
In the United States alone, approximately $2.6 trillion was
spent on health care in 2010. It is well recognized that regu-
lar and accurate self-monitoring of physiological parameters

and energy expenditure (calorie burn) can improve self-aware-
ness of personal health by providing important feedback. Such
awareness and tracking are prerequisites for cost-effective health
management, illness reduction, health-conscious decision mak-
ing, and long-term lifestyle changes.

There exists a wide spectrum of technologies available for
monitoring physical activity, tracking energy expenditure, and
managing weight. While many of these technologies provide
some degree of accuracy, the most accurate among them, meta-
bolic carts and calorimetry chambers, are bulky, expensive, and
limited to laboratory and clinical use (Holdy 2004). In contrast,
those that are small and inexpensive are, by and large, inaccu-
rate.

At the high-accuracy end of the body monitor space is the
doubly labeled water technique, a medical procedure that is
guaranteed to give accurate measures of energy expenditure
(Schoeller et al. 1986), but is very expensive and only gives read-
ings for a 10- to 14-day period, making it impractical for con-
tinuous or short-term monitoring. At the less precise end of
body monitor devices are several single-sensor (predominantly
accelerometer-based) devices currently in the consumer market
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n In this article we provide insight into the
BodyMedia FIT armband system—a
wearable multisensor technology that
continuously monitors physiological
events related to energy expenditure for
weight management using machine-
learning and data-modeling methods.
Since becoming commercially available
in 2001, more than half a million users
have used the system to track their phys-
iological parameters and to achieve their
individual health goals including weight
loss. We describe several challenges that
arise in applying machine-learning tech-
niques to the health-care domain and
present various solutions utilized in the
armband system. We demonstrate how
machine-learning and multisensor data-
fusion techniques are critical to the sys-
tem’s success.



that are low cost and lightweight at the expense of
accuracy (Beighle, Pangrazi, and Vincent 2001;
Crouter et al. 2003).

We believe that a physiological monitoring
device that provides estimates such as energy
expenditure should be accurate, provide continu-
ous user feedback, be user friendly, and be fully
functional during all the activities of a user’s daily
life (free-living conditions). Moreover, the device
should be cost-effective. The presented BodyMedia
FIT armband system (BodyMedia 2011) achieves
these goals. The effective integration of machine-
learning methodologies and a multisensor tech-
nology used in a smart manner can rival medical-
grade equipment in terms of clinical accuracy, at
the same time surpassing such equipment by col-
lecting data in real time under free-living condi-
tions. 

The BodyMedia FIT system is able to provide
accurate free-living energy expenditure estimates
for two principal reasons—usage of machine-learn-
ing-based algorithms and multiple-sensor technol-
ogy. The system employs state-of-the-art data mod-
eling and machine-learning techniques to
implement a data-centered process to estimate,
rather than measure, most key physiological
parameters. Multiple sensors operate concurrently
to provide a real-time user activity context, which,
in turn, provides a context-sensitive estimate of
the users’ physiological parameters.

This article will describe some of the challenges
associated with estimating energy expenditure,
engineering the BodyMedia FIT armband, applying
machine-learning techniques used in developing
the estimation algorithms, as well as the results of
several studies assessing accuracy of the device and
the practical utility of the device in a weight-loss
scenario. 

Background 
Figure 1 shows the armband device (model MF). It
is worn on the upper arm. The current commercial
version uses four types of sensors: a three-axis
accelerometer tracks the movement of the upper
arm and body and provides information about
body position. A synthetic heat-flux sensor meas-
ures the amount of heat being dissipated by the
body to the immediate environment. Skin temper-
ature and armband-cover temperature are meas-
ured by sensitive thermistors. The armband also
measures galvanic skin response (GSR), the con-
ductivity of the wearer’s skin, which varies due to
sweating and emotional stimuli. The armband
contains a transceiver radio and a Universal Serial
Bus (USB) port, allowing wireless transmission as
well as wired uploading of data. The armband is
made predominantly of natural Acrylonitrile Buta-
dine Styrene (ABS) and 304 grade stainless steel

and attaches to the arm with an elastic Velcro
strap. The armband is approximately 55 by 62 by
13 mm (2.2 by 2.4 by 0.5 inches) and weighs 45.4
grams (1.6 oz), it stores more than 14 days of con-
tinuous body data and has enough power for 5–7
days of wear from a rechargeable battery when
worn 23 hours a day. Each sensor is sampled 32
times per second. Other BodyMedia armband
monitors are available that record the same sensor
information but differ in other features such as
Bluetooth wireless or increased memory capacity.

The system collects physiological data on a con-
tinuous basis from the armband user. Data is con-
ditioned, analyzed, interpreted, and stored within
the device. The device’s on-board algorithms pro-
vide real-time estimations of key physiological
measures of interest such as the energy expendi-
ture, total number of steps, and number of minutes
of moderate and vigorous activity. These key meas-
urements can be displayed wirelessly on a Body-
Media FIT display device (figure 1c), or on a phone
using a mobile application such as the iPhone
application shown in figure 1d. Additionally, the
data can later be transferred electronically
(through USB or wirelessly) to a computer or to a
BodyMedia web account, where the software rean-
alyzes the data and makes a definitive high-level
analysis of the data with algorithms that are too
computationally expensive to run in the device’s
firmware.

The system collects physiological data on a con-
tinuous basis from the armband user. Data is con-
ditioned, analyzed, interpreted, and stored within
the device. The device’s on-board algorithms pro-
vide real-time estimations of key physiological
measures of interest such as the energy expendi-
ture, total number of steps, and number of minutes
of moderate and vigorous activity. These key meas-
urements can be displayed wirelessly on a Body-
Media FIT display device (figure 1c), or on a phone
using a mobile application such as the iPhone
application shown in figure 1d. Additionally, the
data can later be transferred electronically
(through USB or wirelessly) to a computer or to a
BodyMedia web account, where the software rean-
alyzes the data and makes a definitive high-level
analysis of the data with algorithms that are too
computationally expensive to run in the device’s
firmware.

Various versions of the armband have been in
active use by hundreds of thousands of users over
the last nine years. The earlier products were larg-
er, heavier, and more expensive to manufacture.
The earliest of these had only a two-axis
accelerometer rather than the current three-axis
model. Additionally, the algorithms have been
updated numerous times over the years because
more data enables more accurate and improved
algorithms.
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The BodyMedia armband is in use in several
commercial applications, including the Body-
Media FIT product and the bodybugg product from
24 Hour Fitness, especially targeted for consumers
trying to lose or maintain their weight and
increase fitness.

Introduction to Energy 
Expenditure Measurement

The number of calories a person burns is an impor-
tant and actionable parameter for achieving many
health goals, such as weight control and sports per-
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Figure 1. BodyMedia System Overview.
(a) (top left) BodyMedia armband device and its sensor layout. The figure shows the side of the device worn against the skin. (b) (top right)
Sensor description. (c) (bottom left) Front of the armband (showing the cover temperature sensor) and a display device that provides real-
time feedback of physiological parameters to the end user. (d) (bottom right) iPhone application that provides real-time feedback.



formance, as well as for managing many disease
conditions including metabolic disorders, diabetes,
obesity, and associated diseases. Due to the com-
plex nature of metabolism, true total energy
expenditure (TEE) is very difficult to measure.
Nearly all techniques make use of approximations
of one kind or the other. Indirect calorimetry, dou-
bly labeled water, self-report techniques, pedome-
ters, heart-rate monitors, and accelerometers are a
few methods commonly used for energy expendi-
ture estimation.

With indirect calorimetry, widely accepted in
the sports medicine research community, metabol-
ic carts measure the oxygen and carbon dioxide a
person inhales and exhales and then indirectly
compute calories burned by comparing the input
and output volumes of the two gases. Based on a
survey of the literature, devices in this category dif-
fer from one another, as well as between repeated
measurements of the same activity on the same
machine by 5–10 percent (Yates, Cullum, and Pitts-
ley 2004; Wells and Fuller 1998). Most metabolic
carts are rather large and bulky and are not suited
for monitoring outside a laboratory while portable
carts are not as accurate. These devices are expen-
sive, costing upward of US$20,000 for a basic sys-
tem and US$40,000 for a portable oxygen analyzer
(Holdy 2004, Berntsen et al. 2010).

The doubly labeled water (DLW) stable isotope
method is considered to be the gold standard for
measuring TEE under free-living conditions
(Schoeller et al. 1986). This method is based on the
principle that in a loading dose of 2H2

18O, the 18O
isotope is eliminated as CO2 and water, while the
deuterium isotope is eliminated as water. The rate
of CO2 production, and thus energy expenditure,
is calculated from the difference in residual iso-
topes of hydrogen and oxygen remaining in urine
at the end of the testing period. Limitations of the
DLW method include high cost, the need for spe-
cialized equipment and expertise to implement the
techniques, and the fact that the method can only
be used to measure expenditure over a long period
of time (for example, 10–14 days). 

Self-report methods include questionnaires,
interviews, and activity diaries. There are some
advantages of using self-reports or 24-hour recalls,
as they are inexpensive and easy to administer.
However, estimating duration and energy expen-
diture with these can provide only a rough and
inaccurate estimate of activity levels. 

Pedometers, by definition, measure footfalls.
The clear advantage of pedometers is their low
cost, ranging from $15 to $300 (Beighle, Pangrazi,
and Vincent 2001; Freedson and Miller 2000). In
general, pedometers are not accurate when used
for activities that do not involve footfalls (for
example, weight lifting, biking, household activi-
ties). 

Heart rate is one of the fundamental vital signs
and is intimately related to the level of physical
exertion. Especially for moderate to strenuous
activity, a person’s heart rate increases linearly with
oxygen consumption (Freedson and Miller 2000,
Welk 2002). Although heart-rate monitoring is
often used as part of an exercise prescription, heart
rate is not linearly related to energy expenditure
for activities that do not involve large muscle
groups, such as sitting, resting and sleeping. More-
over, chest-strap heart-rate monitors can be bur-
densome to users due to constriction across the
chest necessary to maintain good skin contact.
Electrode-based heart monitors are difficult to
wear, because electrode placement, preparatory
skin treatment, and skin irritation can be detri-
ments to long-term use.

Accelerometers operate by measuring accelera-
tion along a given axis, using any of a number of
techniques, including piezoelectric, micromechan-
ical springs, and changes in capacitance. Often,
multiple axis measurements are bundled into a sin-
gle package, allowing two- and three-axis
accelerometers. While there is no simple linear
relationship between acceleration and energy
expenditure, for certain well-understood activities,
such as walking, well-understood basic principles
of physics (work) and physiology (muscle efficien-
cy) can aid in developing appropriate equations.

Modeling and Design
BodyMedia’s approach to the estimation of energy
expenditure is nonconventional and different
from the approaches mentioned above, since it
employs machine learning to solve the problem.
Machine learning in this context is faced with
some significant challenges including data quality,
inherent variability, and acquisition expense;
unavoidable disparities between training and test-
ing distributions; real-time feedback requirements;
reliable functionality during hardware/firmware
upgrades; and necessary hardware size, power, and
cost limitations. 

First and foremost is the need for high-quality
data, which can be very expensive to obtain on a
sufficiently broad set of activities and subjects. 

The second issue is in the inherent variability
present in the data set and in the target user popu-
lation. Each armband user is unique in physical
characteristics such as age, weight, gender, and fit-
ness level. Each of these characteristics affects the
relationships between measured parameters and
energy expenditure. Moreover, there is variation in
data due to geographical and environmental dif-
ferences, including different humidity and exter-
nal temperatures. Additional sources of variation
include differing calibration specifications and
improper adjustment of medical gold-standard
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equipment. In order to ensure precision, it is
imperative that candidate models be sufficiently
robust to accommodate the aforementioned varia-
tions.

The third challenge stems from inherent dispar-
ities between data used for building energy expen-
diture (EE) estimation models and data collected in
actual use. The gold-standard data used for build-
ing the EE estimation models can only be collect-
ed from a limited set of simple, time-constrained
and mostly indoor activities in lab settings, where-
as their actual use occurs in free-living, real-world
settings where the users perform a multitude of
complex activities. Making EE estimation models
in these circumstances violates a fundamental
assumption of machine learning that both the
training and testing distribution are drawn from
the same distribution.

The fourth challenge is in the fact that the mod-
els themselves have to satisfy multiple objectives.
For example, the model should be accurate for
minute-to-minute real-time feedback for specific
activities as well as for weeks-long free-living pro-
tocols composed of a multitude of activities. These
different use cases can make model selection diffi-
cult. 

Another challenge is that algorithms need to
function reliably through hardware improve-
ments, including miniaturization and simplifica-
tions, that result in reduced costs. 

Finally, many models require the production of
real-time results. In this event, an on-board proces-
sor that has limited memory and computational
capability computes the algorithm. This influences
the choices of underlying features and modeling
methods, in that we prefer efficient methods with
respect to time and space complexity.

Modeling Process
BodyMedia’s modeling process can be defined in
the following steps: data collection, data cleaning,
feature generation, development of context detec-
tors, development of regression models, and final-
ly internal and external validation.

Data Collection
Any nontrivial machine-learning method needs
good data. To meet the challenge of obtaining
high-quality data, BodyMedia conducts data col-
lection studies at multiple clinical sites spread
across the globe. We have worked to enlist many
academic researchers as colleagues and advisors,
allowing us to obtain data from far more studies
than we could collect ourselves. Data collection is
designed to provide sufficient samples to capture
variability in the domain. As specific examples, the
data used in the algorithms range from 5-year-old
children to retirees in their 70s; it represents
unhealthy subjects suffering from multiple dis-

eases at one end of the spectrum to elite athletes
participating in sports events at the other. We cap-
ture data from people engaging in many different
activities as well, ranging from restful activities
such as sleeping and lying down to highly vigorous
activities such as sprinting, stair-master, rowing,
and mountaineering. The collected data can come
from either of the two environments: free-living
with user-annotated activities or in a laboratory or
controlled environment following a strict proto-
col. For most lab studies, data from high-accuracy
gold-standard equipment, such as metabolic carts
or metabolic chambers, is also collected for train-
ing and testing purposes. While free-living data
consists of many activities and is used for activity
classification, lab data is limited to a certain subset
of activities and is used primarily for building EE
estimation models.

Data Cleaning
We have developed a rigorous process for cleans-
ing data and preparing it for modeling. Armband
sensor data in each data file is verified; cases of sen-
sor malfunction are detected by comparing the
armband sensor data with the sensors’ standard
distribution. If outliers are found in the sensor val-
ues, those data points are discarded. In cases where
gold-standard medical equipment data is also col-
lected, each data point is carefully aligned using
semiautomated procedures. In cases where gold-
standard equipment either is not properly calibrat-
ed or exhibits a tendency to overestimate or under-
estimate, its compliance with standard MET
(metabolic equivalent, essentially energy cost per
unit of mass) ranges for the corresponding activi-
ties (Ainsworth et al. 2000) is utilized for data val-
idation. Moreover, data sets are checked for cor-
rectness of the activity annotations, which are
usually inserted manually by the user or experi-
menter. Activity annotations are verified for cor-
rectness by comparing the sensor values with the
standard sensor value distribution for the activity
and applying other such heuristics. As an example,
most cases of resting activities cause minimal
changes in motion sensors and GSR sensors. If the
sensors recorded a high degree of motion and/or
steep rises in GSR, it is very likely that the activities
were annotated incorrectly. For cleaning of the
activity annotations, the policy is to err on the side
of caution, as we have found that allowing even
small amounts of poorly labeled or misaligned data
can have inordinate effects on algorithm perform-
ance. 

Feature Generation
The sensors used in the armband are sampled at 32
Hz, whereas the armband records data every
minute (this can be adjusted through software).
Thus compressed and summarized features are cal-
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culated and created from the raw data. More than
50 features of this multidimensional raw data
stream are gathered as separate channels. For
example, the variance of the heat flux is a channel,
as is the average of the heat-flux values. Some
channels are fairly standard such as standard devi-
ation, frequency, peaks, and averages. Others are
complex proprietary algorithms embedded in the
on-board processor of the armband. Typically
these summary features for each minute-
epoch/duty cycle are stored and the raw data is dis-
carded to conserve memory. Typically, we refrain
from calculating computationally complex and
storage-expensive operations, such as Fourier
transforms, in order to conserve the on-board
processor’s memory and finish the full-feature cal-
culation in each epoch. We also use approxima-
tions if the actual feature is computationally
expensive to create.

The next stage of feature generation is per-
formed on the data retrieved from the armband.
This is done to find features useful for recognizing
patterns of activity and for calibrating various
measures against one another. For example, rela-
tive values of GSR are often more useful than
absolute readings. Multiple methods are used to
extract these features: some features are derived
using domain knowledge of exercise and physiolo-

gy, some are derived using an automated feature-
generation technique similar to genetic program-
ming where features must pass a few statistical tests
such as high correlation to the ground-truth EE in
all or some activities, and some features are derived
using standard machine-learning feature-genera-
tion techniques such as principal components
analysis (PCA) and independent component analy-
sis (ICA). Others are added based on intuition and
visual observation. This phase results in a feature
space with more than 500 variables. 

Development of Context Detectors
The next stage of the modeling process is to devel-
op a series of classifiers that break down a user’s
activity into primary components for which good
models of energy expenditure can be created. Clas-
sifiers are created for the following basic activities:
sleeping, resting, motoring, walking, running,
weight lifting, stationary biking, and road biking.
Many popular, computationally inexpensive
machine-learning methods such as naive Bayes
and decision trees are tried out for feature selection
and training for the classifiers. 

To avoid overfitting, all the feature selection and
classification algorithms use k-fold cross-validation.
In our experience, it is not sufficient to perform k-
fold point-based cross-validation (that is, creating
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Figure 2. A Sample of Armband Signals during Various Activities. 
Multiple sensors allow better activity classification.



folds at the level of individual data points) to
ensure robustness and generalization capabilities,
as there are many subject-specific traits present in
the data. Instead, each subject’s entire data is
assigned to one of the k folds. We refer to this strat-
egy as k-fold by-subject cross-validation. Using by-
subject cross-validation results in algorithms that
generalize well to unseen subjects. Moreover, to
avoid overfitting by the classifiers, it was found to
be necessary to avoid features that include subject-
specific traits (such as demographic information). 

The use of multiple sensors provides orthogonal
sets of features in the feature space, helping to pro-
vide more discriminating capability to the classi-
fiers. As an example, figure 2 represents signal val-
ues of one accelerometer-based feature and a
heat-flux-based feature during various activities.
The values for the accelerometer feature for
“climbing stairs” and “walking around the block”
are very similar, making it complex for the classi-
fiers to infer the activity based on the accelerome-
ter data. With the introduction of heat flux, even
a simple classifier can distinguish between the two
activities. 

Typically, the classifier model is designed as a
hierarchical combination of various subclassifier
responses. A base classifier classifies the data into
generic activities, and the next level of the classifi-
er model provides a more fine-grained label to the
activities. For example, one can think of the base
classifier only classifying an activity as “biking,”
and the second-phase classifier classifying all the
“biking” data points into “stationary biking” and
“road biking.” The classifier model makes use of
several subclassifiers spread across multiple levels
of hierarchy.

Development of Regression Models
In this phase, several regression models are built
that provide energy expenditure estimates. Usual-
ly the models are built for a specific activity (or for
a set of very similar types of activities). The regres-
sions are then combined according to the proba-
bilities output from the activity classifiers. Many
prevalent AI-based regression techniques such as
robust regression and locally weighted regression
are used for fitting the data. Feature selection and
training for the regression models is also per-
formed using k-fold by-subject cross-validation.

Most of the physiological measures of interest
estimated by the armband are dependent on sub-
ject-specific traits (for example, mass). Rather than
predicting absolute measures, regressions are tuned
to predict relative measures that are subsequently
adjusted for the subject. For example, in the case of
energy expenditure, the regression models are
actually trained on the relatively subject-indepen-
dent unit METs (Ainsworth et al. 2000) instead of
absolute units such as kJoules or kcalories. 

The steps of feature generation, context detector
development, and regression estimation overlap
one another and are addressed simultaneously.
Multiple iterations of feature generation, classifier
modeling, and regression modeling result in
improved algorithms.

Internal and External Validation
For each algorithm release cycle, certain data sets
are kept untouched for the entire development
period, and performance of the model is evaluated
on those validation sets. The models are approved
and released only if they pass predefined criteria
on the validation sets as well as the training sets.
Similar to the training data sets, validation sets are
subjected to a sufficiently large array of data sam-
ples and a sufficiently broad variety of subjects for
each activity to ensure statistical validity. Some of
the validation sets target particular areas of con-
cern such as a demographic group such as chil-
dren, unhealthy adults, or athletes. Accordingly,
some of the validation sets target only specific
activities. Some types of data sets are good only to
serve as validation sets, for example, the doubly
labeled water data set, where there is only one
reading of total energy expenditure every two
weeks. At the alpha and beta stages of the model
release, results of the models are observed, and
minor changes are made to the model if necessary.
Many researchers also carry out independent exter-
nal validation and performance evaluation of the
system. In most cases, independent external vali-
dation is performed after the product is released,
providing helpful cues to further improvement for
the next version of the models (St. Onge et al.
2007, Welk et al. 2007, Jakicic et al. 2007, Malavolti
et al. 2007).

Results
BodyMedia armbands have been commercially
available since 2001. The fifth generation of the
system is currently sold in the market. There are
more than half a million users of the system
throughout the world. To date, BodyMedia has col-
lected more than 10 billion minutes of armband
data. The system has recorded more than 170 bil-
lion steps and estimated more than 20 billion calo-
ries. 

Data Sets
In the most recent energy expenditure algorithm
created at BodyMedia, a data set with roughly 1
million minutes featuring around 800 users was
used for training the context detectors. All the
minutes were carefully annotated by the users or
experimenters and cleaned to make the data suit-
able for modeling. Developing the regressions
required a gold-standard data set that had 658 sub-
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jects and approximately 40,000 data points.
The data sets had a wide range of demographic

variations: age ranged from 5 years to 78 years;
weight ranged from 18 kg to 152 kg (40 lb to 335
lb). The data was collected from more than 50 dif-
ferent studies, conducted at clinical sites spread
across the world as well as from studies conducted
in-house.

Classification
Tables 1 and 2 show classification results for the
most recent algorithm for major activities. The
main purpose of classification is to assign the most
appropriate regression model to the query data
point. Some of the true-positive rates are seeming-
ly quite low. Further inspection reveals that much
of the misclassification happens between similar
types of activities. For example, misclassification
between motoring and resting occurs often, but
from an energy expenditure standpoint the mis-
classification does not cost much because their EE
ranges are very similar. 

Table 2 shows the four most frequently predict-

ed classes for each true class (the confusion in clas-
sification). Tables 1 and 2 show results evaluated
by using by-subject cross-validation. The model
generalizes well to unseen subjects’ data, with the
overall accuracy of the unseen subjects’ data set
just 1 percent less than the accuracy obtained for
by-subject cross-validation.

Regression Models
Figure 3 shows results of average METs for a new
release candidate versus a recent model already in
use per each activity. The METs value can be
thought of as the relative activity intensity and
energy requirement. The figure shows the release
candidate’s estimates are much closer to true aver-
age METs than the previous version, hence con-
firming the improvement. 

Typically, the errors on the regression models are
measured in Mean Absolute Percentage Errors
(MAPEs). MAPEs are calculated averaging over each
minute as well as averaging over each session of
continuous observation. The new release candi-
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Activity True-Positive Rate Percent True-Negative Rate Percent Accuracy 

Sleeping 76.9 98.7 89.8 

Resting 91 80.8 83.8 

Motoring 75.3 97.4 96.3 

Walking 96.9 94.3 94.4 

Running 92.5 99.5 99.2 

Weight Lifting 39.3 80.8 83.8 

Stationary Biking 61.5 98.5 98.1 

Road Biking 90.6 99.6 99.1 

Table 1. Classification Results for Prominent Activities, Evaluated Using By-Subject Cross-Validation.

Activity Most Predicted Classes per Activity (with True-Positive Rate Percent) 

Sleeping 76.9 percent sleeping, 22.9 percent resting 

Resting 91 percent resting, 5.5 percent weight lifting 

Motoring 75.3 percent motoring, 18.7 percent resting, 3.7 percent stationary biking 

Walking 96.9 percent walking, 3 percent running 

Running 92.5 percent running, 7.4 percent walking 

Weight Lifting 39.3 percent weight lifting, 20.2 percent stationary biking, 15.7 percent resting 

Stationary Biking 61.5 percent stationary biking, 10.1 percent weight-lifting, 9.2 percent motoring 

Road Biking 90.6 percent road biking, 2.9 percent stationary biking, 2.5 percent resting 

Table 2. Four Most Predicted Classes per Activity.



date algorithm has 15 percent session MAPEs over
all the lab data. The new release candidate algo-
rithm provided robust estimates for children as
well as adults, with the session MAPEs as low as
13.7 percent. Daily MAPEs for adults are expected
to be lower than the lab data suggests. The lab data
is composed predominantly of subjects engaged in
exercise, whereas a typical day is made up of most-
ly sleep (about 30 percent), restful activities (about
60 percent), and a small amount of moderate to
vigorous activity.

Doubly Labeled Water Data
As mentioned earlier, doubly labeled water is the
most accurate method to estimate energy expendi-
ture, but provides only one reading per 14 days. 

Figure 4 shows a scatter plot with estimated TEE
values that match well with the actual TEE calcu-
lated from the DLW method. The data was collect-
ed on 30 adult individuals and 30 children wearing
two versions of armbands (2008–2010 model Pro3
and 2010 model MF), one on each arm for a peri-
od of two weeks. The MAPE is less than 10 percent
for adults and the correlation between the true and
estimated TEE is 0.88 (Johansen et al. 2010). A sim-
ilar study was also conducted for children, in
which the MAPE was under 15 percent (Calabró et
al. 2011).

An independent study (Bernsten et al. 2010) val-

idated the accuracy of the armbands in simulated
free-living conditions, where 20 subjects partici-
pated in 60 to 120 minutes of realistic daily activi-
ty. The estimation error from the armbands was
less than 10 percent. These results demonstrate
that the models are generic enough to work for
unseen subjects performing free-living activities.

Results of doubly labeled water studies are of
paramount importance during the prerelease eval-
uation of the candidate models because they pro-
vide valuable feedback on how an algorithm would
behave in free-living settings.

Accelerometers-only Versus Multisensors: We
conducted a study to measure the efficacy of mod-
els built based on the current sensor set versus
models built only on the accelerometer- and
motion-based signals, but still using Bodymedia’s
pattern-recognition methods. More than 30 sub-
jects participated in various exercise activities. We
found that models that used all the sensors had 8
percent per subject error, whereas the models that
used only the accelerometers had 12–15 percent
per subject error. A separate study also provided
comparative evaluation of BodyMedia armband
devices with other commercially available energy
expenditure estimation devices and it was found
that the BodyMedia armband system provided the
most accurate results in comparison to other
devices. The next best device had 14 percent per
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subject error, in comparison to the BodyMedia sys-
tem’s 8 percent per subject error.

Weight-Loss Results
Not only is the armband in use by many users, but
it also appears to significantly help users in achiev-
ing their weight-loss and lifestyle goals. A study
performed at the University of South Carolina
showed that participants who used armbands in
their weight-loss program lost more than twice as
much weight as subjects who did not use the arm-
bands (Barry et al. 2010, Sui et al. 2010). A weight-
loss study done at the University of Pittsburgh
achieved similar results (Pellegrini et al. 2010). 

Real-Time Versus Offline EE Estimates
As mentioned earlier, the commercial system pro-
vides two types of estimates: one in real time, com-
puted by the on-board processors, and the other

one with a richer set of features and modeling
methods when users upload their data to their web
account. For a good user experience, it is impera-
tive that the real-time EE estimates match closely
with the offline EE estimates. The data from the
DLW experiment mentioned earlier (30 adult sub-
jects, 14 days wear) found that the mean difference
between the real-time EE (display EE) and the
offline EE was 2.3 percent per day (about 66 kcal)
with a median difference of 1.7 percent per day; see
figure 5. 

Conclusions and Future Work
With health-care costs growing each year, people
can benefit from an effective, inexpensive, easily
wearable, and accurate physiological monitoring
device: BodyMedia armbands attempt to provide
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that solution in a nonconventional way using sen-
sor fusion and state-of-the-art machine-learning
and artificial intelligence techniques. 

In this article, we have described the modeling
process for estimating the physiological parame-
ters (especially energy expenditure). We also
demonstrate that using AI and machine learning
for solving physiological-monitoring-related prob-
lems poses unique challenges. Several minor and
problem-specific adjustments to the traditional
approaches helped us overcome the challenges,
such as the use of disparate data sources; careful
data cleaning; use of robust features; employing
data validation tricks such as by-subject cross-vali-
dation; use of an iterative multistep process for
building and evaluating models; and performing
rigorous evaluation that validates the models for
their multiple objectives.

The results presented here demonstrate the
capability of the armband sensors and models to
provide accurate results for various activities for a
large range of users in both laboratory and free-liv-
ing settings.

BodyMedia is engaged in continued refinements
to the platform and the development of new body-
monitoring capabilities. These include the integra-
tion of new sensors and the ongoing development
of data models to extract new physiological fea-
tures and contextual activities. Some of the other

projects that BodyMedia is focusing on include
blood-glucose estimation (Vyas et al. 2010, Rollins
et al. 2009), heart-rate estimation (Al-Ahmad,
Homer, and Wang 2004), critical-care parameter
estimation (Convertino et al. 2010), fine-grained
sleep detail, and estimation of total calories con-
sumed. All of these projects make extensive use of
data-driven methods and sophisticated machine-
learning techniques.
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