eastward to the North American
coast from which the majority of individuals make a
transatlantic flight through the eastern Caribbean to
Northern South America. Figure 3 (center) shows
how the Blackpoll population occurrence is concen-
trated along the northeastern coast of the United
States in October, with much lower rates of occur-
rence along the southeast coast and a second high
concentration in the Western Caribbean islands.
These distributional patterns are in agreement with
studies of Blackpoll Warbler migration that have
relied on a variety of different data sources, based
primarily on observations of individual birds (DeLu-
ca et al. 2013). Finally, the Black-throated Blue Wazr-
bler, one of the most extensively studied passerine
species in North America, migrates south from the
eastern deciduous forest of North America along a
broad front from the eastern seaboard to the
Appalachians where it reaches its wintering grounds
in the Caribbean (Holmes, Rodenhouse, and Sillett
2013).

Assessing the Scale
and Quality of AdaSTEM

High-quality species distribution and movement
information is useful for a variety of ecological and
conservation applications across a range of scales.

However, distribution estimates by themselves are
not sufficient for most applications because they do
not convey information about the scale or quality of
the estimates. More often than not, distribution esti-
mates from spatially explicit models are computed at
arbitrarily fine resolutions. Visualizations and maps
generated from these products risk communicating
the existence of fine-scale patterns where none may
be supported by the data. Without understanding the
spatial resolution of an estimate it is easy to overin-
terpret the results and make inference about fine-
scale patterns where this is not warranted.

In this section we present a set of model diagnos-
tics to assess and visualize spatial patterns of scale,
bias, and uncertainty. First, we determine the spatial
scale of the distribution estimates so that spurious
inferences about fine-scale patterns can be avoided.
Understanding the spatial scale of estimates is also
necessary for constructing statistical comparisons
between regions. Second, we present an analysis of
regional bias.

Understanding spatial patterns of bias is especial-
ly useful when using crowdsourced data. Finally, we
provide a quantitative assessment of the uncertain-
ty attached to distribution estimates. This informa-
tion is essential for making decisions in the face of
uncertainty.

Together these three diagnostics provide useful
information to interpret and apply summaries of dis-
tribution estimates to real-world sustainability prob-
lems. All of the diagnostics discussed here are for the
June 28 Barn Swallow AdaSTEM distribution estimate
(figure 3, top, left).

Assessing Spatial Scale

We formalize the notion of scale as the effective
range, the shortest distance at which the correlation
between pairs of measurements within a neighbor-
hood becomes negligibly small (Banerjee, Carlin, and
Gelfand 2004). To assess scale of a distribution esti-
mate we measure the effective range of the residuals.
The spatial variation in scale is visualized by com-
puting effective ranges across a half degree grid and
interpolating.

Figure 4 (left) shows the interpolated effective
range for the distribution of Barn Swallow based on
residuals from June 24-July 1. The portion of the
study area with insufficient residual density to esti-
mate the effective range is shown in grey and the
effective range of this Barn Swallow distribution esti-
mate can be seen to vary from less than 10 kilometers
to over 100 kilometers depending on location. For
example, in regions with very short ranges, like Itha-
ca, New York, in the northeastern United States, esti-
mates of occurrence separated by as little as 5 kilo-
meters are independent. At the same time, in the
state of Montana, located in the northcentral United
States, occurrence estimates must be separated by at
least 60 kilometers to be independent of each other.
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Figure 3. AdaSTEM Distribution Estimates for Barn Swallow, Blackpoll Warbler, and Black-throated Blue Warbler.

Breeding Season (June 28, left), autumn migration (October 11, center), and the nonbreeding season (December 20, right). Darker shades
of red indicate higher relative probability of occurrence for each distribution. These three species span the rich variation in avian distribu-
tional dynamics that characterize bird species’ annual cycles. The quality of these distribution estimates highlights how AdaSTEM adapts
to a variety of complex spatiotemporal processes across a range of scales. (Color version of figure presented in electronic version of AI Mag-
azine).
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Figure 4. Assessing the Scale and Quality of the June 28 Barn Swallow AdaSTEM Distribution.

Left: Effective range of spatial correlation in kilometers. Center: Interpolated bias estimates shown in units of standard errors. Right: Point-
wise standard errors computed across 50 individual bootstrap replicates. These diagnostics capture the interplay of the ecological process
(that is, species occurrence), the data density, and the scale structure of AdaSTEM to affect the scale and quality of the estimated distribu-
tion. (Color version of figure presented in electronic version of AI Magazine).

In general, the effective range varies as a joint func-
tion of data density and the prevalence of the species.
For example, in regions where the species is correct-
ly predicted to be present with very low probability,
residuals are uniformly small and the range of resid-
ual correlation tends to be larger.

Assessing Bias

For observational data, especially crowdsourced data,
bias assessment is important because biases incurred
during the data collection process may produce
regions where the estimatedprobabilities of occur-
rence are systematically high or low compared to the
observed rates of occurrence. It is important to know
where biased regions occur, how big the biased
regions are, and the strength of the bias.

To identify biased regions we interpolated the
residuals from June 24-July 1 across the same extent
as that used to visualize the effective range. Then we
looked for areas where the interpolated residuals
were substantially larger or smaller than expected by
chance alone. This was done by standardizing the
residuals and plotting only those regions where the
standardized residuals were more than twice as large
as their associated standard errors. Figure 4 (center)
shows regions with systematically large residuals.
Regions where the estimated occurrence rates are too
low are shown in red and regions where the estimat-
ed occurrence rates are too high are shown in blue.
Most of the contiguous regions of bias shown in fig-

ure 4b are relatively small, with larger regions in
Montana, Nevada, Texas, and Arkansas.

Assessing Uncertainty

Uncertainty estimates are required when making
statistical inference about distributional summaries.
For spatial prioritization we may want to evaluate
whether the difference in expected occurrence rates
between regions is larger than that expected by
chance. To do this we need uncertainty estimates for
the AdaSTEM occurrence rates. These uncertainties
can be approximated based on the variation across
bootstrap replicates. However, because the AdaSTEM
estimator y,(s) is computed as an average across
bootstrap replicates, the standard errors oy, (s) will
be smaller than the variance across the bootstrap
replicates. If we assume that the bootstrap replicates
are independent, then oy, (s) will be smaller by a fac-
tor of n(s)"1/2. For example, if n(s) = 50 the standard
error of the ensemble estimate will be approximate-
ly 15 percent of the standard error of estimates
across individual bootstrap replicates.

Figure 4 (right) shows the pointwise standard
errors computed across 50 bootstrap replicates. These
standard errors are conservative, that is, larger than
the actual standard errors for y,(s). Like the spatial
scale and bias diagnostics, the uncertainty estimates
vary jointly with data density and species prevalence.
For example, many data dense regions have relative-
ly high uncertainties. One reason for this follows
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from the binary classification problem itself — vari-
ability is greatest where predicted probabilities are
near 0.5 and smallest when the predicted probabili-
ties are closest to O or 1. Another reason for relative-
ly large standard errors in data dense regions is the
fact that AdaSTEM'’s adaptive partitioning tends to
minimize bias in data dense regions, potentially lead-
ing to higher variance.

Discussion

Using AdaSTEM, we have produced the first hemi-
spherewide population-level distribution estimates of
long-distance migrations using crowdsourced data
from eBird. These estimates demonstrate how
AdaSTEM can automatically adapt to patterns across
several orders of magnitude. While the hemispheric
extent of analysis extends over 10,000 kilometers
north to south, we found that the spatial resolution
of the distribution estimates was less than 100 kilo-
meters within most of the continental United States
and Southern Canada. In several data rich regions of
North America, the spatial resolution was found to
be less than 10 kilometers.

The simple adaptive divide and recombine strate-
gy employed by AdaSTEM provides sufficient flexi-
bility to model complex spatiotemporal processes
across a range of scales. AdaSTEM as a class of mod-
els will be useful in other spatial and spatiotemporal
domains where data are irregularly and sparsely dis-
tributed, such as applications based on geographic
surveys and geolocated data collected by volunteers
through crowdsourcing platforms.

The three species whose data were analyzed in this
article span the rich variation in avian distributional
dynamics that characterize bird species’ annual
cycles. For long-distance migrants, these dynamics
extend well beyond the conterminous USA, where
research and conservation efforts are often focused,
including our own efforts based on eBird data (La
Sorte et al. [2013], for example). By modeling occur-
rences across the entire Western Hemisphere,
AdaSTEM provides novel information on how these
dynamics are structured for entire populations of
multiple species across their entire annual cycles,
even for species that are panhemispheric migrants.
This information has tremendous potential to gener-
ate novel inferences in avian ecology and evolution,
and to benefit national and international efforts in
avian conservation. For example, we can now gain a
more detailed understanding of theprocess of migra-
tion — how fast birds travel, which routes they take,
whether the same routes are followed northward and
southward, and whether there are discrete collections
of species that travel along the same flyways — that
have previously only been studied over smaller
region (La Sorte et al. 2013) or for very small numbers
of individual birds (Stutchbury et al. 2009). By
expanding and improving our existing knowledge
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base, conservation efforts can be more effective and
efficient, with implications not only for protecting
current avian populations but for providing the basis
for their long-term sustainability under global envi-
ronmental change.
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