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Sketching and drawing are valuable tools for communi-
cating conceptual and spatial information. When peo-
ple communicate spatial ideas with each other, drawings

and diagrams are highly effective because they lighten work-
ing memory load and make spatial inference easier (Larkin
and Simon 1987). Visual representations may also be helpful
for communicating abstract ideas, even when those ideas are
not literally about space (for example, reasoning about prob-
ability [Cheng 2011]). Essentially, drawings provide external-
ized symbol systems that facilitate spatial reasoning, which
can be applied to a variety of domains. 

Sketching is especially useful for learning and instruction
in spatially rich subjects, like science, technology, engineer-
ing, and mathematics (that is, STEM fields). For science edu-
cation, sketching can be used to increase engagement,
improve learning, and encourage encoding across different
representations (Ainsworth, Prain, and Tytler 2011). Drawing
and sketching have the potential to play critical roles in sci-
ence education, especially considering the importance of spa-
tial skills in STEM disciplines. Data from more than 50 years
of psychological research indicate that spatial skills are stable
predictors of success in STEM fields (Wai, Lubinski, and Ben-
bow 2009). Individuals with greater spatial skills are more
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n One of the major challenges to build-
ing intelligent educational software is
determining what kinds of feedback to
give learners. Useful feedback makes use
of models of domain-specific knowl-
edge, especially models that are com-
monly held by potential students. To
empirically determine what these mod-
els are, student data can be clustered to
reveal common misconceptions or com-
mon problem-solving strategies. This
article describes how analogical
retrieval and generalization can be used
to cluster automatically analyzed hand-
drawn sketches incorporating both spa-
tial and conceptual information. We
use this approach to cluster a corpus of
hand-drawn student sketches to discov-
er common answers. Common answer
clusters can be used for the design of
targeted feedback and for assessment.
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likely to earn advanced STEM degrees and attain
STEM careers. As such, it is important that science
education make use of spatial tools, like sketching,
for teaching the next generation of STEM profession-
als, educators, and researchers, as well as for more
informed citizens. 

Advances in intelligent tutoring systems have
opened the possibility of creating educational soft-
ware than can support sketching and take advantage
of the many benefits it has to offer (for example,
Valentine et al. [2012]). However, building intelligent
sketching software is challenging because it requires
software that understands sketches in humanlike
ways. The noisy nature of sketches makes them diffi-
cult to interpret. Consequently, assessing the quality
of a student’s sketch requires a considerable amount
of spatial and conceptual reasoning. With the excep-
tion of advanced design sketches, most sketches are
rough approximations of spatial information. They
are rarely drawn to scale and often require multi-
modal cues (for example, gestures, speech) to facili-
tate understanding. For example, a sketch of a map
might contain various shapes that represent different
landmarks. The shapes may look nothing like the
actual landmarks, but may be denoted as landmarks
by labels. No one has trouble understanding that a
blob can represent something that looks physically
different; such visual information is processed with a
grain of salt. Somehow, people are able to focus on
the spatially and conceptually important informa-
tion in the sketch and, for the most part, ignore irrel-
evant information. Building software that can
achieve this level of understanding from a sketch is a
major challenge for the artificial intelligence com-
munity.

Qualitative representations are a good match for
sketched data because they carve continuous visual
information (for example, two-dimensional location)
into discrete categories and relationships (for exam-
ple, round, right of, and others). These representa-
tions enable software systems to reason about sketch-
es using the same structured representations that are
hypothesized to be used by people.

Since comparison is prevalent in instruction, a
model of visual comparison that incorporates con-
ceptual information is also important for sketch
understanding. Analogical comparison using struc-
ture mapping (Gentner 1983) allows structured
descriptions to be compared to each other to evalu-
ate how similar the two descriptions are. The struc-
ture-mapping model of analogy can be used to com-
pare sketches to each other, highlighting qualitative
similarities and differences, while adhering to con-
straints and biases that are supported by psychologi-
cal research. Computational models of structure
mapping have been used to simulate cognitive phe-
nomena (Gentner and Forbus 2011), solve physics
problems (Klenk and Forbus 2009; Lockwood and
Forbus 2009), and compare text passages to Jeopardy

clues for question answering (Murdock 2011). Struc-
ture mapping enabled these systems to make more
humanlike comparisons. In educational software,
such as Sketch Worksheets (Yin et al. 2010), structure
mapping generates comparisons that can be used to
assess a student’s sketch by comparing it to a prede-
fined solution.

A major challenge in any intelligent tutoring sys-
tem is determining how to coach students. When
designing feedback, instructors must hypothesize
what will be hard and what will be easy for students.
Such hypotheses are not always data driven and can
be inaccurate (Nathan, Koedinger, and Alibali 2001).
Consequently, most successful intelligent tutoring
systems incorporate detailed cognitive models of the
task being taught. Building cognitive models requires
research on novice misconceptions and strategies
(Anderson et al. 1995). Some systems also model the
strategies of human tutors, such as intervention tech-
niques and tutoring dialogue (VanLehn et al. 2007).
Creating cognitive models for both correct knowl-
edge and common misconceptions for an entire
domain is difficult. By contrast, specific exercises can
have easily defined misconceptions that can be iden-
tified without a full analysis of the domain. By ana-
lyzing the work of multiple students on an example,
common models (some of which may be misconcep-
tions) can be mined from the data. Although there
has been work devoted to assessing student knowl-
edge through sketches (Jee et al. 2009; Kindfield
1992) and mining information about students from
learning data (for example, from hand-coded sketch-
es [Worsley and Blikstein 2011]) we are unaware of
any efforts to combine automatic sketch understand-
ing and educational data mining. This paper
describes an approach for using analogical reasoning
over hand-drawn sketches to detect common student
answers.

Our hypothesis is that analogical generalization
can be used to generate meaningful clusters of hand-
drawn sketches. We compare analogical generaliza-
tion to a k-means clustering algorithm and evaluate
its performance on a set of labeled (that is, clustered
by hand) student sketches. The resulting clusters
from the experiments can be inspected to identify
the key characteristics of each cluster. These charac-
teristics can be used to identify student misconcep-
tions and to design targeted feedback for students. 

Background
Structure mapping is the comparison mechanism of
our clustering approach. Here we summarize the
computational models for analogical matching,
retrieval, and generalization that we use. We then
describe Sketch Worksheets, which is our sketch-
based educational software system used to collect
and encode hand-drawn sketches.
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Structure Mapping 
The structure-mapping engine (SME) (Faulkenhainer,
Forbus, and Gentner 1989) is a computational mod-
el of analogy that compares two structured descrip-
tions, a base and a target, and computes one or more
analogical mappings between them. Each mapping
contains a set of correspondences to indicate which
items in the base correspond to which items in the
target, a structural evaluation score to measure match
quality, and a set of candidate inferences, which are
statements that are true in the base and hypothesized
to be true in the target. 

Three constraints are imposed on the mapping
process to prevent all potential mappings from being
computed and to account for certain psychological
phenomena. The mapping process begins by match-
ing identical relations to each other. This constraint
is referred to as identicality. Nonidentical relations
may end up corresponding to each other in the final
match, but only if their correspondence is suggested
by higher-order matches. The mapping process also
adheres to the 1:1 constraint, which ensures that
items in one description can have at most one corre-
sponding item in the other description. Parallel con-
nectivity requires that arguments to matching rela-
tions also match. These constraints make analogical
matching tractable.

Importantly, SME has a bias for mappings with
greater systematicity, which means that it prefers map-
pings with systems of shared relations, rather than
many shared isolated facts. In other words, given two
mappings, one with many matching but disconnect-
ed (that is, shallow, lower-order) relations, and
another with many matching interconnected (that is,
deep, higher-order) relations, SME will prefer the lat-
ter. The systematicity preference in SME captures the
way people perform analogical reasoning. People pre-
fer analogies that have systems of shared relations
and are more likely to make analogical inferences
that follow from matching causal systems, rather
than shallow matches (Clement and Gentner 1991). 

To create sketch clusters, we use SAGE (sequential
analogical generalization engine), an extension of
SEQL (Kuenhe et al. 2000) that computes probabili-
ties for expressions during generalization and
retrieves structured descriptions using analogical
retrieval. Generalizations are created by incremental-
ly introducing exemplars into a generalization con-
text. Each generalization context consists of a case
library that includes both exemplars and generaliza-
tions. For each new exemplar, the most similar exem-
plar or generalization in the generalization context is
found via analogical retrieval using MAC/FAC (For-
bus, Gentner, and Law 1995). MAC/FAC computes
content vectors that measure the relative frequency
of occurrence of relations and attributes in structured
representations. It finds the maximum dot product
of the vector for the exemplar with the vectors of
everything in the generalization context. This step

may retrieve up to three items and is analogous to a
bag of words approach to similarity, albeit with pred-
icates. These items are then compared to the exem-
plar using SME and the item with the highest struc-
tural evaluation score (that is, the most similar case)
is returned. 

The reminding returned by MAC/FAC is either an
exemplar or an existing generalization. If the simi-
larity between the reminding and the exemplar is
above a predefined assimilation threshold, then they
are merged together. If the best match is a general-
ization, the new exemplar is added to it. If the best
match is another exemplar, then the two are com-
bined into a new generalization. If there is no best
match above the assimilation threshold, then the
new exemplar is added directly to the case library for
that generalization context. It will remain an exem-
plar in the generalization context until it is joined
with a new exemplar or until there are no more
exemplars to add.

The resulting generalizations contain generalized
facts and entities. Each fact in a generalization is
assigned a probability, which is based on its frequen-
cy of occurrence in the exemplars included in the
generalization. For example, a fact that is true in only
half of the exemplars would be assigned a probabili-
ty of 0.5. Thus, entities become more abstract, in that
facts about them “fade” as their probability becomes
lower.

Sketch Worksheets
Sketch Worksheets are built within CogSketch (For-
bus et al. 2011), our domain-independent sketch
understanding system. Each sketch worksheet
includes a problem statement, a predefined solution
sketch, and a workspace where the student sketches
his or her candidate answer. As part of the authoring
process, the worksheet author describes the problem,
sketches an ideal solution, and labels elements in the
solution with concepts that he or she selects from an
OpenCyc-derived knowledge base.1 CogSketch ana-
lyzes the solution sketch by computing qualitative
spatial and conceptual relations between items in the
sketch. Spatial relations that are automatically com-
puted include topological relations (for example,
intersection, containment) and positional relations
(for example, right of, above), all of which are
domain independent. Conceptual relations include
relations selected by the worksheet author and can
be a combination of domain general relationships
and domain-specific relationships. The worksheet
author can then peruse the representations comput-
ed by CogSketch and identify which facts are impor-
tant for capturing the correctness of the sketch. For
each such fact, the author includes a piece of advice
that should be given to the student if that fact does
not hold in the student’s sketch. When a student asks
for feedback, SME is used to compare the student’s
sketch to the solution sketch. The candidate infer-
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ences, which represent differences between the
sketches, are examined to see if there are any impor-
tant facts among them. If there are, the advice asso-
ciated with that important fact is included as part of
the feedback. By identifying important facts and
associating advice with them, the worksheet author
creates relational criteria for determining the correct-
ness of the sketch.

Worksheet authors can also identify which drawn
elements have quantitative location criteria by defin-
ing quantitative ink constraints, which define a toler-
ance region for a particular drawn element. Which ele-
ments of a solution sketch correspond to elements of
a student’s sketch is determined through the corre-
spondences that SME computes. If the student’s drawn
element falls outside of the tolerance region, it is con-
sidered incorrect. If it falls within the tolerance region,
it is considered correct. This allows the author to set
criteria about the absolute location of drawn elements.

The difference between these two criterion types
can be illustrated by two different worksheet exercis-
es. Consider a worksheet that asks a student to draw
the solar system. The exact location of the sun does
not matter, as long as it is contained by the orbit
rings of other planets. In other words, its location is
constrained relative to other drawn entities. A work-
sheet author would capture this by marking a con-
tainment fact as important and associating a natural
language advice string with that fact. Alternatively,
consider a worksheet that asks a student to identify
the temporal lobe on a diagram of the human brain.
The absolute location of the drawing denoting the
temporal lobe would be important. For an element
whose location is constrained relative to an absolute
frame of reference (for example, a background
image), quantitative ink constraints are necessary.

Sketch Worksheets have been used in experiments
on spatial reasoning as well as classroom activities in
geoscience (at Northwestern University and Carleton
College) and elementary school biology. The sketch-
es used in the experiments described in this paper
were collected using sketch worksheets.

Clustering Through 
Analogical Generalization

Clustering is achieved by performing analogical gen-
eralization over student sketches. The clustering algo-
rithm adds the sketches in random order, using the
SAGE algorithm mentioned above. A single general-
ization context is used, that is, it operates unsuper-
vised, because the goal is to see what clusters emerge. 

Encoding
A major challenge to clustering sketches is choosing
how to encode the information depicted in each
sketch. Each sketch contains a wealth of spatial infor-
mation, not all of it relevant for any particular situa-
tion.2 In order to highlight visually and conceptual-

ly salient attributes and relationships, we harness
information explicitly entered by the student and the
worksheet author. More specifically, we filter the
underlying representations in each sketch based on
the following principles: conceptual information is
critical, quantitative ink constraints must constrain
analogical mappings, and worksheet authoring
should guide spatial and conceptual elaboration.

Conceptual Information 
Every sketch worksheet comes equipped with a sub-
set of concepts from an OpenCyc-derived knowledge
base. This subset contains the concepts that may be
used in the worksheet and are selected by the work-
sheet author to limit the conceptual scope of the
exercise. These concepts are applied by students to
elements of their drawing through CogSketch’s con-
ceptual labeling interface. This is useful for education
because the mapping between shapes and entities is
often one to many. While visual relationships are
computed automatically by CogSketch, conceptual
relationships are entered by sketching arrows or
annotations and labeling them appropriately,
through the same interface. Thus, the conceptual
labels constitute the students’ expression of their
model of what is depicted. Consequently, conceptu-
al information is always encoded for generalization.

Quantitative Ink Constraints Limit Matches
Another type of information that is entered explicit-
ly by the worksheet author is quantitative ink con-
straints. Recall that quantitative ink constraints
define a tolerance region relative to an absolute frame
of reference (for example, a background image).
Quantitative ink constraints are defined for entities
whose absolute position matters.

When encoding information about entities for
which there are quantitative ink constraints, the
encoding algorithm computes their position with
respect to the tolerance regions, to determine if the
entity’s location meets the constraint or not. If it does
not, we further encode how the constraint was vio-
lated (for example, too wide, too narrow) and include
that information in the encoding.

Furthermore, each entity that is evaluated with
respect to a quantitative ink constraint is associated
with that constraint as a location-specific landmark.
This association limits the possible analogical map-
pings by ensuring that entities associated with one
landmark cannot map to entities that are associated
with a different landmark. This also ensures that enti-
ties cannot be generalized across different location-
specific landmarks. This approach for using quanti-
tative constraints to limit the analogical mappings
has been shown to lead to sketch comparisons that
provide more accurate feedback to students (Chang
and Forbus 2012).

Spatial and Conceptual Elaboration
Worksheet authors can also specify a subset of the
visual relationships computed by CogSketch as
important. For example, the core of Earth must be



inside its mantle. Some conceptual information can
also be marked as important, for example, that one
layer of rock is younger than another. All facts
marked as important by the worksheet author,
whether spatial or conceptual, are always included in
the encoding for generalization.

Evaluation
To evaluate our clustering algorithm we used a set of
fault identification worksheets (for example, figure
1) submitted by students taking an undergraduate
geoscience course at Northwestern University. There
were 28 sketches in total, spanning three different
fault identification exercises. A gold standard was
created by hand-clustering the sketches for each
exercise separately, taking into account visual fea-
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Figure 1. Four Example Student Sketches.

The bottom two are grouped together and considered nearly correct.  The top two occupy their own single-member clusters.

tures of the sketch (for example, location of drawn
entities), what type of entities were included in the
sketch, and whether or not the sketch would be con-
sidered correct by an instructor. We then ran our gen-
eralization algorithm on the unlabeled data for each
exercise to evaluate how well the clusters it produced
match the gold standard. Because clusters may differ
depending on the order in which sketches are select-
ed, we repeated the clustering over 10 iterations. We
collected three measures from the resulting clusters:
purity, precision, and recall. Purity is a measure of the
quality of a set of clusters, defined as the ratio of cor-
rectly classified exemplars across clusters to the total
number of exemplars. The precision of a cluster is the
proportion of exemplars in the cluster that are classi-
fied correctly, and the recall of a cluster is the pro-
portion of exemplars that are correctly included in



Articles

SPRING 2014   81

Table 1. Clustering Measures for Analogical Generalization (SAGE) 
and k-Means Clustering (Without Analogy).  

All measures are averaged over 10 random restart iterations of the cluster-
ing procedure.  Asterisks indicate the probability associated with independ-
ent samples t-tests between SAGE and k-means measures: ** p < 0.001, * p <
0.005

 SAGE k-means 
Sketch Group 1   
Number of Clusters 6.7 6 
Purity** 0.90 0.72 
Precision** 0.86 0.56 
Recall* 0.85 0.56 
Sketch Group 2   
Number of Clusters 5.5 4 
Purity** 0.94 0.74 
Precision** 0.98 0.61 
Recall** 0.82 0.59 
Sketch Group 3   
Number of Clusters 6.1 4 
Purity** 0.96 0.83 
Precision** 0.99 0.67 
Recall* 0.80 0.68 

the cluster. Precision and recall were computed with
respect to the gold standard.

k-Means Clustering
To explore the impact of relational structure on gen-
eralization behavior, we also compared our approach
to a nonstructural way of ascertaining similarity.
Specifically, we used the MAC/FAC content vectors
(described above) as a cruder, nonrelational form of
similarity. While content vectors are still sensitive to
the presence of relationships, since those predicates
are included in them, content vectors only contain
relative frequency information. In other words, “man
bites dog” is the same as “dog bites man.” We used k-
means clustering on the same data, where each mean
was the content vector of a sketch and the distance
measure between means was the inverse dot product
of the content vectors being compared. The more
overlap between the content vectors (that is, the
more overlap between attributes and relationships),
the greater the similarity and the smaller the dis-
tance. For each k-means clustering process we sup-
plied k by counting the number of labeled clusters. In
this sense, the k-means clustering approach had a
slight advantage over analogical generalization. The
k-means clustering algorithm was also repeated 10
times, since the initial k means can affect the make-
up of clusters.

Results
Table 1 shows the average purity, precision. and recall
for each approach across the three worksheet groups,
averaged over 10 iterations of each approach. Ana-
logical generalization outperformed k-means without
analogy for clustering in all measures. Since purity is
often high when there are many clusters, it is impor-
tant to consider the precision and recall measures as
well.

We used independent samples t-tests to test for sig-
nificant differences between purity, precision, and
recall for each sketch group separately (for a total of
nine comparisons). Each measure was significantly
higher for analogical generalization than for k-means
clustering (p < 0.005, Bonferroni corrected for nine
comparisons).

Figure 2 shows two sketches that were frequently
generalized together. This cluster indicates a com-
mon sketching behavior exhibited by students. The
high-probability facts in the generalization indicate
the defining criteria for the cluster. Most of the high-
probability facts in this generalization are concept
membership attributes. Other facts refer to the direc-
tion of the sketched diagonal arrows in the sketch.
These facts were already considered in the feedback
design of this worksheet. However, the three high-
probability facts shown in figure 2 indicate the
potential for more targeted feedback. These facts
indicate that three of the four marker beds failed
quantitative ink constraints in specific ways. The

bold horizontal arrows imposed on the figure point
to two marker beds that map to each other in an ana-
logical mapping. Both of these marker beds fall short
of the left bounds of their quantitative ink con-
straints (see first fact in figure 2). Similarly, two oth-
er marker beds (unmarked) fall short of the right
bounds of the quantitative ink constraints. Without
knowing that multiple students would exhibit this
common behavior, a worksheet author would have
no reason to include targeted feedback about it.
Indeed, the authors of these worksheets were sur-
prised to discover that multiple students had engaged
in the same interpretation of the image and conse-
quently the same erroneous sketching behavior. Giv-
en that multiple students commit this error, targeted
feedback about the horizontal extent of marker beds
would have been helpful, for example, “Marker bed
regions are not just near the fault; they can extend to
the edges of the image.” This is the type of informa-
tion that can be leveraged from clustering student
data. In turn, this information can be used to design
exercises with advice for students that can have a
greater impact than the feedback created by the
worksheet authors a priori.



Related Work
Many researchers have explored misconceptions in
domains like algebra, geometry (Anderson et al.
1995), and physics (VanLehn et al. 2007). Each of
these research programs answers important ques-
tions about the structure of knowledge during learn-
ing. These answers have shaped the coaching strate-
gies of various tutoring systems. 

Many sketch understanding systems exist but
most stick to a single domain because they use
sketch recognition (Lee et al. 2007; de Silva et al.
2007; Valentine et al. 2012). No other sketch under-
standing systems use structure mapping as a model
for comparison. Despite this, it may still be possible
to apply similar clustering techniques to those sys-
tems.

Discussion and Future Work
This article describes a method for clustering sketch-
es to detect common answer patterns. We used mod-
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Figure 2. Two Sketches That Are Frequently Clustered Together and Three High-Probability Facts from Their Generalization.

The horizontal block arrows point to the drawn entity that is referenced in the first fact. That entity falls short of the left bound of its quan-
titative ink constraint.

(lessThanQuantInkLeftBound

(GenEntFn 5 1 Faults-1) Object-438)

(lessThanQuantInkRightBound

(GenEntFn 3 1 Faults-1) Object-440)

(lessThanQuantInkRightBound

(GenEntFn 4 1 Faults-1) Object-436)

els of human analogical processing to cluster hand-
drawn sketches completed by undergraduate geo-
science students. The analogical clustering approach
significantly outperformed a k-means clustering algo-
rithm. 

This technique can be used to mine common
answer patterns from sketches so that they can be
used for assessment or for designing targeted feed-
back. Instructors may use this technique to discover
the distribution of answer patterns in their class-
rooms, some of which may be prevalent misconcep-
tions. This approach enables common answer detec-
tion in a data-driven (but tightly scoped) manner,
without requiring a cognitive analysis of the entire
domain or even the entire task.

One of the limitations to this approach is the
understandability of the facts used to describe gener-
alizations. As discussed above, high-probability facts
can be used to understand the defining criteria of a
cluster. For an instructor to easily interpret these facts
would require familiarity with the knowledge repre-
sentations used there. However, it can be argued that
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the instructors may not need those explicit facts.
Instead, they can simply view a prototypical member
of the cluster and decide on the defining criteria for
themselves. With this technique, rather than looking
at all the sketches submitted by students, an instruc-
tor can inspect only as many sketches as there are
clusters.

In the future we plan to continue refining encod-
ing procedures of sketches. The procedures used in
this experiment are domain general, but there are
likely cases where different filters on conceptual
and/or spatial information will be needed. We may
also be able to learn more about common problem-
solving strategies by including an analysis of a
sketch’s history in our encoding. This would allow us
to create clusters based on sketching behaviors over
time, rather than only in the final state of a student’s
sketch. We also have not yet integrated shape and
edge level representations into this encoding proce-
dure (Lovett et al. 2012), as these are only now start-
ing to be integrated into our sketch worksheets. We
also plan to add clustering to the grading utilities
built into sketch worksheets. Most importantly, we
plan to extend our experiments to more sketches in
more STEM domains. This will involve continued
collaboration with STEM experts and educators at the
K–12 and university levels. We anticipate that using
a varied corpus of sketches will enable us to converge
on encoding procedures that will scale up and
become powerful tools for designing environments
with impactful instructional feedback.
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Notes
1. www.cyc.com/platform/opencyc.

2. For example, a student might draw a planet above the sun
versus below the sun, a visually salient difference that does-
n’t matter in most orbital diagrams.
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