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The last several years have witnessed the successful appli-
cation of game theory in allocating limited resources to
protect critical infrastructures. The real-world deployed

systems include ARMOR, used by the Los Angeles International
Airport (Jain et al. 2010) to randomize checkpoints of roadways
and canine patrols; IRIS, which helps the U.S. Federal Air Mar-
shal Service (Jain et al. 2010) in scheduling air marshals on
international flights; and GUARDS (Pita et al. 2011), which is
under evaluation by the U.S. Transportation Security Adminis-
tration to allocate the resources available for airport protection.
Yet we as a community of agents and AI researchers remain in
the early stages of these deployments, and must continue to
develop core principles of applying game theory for security.

To this end, this article presents a new game-theoretic secu-
rity application to aid the United States Coast Guard (USCG),
called port tesilience operational/tactical enforcement to com-
bat terrorism (PROTECT). The USCG’s mission includes mar-
itime security of the U.S. coasts, ports, and inland waterways; a
security domain that faces increased risks in the context of
threats such as terrorism and drug trafficking. Given a particu-
lar port and the variety of critical infrastructure that an adver-
sary may attack within the port, USCG conducts patrols to pro-
tect this infrastructure; however, while the adversary has the
opportunity to observe patrol patterns, limited security
resources imply that USCG patrols cannot be at every location
24 hours a day, 7 days a week. To assist the USCG in allocating
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n While three deployed applications of game
theory for security have recently been reported,
we as a community of agents and AI researchers
remain in the early stages of these deployments;
there is a continuing need to understand the
core principles for innovative security applica-
tions of game theory. Toward that end, this arti-
cle presents PROTECT, a game-theoretic system
deployed by the United States Coast Guard
(USCG) in the Port of Boston for scheduling its
patrols. USCG has termed the deployment of
PROTECT in Boston a success; PROTECT is
currently being tested in the Port of New York,
with the potential for nationwide deployment.

PROTECT is premised on an attacker-
defender Stackelberg game model and offers five
key innovations. First, this system is a depar-
ture from the assumption of perfect adversary
rationality noted in previous work, relying
instead on a quantal response (QR) model of
the adversary’s behavior — to the best of our
knowledge, this is the first real-world deploy-
ment of the QR model. Second, to improve PRO-
TECT’s efficiency, we generate a compact repre-
sentation of the defender’s strategy space,
exploiting equivalence and dominance. Third,
we show how to practically model a real mar-
itime patrolling problem as a Stackelberg game.
Fourth, our experimental results illustrate that
PROTECT’s QR model more robustly handles
real-world uncertainties than a perfect ration-
ality model. Finally, in evaluating PROTECT,
this article for the first time provides real-world
data: comparison of human-generated versus
PROTECT security schedules, and results from
an Adversarial Perspective Team’s (human
mock attackers) analysis.
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its patrolling resources, similar to previous appli-
cations (Jain et al. 2010, Pita et al. 2011), PROTECT
uses an attacker-defender Stackelberg game frame-
work, with USCG as the defender against terrorist
adversaries that conduct surveillance before poten-
tially launching an attack. PROTECT’s solution is
to provide a mixed strategy, that is, randomized
patrol patterns taking into account the importance
of different targets, and the adversary’s surveil-
lance and anticipated reaction to USCG patrols.

While PROTECT builds on previous work, this
article highlights five key innovations. The first
and most important is PROTECT’s departure from
the assumption of perfect rationality (which was
embedded in previous applications) on the part of
the human adversaries. The assumption of perfect
rationality is well recognized as a limitation of clas-
sical game theory, and a number of approaches
have been proposed to model bounded rationality
in behavioral game-theoretic approaches (Camerer
2003). Within this behavioral framework, quantal
response equilibrium has emerged as a promising
approach to model human bounded rationality
(Camerer 2003; McKelvey and Palfrey 1995;
Wright and Leyton-Brown 2010) including recent

results illustrating the benefits of the quantal
response (QR) model in security games contexts
(Yang et al. 2011). Therefore, PROTECT uses a nov-
el algorithm called PASAQ (Yang, Tambe, and
Ordóñez 2012) based on the QR model of a human
adversary. To the best of our knowledge, this is the
first time that the QR model has been used in a
real-world security application.

Second, PROTECT improves PASAQ’s efficiency
through a compact representation of defender
strategies exploiting dominance and equivalence
analysis. Experimental results show the significant
benefits of this compact representation. Third,
PROTECT addresses practical concerns (such as
grouping patrol points into areas) of modeling
real-world maritime patrolling application in a
Stackelberg framework. Fourth, this article presents
a detailed simulation analysis of PROTECT’s
robustness to uncertainty that may arise in the real
world. For various cases of added uncertainty, the
article shows that PROTECT’s quantal-response-
based approach leads to significantly improved
robustness when compared to an approach that
assumes full attacker rationality.

PROTECT has been in use at the Port of Boston

Figure 1. USCG Boats Patrolling the Ports of Boston and New York.



since April 2011 and been evaluated by the USCG.
This evaluation brings forth our final key contri-
bution: for the first time, this article provides real-
world data comparing human-generated and
game-theoretic schedules. We also provide results
from an Adversarial Perspective Team’s (APT)
analysis and comparison of patrols before and after
the use of the PROTECT system from a viewpoint
of an attacker. Given the success of PROTECT in
Boston, PROTECT is currently being tested in the
Port of New York (figure 1), and based on the out-
come there, it may potentially be extended to oth-
er ports in the United States.

USCG and PROTECT’s Goals
The USCG continues to face challenges from
potential terrorists within the maritime environ-
ment, which includes both the Maritime Global
Commons and the ports and waterways that make
up the United States Maritime Transportation Sys-
tem. The former Director of National Intelligence,
Dennis Blair noted in 2010 a persistent threat
“from al-Qa’ida and potentially others who share
its anti-Western ideology. A major terrorist attack
may emanate from either outside or inside the
United States” (Blair 2010). This threat was rein-
forced in May of 2011 following the raid on Osama
Bin Laden’s home, where a large trove of material
was uncovered, including plans to attack an oil
tanker. “There is an indication of intent, with oper-
atives seeking the size and construction of tankers,
and concluding it’s best to blow them up from the
inside because of the strength of their hulls” (Dozi-
er 2011). These oil tankers transit the U.S. Mar-
itime Transportation System. The USCG plays a
key role in the security of this system and the pro-
tection of seaports to support the economy, envi-
ronment, and way of life in the United States
(Young and Orchard 2011).

Coupled with challenging economic times,
USCG must operate as effectively as possible,
achieving maximum benefit from every hour spent
on patrol. To that end, the goal of PROTECT is to
use game theory to assist the USCG in maximizing
its effectiveness in the Ports, Waterways, and
Coastal Security (PWCS) Mission. The PROTECT
system, focused on the PWCS patrols, addresses
how the USCG should optimally patrol critical
infrastructure in a port to maximize protection,
knowing that the adversary may conduct surveil-
lance and then launch an attack.

PWCS patrols are focused on protecting critical
infrastructure; without the resources to provide
100 percent on-scene presence at any, let alone all
of the critical infrastructure, optimized use of secu-
rity resources is critical. Toward that end, unpre-
dictability creates situations of uncertainty for an
enemy and can be enough to deem a target less

appealing. While randomizing patrol patterns is
key, PROTECT also addresses the fact that the tar-
gets are of unequal value, understanding that the
adversary will adapt to whatever patrol patterns
USCG conducts. The output of PROTECT is a
schedule of patrols that includes when the patrols
are to begin, what critical infrastructure to visit for
each patrol, and what activities to perform at each
critical infrastructure. While initially pilot tested in
the Port of Boston, the solution technique is
intended to be generalizable and applicable to oth-
er ports.

Key Innovations in PROTECT
Stackelberg games have been well established in
the literature (Conitzer and Sandholm 2006;
Korzhyk, Conitzer, and Parr 2011; Fudenberg and
Tirole 1991) and PROTECT models the PWCS
patrol problem as a Stackelberg game with USCG as
the leader (defender) and the terrorist adversaries
in the role of the follower. The choice of this
framework was also supported by prior successful
applications of Stackelberg games (Jain et al. 2010,
Paruchuri et al. 2008, Pita et al. 2011). (For those
unfamiliar with Stackelberg games, the sidebar arti-
cle provides an introduction.)

In this Stackelberg game framework, the defend-
er commits to a mixed (randomized) strategy of
patrols, which is known to the attacker. This is a
reasonable approximation of the practice since the
attacker conducts surveillance to learn the mixed
strategies that the defender carries out, and
responds with a pure strategy of an attack on a tar-
get. The optimization objective is to find the opti-
mal mixed strategy for the defender.

In the rest of this section, we begin by dis-
cussing how to practically cast this real-world mar-
itime patrolling problem of PWCS patrols as a
Stackelberg game. We also show how to reduce the
number of defender strategies before addressing
the most important innovation in PROTECT: its
use of the quantal response model.

Game Modeling
To model the USCG patrolling domain as a Stack-
elberg game, we need to define the set of attacker
strategies, the set of defender strategies, and the
payoff function. These strategies and payoffs cen-
ter on the targets in a port — ports, such as the Port
of Boston, have a significant number of potential
targets (critical infrastructure). As discussed above,
our Stackelberg game formulation assumes that the
attacker learns the defender’s strategy through
conducting surveillance, and can then launch an
attack. Thus, the attacks an attacker can launch on
different possible targets are considered as his pure
strategies.
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Stackelberg Game

A generic Stackelberg game has two players, a leader, and a fol-
lower (Fudenberg and Tirole 1991). A leader commits to a strat-
egy first, and then a follower optimizes her reward, considering
the action chosen by the leader (von Stengel and Zamir 2004).
The two players in a Stackelberg game need not represent indi-
viduals, but could also be groups that cooperate to execute a
joint strategy, such as a police force or a terrorist organization.
Each player has a set of possible pure strategies, or the actions
that they can execute. A mixed strategy allows a player to play a
probability distribution over pure strategies. Payoffs for each
player are defined over all possible pure-strategy outcomes for
both the players. The payoff functions are extended to mixed
strategies by taking the expectation over pure-strategy outcomes.
The follower can observe the leader’s strategy, and then act in a
way to optimize his own payoffs.

To see the advantage of being the leader in a Stackelberg
game, consider the game with the payoff as shown in the side-
bar table. The leader is the row player and the follower is the col-
umn player. The only pure-strategy Nash equilibrium for this
game is when the leader plays a and the follower plays c, which
gives the leader a payoff of 3; in fact, for the leader, playing b is
strictly dominated.

However, in the simultaneous game if the leader can commit
to playing b before the follower chooses his strategy, then the
leader will obtain a payoff of 4, since the follower would then
play d to ensure a higher payoff for himself. If the leader com-
mits to a mixed strategy of playing a and b with equal (0.5) prob-
ability, then the follower will play d, leading to a higher expect-
ed payoff for the leader of 4.5. As we can see from this example,
the equilibrium strategy in the Stackelberg game can be in fact
different from the Nash equilibria.

Stackelberg games are used to model the attacker-defender
strategic interaction in security domains and this class of Stack-
elberg games (with certain restrictions on payoffs [Yin et al.
2010]) is called Stackelberg security games. In the Stackelberg
security game framework, the security force (defender) is mod-
eled as the leader and the terrorist adversary (attacker) is in the
role of the follower. The defender commits to a mixed (random-
ized) strategy, whereas the attacker conducts surveillance of
these mixed strategies and responds with a pure strategy of an
attack on a target. Thus, the Stackelberg game framework is a
natural approximation of the real-world security scenarios. In
contrast, the surveillance activity of the attacker cannot be mod-
eled in the simultaneous move games with the Nash equilibrium
solution concept. The objective is to find the optimal mixed
strategy for the defender. See Tambe (2011) for a more detailed
introduction to research on Stackelberg security games.

Payoff Table for Example Stackelberg Game.

 c d 

a 3, 1 5, 0 

b 2, 0 4, 2 

However, the definition of defender strategies is
not as straightforward. Patrols last for some fixed
duration during the day as specified by USCG, for
example, 4 hours. Our first attempt was to model
each target as a node in a graph and allow patrol
paths to go from each individual target to (almost
all) other targets in the port, generating an almost
complete graph on the targets. This method yields
the most flexible set of patrol routes that would fit
within the maximum duration, covering any per-
mutation of targets within a single patrol. This
method unfortunately faced significant challenges:
it required determining the travel time for a patrol
boat for each pair of targets, a daunting knowledge
acquisition task given the hundreds of pairs of tar-
gets; it did not maximize the use of port geography
whereby boat crews could observe multiple targets
at once and it was perceived as micromanaging the
activities of the USCG boat crews, which was unde-
sirable.

Our improved approach to generating defender
strategies therefore grouped nearby targets into
patrol areas (in real-world scenarios such as the
Port of Boston, some targets are very close to each
other and it is thus natural to group targets togeth-
er according to their geographic locations). The
presence of patrol areas led the USCG to redefine
the set of defensive activities to be performed on
patrol areas to provide a more accurate and expres-
sive model of the patrols. Activities that take a
longer time provide the defender a higher payoff
compared to activities that take a shorter time to
complete. This affects the final patrol schedule as
one patrol may visit fewer areas but conduct longer
duration defensive activities at the areas, while
another patrol may have more areas with shorter
duration activities.

To generate all the permutations of patrol
schedules, a graph G = (V, E) is created with the
patrol areas as vertices V and adjacent patrol areas
as edges E. Using the graph of patrol areas, PRO-
TECT generates all possible patrol schedules, each
of which is a closed walk of G that starts and ends
at the patrol area b V, the base patrol area for the
USCG. Each patrol schedule is a sequence of patrol
areas and associated defensive activities at each
patrol area in the sequence, and schedules are con-
strained by a maximum patrol time . (Note that
even when the defender just passes by a patrol
area, this is treated as an activity.) The defender
may visit a patrol area multiple times in a schedule
due to geographic constraints and the fact that
each patrol is a closed walk. For instance, the
defender in each patrol should visit the base patrol
area at least twice since she needs to start the patrol
from the base and finally come back to the base to
finish the patrol.

The graph G along with the constraints b and 
are used to generate the defender strategies (patrol



schedules). Given each patrol schedule, the total
patrol schedule time is calculated (this also
includes traversal time between areas, but we
ignore it in the following for expository purposes);
we then verify that the total time is less than or
equal to the maximum patrol time . After gener-
ating all possible patrol schedules, a game is
formed where the set of defender strategies is com-
posed of patrol schedules and the set of attacker
strategies is the set of targets. The attacker’s strate-
gy was based on targets instead of patrol areas
because an attacker will choose to attack a single
target.

Table 1 gives an example, where the rows corre-
spond to the defender’s strategies and the columns
correspond to the attacker’s strategies. In this
example, there are two possible defensive activi-
ties, activity k1 and k2, where k2 provides more
effective protection (also takes more time) for the
defender than k1. Suppose that the time bound dis-
allows more than two k2 activities (given the time
required for k2) within a patrol. Patrol area 1 has
two targets (target 1 and 2) while patrol areas 2 and
3 each have one target (target 3 and 4 respectively).
In the table, a patrol schedule is composed of a
sequence of patrol areas and a defensive activity in
each area. The patrol schedules are ordered so that
the first patrol area in the schedule denotes which
patrol area the defender needs to visit first. In this
example, patrol area 1 is the base patrol area, and
all of the patrol schedules begin and end at patrol
area 1. For example, the patrol schedule in row 2
first visits patrol area 1 with activity k2, then trav-
els to patrol area 2 with activity k1, and returns
back to patrol area 1 with activity k1. For the pay-
offs, if a target i is the attacker’s choice and the
attack fails, then the defender would gain a reward
Rd

i while the attacker would receive a penalty Pa
i,

else the defender would receive a penalty Pd
i and

the attacker would gain a reward Ra
i,. Furthermore,

let Gd
ij be the payoff for the defender if the defend-

er chooses patrol j and the attacker chooses to
attack target i. Gd

ij can be represented as a linear
combination of the defender reward/penalty on

target i and Aij, the effectiveness probability of the
defensive activity performed on target i for patrol
j, as described by equation 1. Aij depends on the
most effective activity on target i in patrol j. The
value of Aij is 0 if target i is not in patrol j. If patrol
j only includes one activity in a patrol area that
covers target i, then we determine its payoff using
the following equation (any additional activity
may provide an additional incremental benefit in
that area and we discuss this in the following sec-
tion).

(1)

For instance, suppose target 1 is covered using k1
in strategy 5, and the value of A15 is 0.5. If Rd

i = 150
and Pd

1 = –50, then Gd
15 = 0.5(150) + (1 – 0.5)(–50)

= 50. Ga
ij would be computed in a similar fashion.

In the USCG problem, rewards and penalties are
based on an analysis completed by a contracted
company of risk analysts that looked at the targets
in the Port of Boston and assigned corresponding
values for each one. The types of factors taken into
consideration for generating these values include
economic damage and injury/loss of life. Mean-
while, the effectiveness probability, Aij, for differ-
ent defensive activities are decided based on the
duration of the activities. Longer activities lead to
a higher possibility of capturing the attackers.

While loss of life and property helps in assess-
ing damage in case of a successful attack, assessing
payoffs requires that we determine whether the
loss is viewed symmetrically by the defender and
attacker. Similarly, whether the payoffs are viewed
symmetrically for the attacker and defender also
holds for the scenario when there is a failed attack.
These questions to go the heart of determining
whether security games should be modeled as zero-
sum games (Tambe 2011).

Past work in security games (for example,
ARMOR [Jain et al. 2010], IRIS [Jain et al. 2010],
GUARDS [Pita et al. 2011]) has used nonzero-sum
game models; for example, one assumption made
is that the attacker might view publicity of a failed
attack as a positive outcome. However, nonzero-
sum games require further knowledge acquisition
efforts to model the asymmetry in payoffs. For sim-
plicity, as the first step PROTECT starts with the
assumption of a zero-sum game. However, the
algorithm used in PROTECT is not restricted to
zero-sum games, as in the future, USCG proposes
to relax this assumption. It is also important to
note that while table 1 shows point estimates of
payoffs, we recognize that estimates may not be
accurate. To that end, in the experimental results
section, we evaluated the robustness of our
approach when there is payoff noise, observation
noise, and execution error.

Gij
d = AijRi

d + (1!Aij )Pi
d
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Patrol Schedule Target 1 Target 2 Target 3 Target 4 

(1:k1), (2: k1), (1: k1) 50, –50 … 15, –15 … 

(1: k2), (2: k1), (1: k1) … 60,-60 … … 

(1: k1), (2: k1), (1: k2) … … … -20, 20 

(1: k1), (3: k1), (2: k1), (1: k1) 50, –50 … … … 

(1: k1), (2: k1), (3: k1), (1: k1) … … 15, –15 … 

Table 1. Portion of a Simplified Example of a Game Matrix.
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ner: we start with patrols that visit the most patrol
areas with the least effective activities within the
patrol time limit; these activities take a shorter
amount of time but we can cover more areas with-
in the given time limit. Then we gradually consid-
er patrols visiting less patrol areas but with increas-
ingly effective activities. This process will stop
when we have considered all patrols in which all
patrol areas are covered with the most effective
activities and cannot include any additional patrol
area.

Figure 2 shows a high level view of the steps of
the algorithm using the compact representation.
The compact strategies are used instead of full
patrol schedules to generate the game matrix.
Once the optimal probability distribution is calcu-
lated for the compact strategies, the strategies with
a probability greater than 0 are expanded to a com-
plete set of patrol schedules.

In this expansion from a compact strategy to a
full set of patrol schedules, we need to determine
the probability of choosing each patrol schedule,
since a compact strategy may correspond to multi-
ple patrol schedules. The focus here is to increase
the difficulty for the attacker to conduct surveil-
lance by increasing unpredictability,1 which we
achieve by randomizing uniformly over all expan-
sions of the compact defender strategies. The uni-
form distribution provides the maximum entropy
(greatest unpredictability). Thus, all the patrol
schedules generated from a single compact strate-
gy are assigned a probability of vi / wi where vi is the
probability of choosing a compact strategy i and
wi is the total number of expanded patrol sched-
ules for i. The complete set of patrol schedules
and the associated probabilities are then sampled
and provided to the USCG, along with the start
time of the patrol generated through uniform ran-
dom sampling.

Human Adversary Modeling
While previous game-theoretic security applica-
tions have assumed a perfectly rational attacker,
PROTECT takes a step forward by addressing this
limitation of classical game theory. Instead, PRO-
TECT uses a model of a boundedly rational adver-
sary by using a quantal response (QR) model of an
adversary, which has shown to be a promising

Compact Representation
In our game, the number of defender strategies,
that is, patrol schedules, grows combinatorially,
generating a scale-up challenge. To achieve scale-
up, PROTECT uses a compact representation of the
patrol schedules using two ideas: combining equiv-
alent patrol schedules and removal of dominated
patrol schedules.

With respect to equivalence, different permuta-
tions of patrol schedules provide identical payoff
results. Furthermore, if an area is visited multiple
times with different activities in a schedule, we
only consider the activity that provides the
defender the highest payoff, not the incremental
benefit due to additional activities. This decision is
made in consideration of the trade-off between
modeling accuracy and efficiency. On the one
hand, the additional value of more activities is
small. Currently, the patrol time of each schedule
is relatively short (for example, 1 hour) and the
defender may visit a patrol area more than once
within the short period and will conduct an activ-
ity each time. For instance, the defender may pass
by a patrol area 10 minutes after conducting a
more effective activity at the same patrol area. The
additional value of the pass by activity given the
more effective activity is therefore very small. On
the other hand, it leads to significant computa-
tional benefits, which are described in this section,
if we just consider the most effective activity in
each patrol.

Therefore, many patrol schedules are equivalent
if the set of patrol areas visited and the most effec-
tive defensive activities in each patrol area in the
schedules are the same even if their order differs.
Such equivalent patrol schedules are combined
into a single compact defender strategy, represent-
ed as a set of patrol areas and defensive activities
(and minus any ordering information). The idea of
combining equivalent actions is similar to action
abstraction for solving large-scale dynamic games
(Gilpin 2009). Table 2 presents a compact version
of table 1, which shows how the game matrix is
simplified by using equivalence to form compact
defender strategies, for example, the patrol sched-
ules in rows 2 and 3 from table 1 are represented as
a compact strategy 2 = {(1, k2), (2, k1)} in table 2.

Next, the idea of dominance is illustrated using
table 2 and noting the difference between 1 and
2 is the defensive activity on patrol area 1. Since
activity k2 gives the defender a higher payoff than
k1, 1 can be removed from the set of defender
strategies because 2 covers the same patrol areas
while giving a higher payoff for patrol area 1. To
generate the set of compact defender strategies, a
naive approach would be first to generate the full
set of patrol schedules and then prune the domi-
nated and equivalent schedules. Instead, PROTECT
generates compact strategies in the following man-

Compact Strategy Target 1 Target 2 Target 3 Target 4 

1 = {(1: k1), (2: k1)} 50, –50 30, –30 15, –15 –20, 20 

2 = {(1: k2), (2: k1)} 100, –100 60, –60 15, –15 –20, 20 

3 = {(1: k1), (2: k1), (3: k1)} 50, –50 30, –30 15, –15 10, –10 

Table 2. Example Compact Atrategies and Fame Matrix.



model of human decision making (McKelvey and
Palfrey 1995; Rogers, Palfrey, and Camerer 2009;
Yang et al. 2011). A recent study demonstrated the
use of QR as an effective prediction model of
humans (Wright and Leyton-Brown 2010). An
even more relevant study of the QR model was
conducted by Yang et al. (Yang et al. 2011) in the
context of security games where this model was
shown to outperform competitors in modeling
human subjects. Based on this evidence, PROTECT
uses a QR model of a human adversary, that is, in
the Stackelberg game model, the attacker best-
responds according to a QR model and the defend-
er computes her optimal mixed patrolling strategy
with this knowledge.

To apply the QR model in a Stackelberg frame-
work, PROTECT employs an algorithm known as
PASAQ (Yang, Tambe, and Ordóñez 2012). PASAQ
computes the optimal defender strategy (within a
guaranteed error bound) given a QR model of the

adversary by solving the following nonlinear and
nonconvex optimization problem P, with table 3
listing the notation.

The first line of the problem corresponds to the
computation of the defender’s expected utility
resulting from a combination of equations 1 and 2
(in the sidebar). QR(i|l) is the probability that the
attacker using the QR model will attack target i.
Unlike in previous applications (Jain et al. 2010;
Kiekintveld, Marecki, and Tambe 2011; Paruchuri
et al. 2008), xi in this case summarizes not just
presence or absence on a target, but also the effec-
tiveness probability Aij on the target as well. That
is, the second line computes the marginal cover-
age on the targets based on the effectiveness factor
Aij and the probability of choosing compact strat-
egy j, denoted as aj.

As with all QR models, a value for l is needed to
represent the noise in the attacker’s strategy. Clear-
ly, a l value of 0 (uniform random) and ∞ (fully
rational) are not reasonable. Given the payoff data
for Boston, an attacker’s strategy with l = 4 starts
approaching a fully rational attacker — the proba-
bility of attack focuses on a single target. In addi-
tion, an attacker’s strategy with l = 0.5 is similar to
a fully random strategy that uniformly chooses a

P :

maxa Q
i=1

T

! R(i | ")((Ri
d #Pi

d )xi + Pi
d )

xi = aj
j=1

J

! Aij ,$i

aj
j=1

J

! =1

0% aj %1,$j

&

'
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Figure 2. Flow Chart of the PROTECT System.

ti Target i 

Rdi Defender reward on covering ti if it’s attacked 

Pd
i Defender penalty on not covering ti  if it’s attack 

Ra
i Attacker reward on attacking ti if it’s not covered 

Pa
i Attacker penalty on attacking ti if it’s covered 

Aij Effectiveness probability of compact strategy j on ti 

aj Probability of choosing compact strategy j 

J Total number of compact strategies 

xi Marginal coverage on ti 

Table 3. PASAQ Notation as Applied to PROTECT.



Articles

WINTER 2012   103

Quantal Response

Quantal response equilibrium is an important model in behav-
ior game theory that has received widespread support in the lit-
erature in terms of its superior ability to model human behav-
ior in simultaneous-move games (McKelvey and Palfrey 1995)
and is the baseline model of many studies (Wright and Leyton-
Brown 2010). It suggests that instead of strictly maximizing
utility, individuals respond stochastically in games: the chance
of selecting a nonoptimal strategy increases as the cost of such
an error decreases. However, the applicability of these models
to Stackelberg security games had not been explored previous-
ly. In Stackelberg security games, we assume that the attacker
acts with bounded rationality; the defender is assisted by soft-
ware and thus we compute the defender’s optimal rational
strategy (Yang et al. 2011).

Given the strategy of the defender, the quantal best response
of the attacker is defined as

(2)

The parameter l represents the amount of noise in the
attacker’s strategy. l can range from 0 to ∞ with a value of 0 rep-
resenting a uniform random probability over attacker strategies
and with a value of ∞ representing a perfectly rational attack-
er. qi corresponds to the probability that the attacker chooses a
target i; Ga

i (xi) corresponds to the attacker’s expected utility of
attacking target i given xi, the probability that the defender
covers target i; and T is the total number of targets.

Consider the Stackelberg game with the payoffs shown in
table 4. Assume that the leader commits to playing b. The fol-
lower obtains a payoff of 0 by playing c and obtains a payoff of
2 by playing d. A rational attacker will play d to maximize his
payoff. However, the quantal best response of the attacker
would be playing c with probability

and playing d with probability
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target to attack. USCG experts (with expertise in
terrorist behavior modeling) suggested that we
could use a broad range for representing possible l
values used by the attacker. Combining the above
observations, it was determined that the attacker’s
strategy is best modeled with a l value that is in
the range [0.5, 4], rather than a single point esti-
mate. A discrete sampling approach was used to
determine a l value that gives the highest average
defender expected utility across attacker strategies
within this range to get l = 1.5. Specifically, the
defender considers different assumptions of the
attacker’s l value and for each assumption about
the l value, the defender computes her expected
utility against the attacker with different l values
within the range [0.5, 4]. We find that when the
defender assumes the attacker is using the QR
model with l = 1.5, the defender’s strategy leads to
the highest defender expected utility when the
attacker follows the QR model with a l value uni-
formly randomly chosen from the range of [0.5, 4].
Selecting an appropriate value for l remains a com-
plex issue however, and it is a key agenda item for
future work.

Evaluation
This section presents evaluations based on experi-
ments completed through simulations and real-
world patrol data along with USCG analysis. All
scenarios and experiments, including the payoff
values and graph (composed of nine patrol areas),
were based off the Port of Boston. The defender’s
payoff values have a range of [–10,5] while the
attacker’s payoff values have a range of [–5,10]. The
game was modeled as a zero-sum game in which
the attacker’s loss or gain is balanced precisely by
the defender’s gain or loss. For PASAQ, the defend-
er’s strategy is computed assuming that the attack-
er follows the QR model with l = 1.5 as justified in
the previous section. All experiments are run on a
machine with an Intel Dual Core 1.4 GHz proces-
sor and 2 GB of RAM.

Memory and Run-Time Analysis
This section presents the results based on simula-
tion to show the efficiency in memory and run
time of the compact representation versus the full
representation. In figure 3a, the x-axis is the maxi-
mum patrol time allowed and the y-axis is the
memory needed to run PROTECT. In figure 3b, the
x-axis is the maximum patrol time allowed and the
y-axis is the run time of PROTECT. The maximum
patrol time allowed determines the number of
combinations of patrol areas that can be visited —
so the x-axis indicates a scale-up in the number of
defender strategies. When the maximum patrol
time is set to 90 minutes, the full representation
takes 30 seconds and uses 540 MB of memory

while the compact representation takes 11 seconds
to run and requires 20 MB of memory. Due to the
exponential increase in the memory and run time
that is needed for the full representation, it cannot
be scaled up beyond 90 minutes.



Utility Analysis
It is useful to understand whether PROTECT using
PASAQ with l = 1.5 provides an advantage when
compared to: (1) a uniform random defender’s
strategy; (2) a mixed strategy with the assumption
of the attacker attacking any target uniformly at
random (l = 0) or; (3) a mixed strategy assuming a
fully rational attacker  (l = ∞). The previously exist-
ing DOBSS algorithm was used for l = ∞ (Paruchuri
et al. 2008). Additionally, comparison with the l =
∞ approach is important because of the extensive

use of this assumption in previous applications (for
our zero-sum case, DOBSS is equivalent to mini-
max but the utility does not change). Typically, we
may not have an estimate of the exact value of the
attacker’s l value, only a possible range. Therefore,
ideally we would wish to show that PROTECT
(using l = 1.5 in computing the optimal defender
strategy) provides an advantage over a range of l
values assumed for the attacker (not just over a
point estimate) in his best response, justifying our
use of the PASAQ algorithm. In other words, we are
distinguishing between (1) the actual l value
employed by the attacker in best-responding, and
(2) the l assumed by PASAQ in computing the
defender’s optimal mixed strategy. The point is to
see how sensitive the choice of (2) is, with respect
to prevailing uncertainty about (1).

To achieve this, we compute the average defend-
er utility of the four approaches above as the l val-
ue of the attacker’s strategy changes from [0, 6],
which subsumes the range [0.5, 4] of reasonable
attacker strategies. In figure 4, the y-axis represents
the defender’s expected utility and the x-axis is the
l value that is used for the attacker’s strategy. Both
uniform random strategies perform well when the
attacker’s strategy is based on l = 0. However, as l
increases, both strategies quickly drop to a very
low defender expected utility. In contrast, the
PASAQ strategy with l = 1.5 provides a higher
expected utility than that assuming a fully ration-
al attacker over a range of attacker l values (and
indeed over the range of interest), not just at l =
1.5.

Robustness Analysis
In the real world, observation, execution, and pay-
offs are not always perfect due to the following:
noise in the attacker’s surveillance of the defend-
er’s patrols, the many tasks and responsibilities of
the USCG where the crew may be pulled off a
patrol, and limited knowledge of the attacker’s
payoff values. Our hypothesis is that PASAQ with
l = 1.5 is more robust to such noise than a defend-
er strategy that assumes full rationality of the
attacker such as DOBSS (Paruchuri et al. 2008), that
is, PASAQ’s expected defender utility will not
degrade as much as DOBSS over the range of
attacker l of interest. This is illustrated by compar-
ing both PASAQ and DOBSS against observation,
execution, and payoff noise (Kiekintveld, Marecki,
and Tambe 2011; Korzhyk, Conitzer, and Parr
2011; Yin et al. 2011). Intuitively, the QR model is
more robust than models assuming perfect ration-
ality since the QR model assumes that the attacker
may attack multiple targets with positive probabil-
ities, rather than attacking a single target in the
model assuming perfect rationality of the adver-
saries. Such intuition has been verified in other
contexts (Rogers, Palfrey, and Camerer 2009). All
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experiments were run generating 200 samples with
added noise and averaging over all the samples.

Figure 5 shows the performance of different
strategies while considering execution noise. The
y-axis represents the defender’s expected utility
and the x-axis is the attacker’s l value. If the
defender covered a target with probability p, this
probability now changes to be in [p – x, p + x]
where x is the noise. The low execution error cor-
responds to x = 0.1 whereas high error corresponds
to x = 0.2. In the experiments, the attacker best-
responds to the mixed strategy with added noise.
The key takeaway here is that execution error leads
to PASAQ dominating DOBSS over all tested values
of l, further strengthening the reason to use
PASAQ rather than a full-rationality model. For
both algorithms, the defender’s expected utility
decreases as more execution error is added because
the defender’s strategy is affected by the addition-
al error. When execution error is added, PASAQ
dominates DOBSS because the latter seeks to max-
imize the minimum defender’s expected utility so
multiple targets will have the same minimum
defender utility. For DOBSS, when execution error
is added, there is a greater probability that one of
these targets will have less coverage, resulting in a
lower defender’s expected utility. For PASAQ, typi-
cally only one target has the minimum defender
expected utility. As a result changes in coverage do
not affect it as much as DOBSS. As execution error
increases, the advantage in the defender’s expect-
ed utility of PASAQ over DOBSS increases even
more. This section only shows the execution noise
results; the details of the observation and payoff
noise results can be found in Shieh et al. (2012).

USCG Real-World Evaluation
In addition to the data made available from simu-
lations, the USCG conducted its own real-world
evaluation of PROTECT. With permission, some
aspects of the evaluation are presented in this arti-
cle.

Real-World Scheduling Data
Unlike prior publications of real-world applica-
tions of game theory for security, a key novelty of
this article is the inclusion of actual data from
USCG patrols before and after the deployment of
PROTECT at the Port of Boston. Figure 6 and figure
7 show the frequency of visits by USCG to different
patrol areas over a number of weeks. Figure 6
shows pre-PROTECT patrol visits per day by area
and figure 7 shows post-PROTECT patrol visits per
day by area. The x-axis is the day of the week, and
the y-axis is the number of times a patrol area is
visited for a given day of the week. The y-axis is
intentionally blurred for security reasons as this is
real data from Boston. There are more lines in fig-
ure 6 than in figure 7 because during the imple-
mentation of PROTECT, new patrol areas were

formed that contained more targets and thus few-
er patrol areas in the post-PROTECT figure. Figure
6 depicts a definite pattern in the patrols. While
there is a spike in patrols executed on Day 5, there
is a dearth of patrols on Day 2. Besides this pattern,
the lines in figure 6 intersect, indicating that some
days a higher-value target was visited more often
while on other days it was visited less often. This
means that there was not a consistently high fre-
quency of coverage of higher-value targets before
PROTECT.

In figure 7, we notice that the pattern of low
patrols on day 2 (from figure 6) disappears. Fur-
thermore, lines do not frequently intersect, that is,
higher-valued targets are visited consistently across
the week. The top line in figure 7 is the base patrol
area and is visited at a higher rate than all other
patrol areas.

Adversary Perspective Teams(APT)
To obtain a better understanding of how the adver-
sary views the potential targets in the port, the
USCG created the Adversarial Perspective Team
(APT), a mock attacker team. The APT provides
assessments from the terrorist perspective and as a
secondary function, assesses the effectiveness of
the patrol activities before and after deployment of
PROTECT. In their evaluation, the APT incorpo-
rates the adversary’s known intent, capabilities,
skills, commitment, resources, and cultural influ-



ences. In addition, it screens attack possibilities
and assists in identifying the level of deterrence
projected at and perceived by the adversary. For
the purposes of this research, the adversary is

defined as an individual(s) with ties to al-Qa’ida or
its affiliates.

The APT conducted a pre- and post-PROTECT
assessment of the system’s impact on an adver-
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sary’s deterrence at the Port of Boston. This analy-
sis uncovered a positive trend where the effective-
ness of deterrence increased from the pre- to post-
PROTECT observations.

Additional Real-World Indicators
The use of PROTECT and APT’s improved guidance
given to boat crews on how to conduct the patrol
jointly provided a noticeable increase in the qual-
ity and effectiveness of the patrols. Prior to imple-
menting PROTECT, there were no documented
reports of illicit activity. After implementation,
USCG crews reported more illicit activities within
the port (therefore justifying the effectiveness of
the PROTECT model) and provided a noticeable
“on the water” presence, with industry port part-
ners commenting, “the Coast Guard seems to be
everywhere, all the time.” With no actual increase
in the number of resources applied, and therefore
no increase in capital or operating costs, these out-
comes support the practical application of game
theory in the maritime security environment.

Outcomes After Boston Implementation
After evaluating the performance and impact of
PROTECT at Boston, the USCG viewed this system
as a success. As a result, PROTECT is now getting
deployed in the Port of New York. We were pre-
sented an award for the work on the PROTECT sys-
tem for the Boston Harbor, which reflects USCG’s
recognition of the impact and value of PROTECT.

Lessons Learned: 
Putting Theory into Practice

Developing the PROTECT model was a collabora-
tive effort involving university researchers and
USCG personnel representing decision makers,
planners, and operators. Building on the lessons
reported in Pita et al. (2011) for working with secu-
rity organizations, we informed the USCG of (1)
the assumptions underlying the game-theoretic
approaches, for example, full adversary rationality,
and strengths and limitations of different algo-
rithms — rather than preselecting a simple heuris-
tic approach; (2) the need to define and collect cor-
rect inputs for model development and; (3) a
fundamental understanding of how the inputs
affect the results. We gained three new insights
involving real-world applied research; unforeseen
positive benefits because security agencies were
compelled to reexamine their assumptions;
requirement to work with multiple teams in a secu-
rity organization at multiple levels of the hierar-
chy; and the need to prepare answers to end-user
practical questions not always directly related to
the “meaty” research problems.

The first insight came about when USCG was
compelled to reassess its operational assumptions
as a result of working through the research prob-
lem. A positive result of this reexamination
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prompted USCG to develop new PWCS mission
tactics, techniques, and procedures. Through the
iterative development process, USCG reassessed
the reasons why boat crews performed certain
activities and whether they were sufficient. For
example, instead of “covered” versus “not cov-
ered” as the only two possibilities at a patrol point,
there are now multiple sets of activities at each
patrol point.

The second insight is that applied research
requires the research team to collaborate with plan-
ners and operators on the multiple levels of a securi-
ty organization to ensure the model accounts for all
aspects of a complex real-world environment. Ini-
tially when we started working on PROTECT, the
focus was on patrolling each individual target. This
appeared to micromanage the activities of boat
crews, and it was through their input that individual
targets were grouped into patrol areas associated
with a PWCS patrol. Input from USCG headquarters
and the APT mentioned earlier led to other changes
in PROTECT, for example, departing from a fully
rational model of an adversary to a QR model.

The third insight is the need to develop answers
to end-user questions that are not always related to
the “meaty” research question but are related to
the larger knowledge domain on which the
research depends. One example of the need to
explain results involved the user citing that one
patrol area was being repeated and hence, ran-
domization did not seem to occur. After assessing
this concern, we determined that the cause for the
repeated visits to a patrol area was its high reward
— order of magnitude greater than the rarely visit-
ed patrol areas. PROTECT correctly assigned patrol
schedules that covered the more “important”
patrol areas more frequently. In another example,
the user noted that PROTECT did not assign any
patrols to start at 4:00 AM or 4:00 PM over a 60-day
test period. They expected patrols would be sched-
uled to start at any hour of the day, leading them
to ask if there was a problem with the program.
This required us to develop a layman’s briefing on
probabilities, randomness, and sampling. With 60
patrol schedules, a few start hours may not be cho-
sen given our uniform random sampling of the
start time. These practitioner-based issues demon-
strate the need for researchers to not only be con-
versant in the algorithms and math behind the
research, but also be able to explain from a user’s
perspective how solutions are accurate. An inabili-
ty to address these issues would result in a lack of
real-world user confidence in the model.

Summary and Related Work
This article reports on PROTECT, a game-theoretic
system deployed by the USCG in the Port of
Boston since April 2011 for scheduling their

patrols. USCG has deemed the deployment of
PROTECT in Boston a success and efforts are
underway to deploy PROTECT in the Port of New
York, and to other ports in the United States. PRO-
TECT uses an attacker-defender Stackelberg game
model, and includes five key innovations.

First, PROTECT moves away from the assump-
tion of perfect adversary rationality seen in previ-
ous work, relying instead on a quantal response
(QR) model of the adversary’s behavior. While the
QR model has been extensively studied in the
realm of behavioral game theory, to the best of our
knowledge, this is its first real-world deployment.
Second, to improve PROTECT’s efficiency, we gen-
erate a novel compact representation of the
defender’s strategy space, exploiting equivalence
and dominance. Third, the article shows how to
practically model a real-world (maritime)
patrolling problem as a Stackelberg game. Fourth,
we provide experimental results illustrating that
PROTECT’s QR model of the adversary is better
able to handle real-world uncertainties than a per-
fect rationality model. Finally, for the first time in
a security application evaluation, we use real-world
data: providing a comparison of human-generated
security schedules versus those generated through
a game-theoretic algorithm and results from an
APT’s analysis of the impact of the PROTECT sys-
tem. The article also outlined the insights from the
project, which include the ancillary benefits due to
a review of assumptions made by security agencies,
and the need for knowledge to answer questions
not directly related to the research problem.

As a result, PROTECT has advanced the state of
the art beyond previous applications of game the-
ory for security. Prior applications mentioned ear-
lier, including ARMOR, IRIS, or GUARDS (Jain et al.
2010, Pita et al. 2011), have each provided unique
contributions in applying novel game-theoretic
algorithms and techniques. Interestingly, these
applications have revolved around airport and air-
transportation security. PROTECT’s novelty is not
only its application domain in maritime
patrolling, but also in the five key innovations
mentioned above, particularly its emphasis on
moving away from the assumption of perfect
rationality by using the QR model.

In addition to game-theoretic applications, the
issue of patrolling has received significant atten-
tion in the multiagent systems literature. These
include patrol work done by robots primarily for
perimeter patrols that have been addressed in arbi-
trary topologies (Basilico, Gatti, and Amigoni
2009), maritime patrols in simulations for deter-
ring pirate attacks (Vanek et al. 2011), and in
research looking at the impact of uncertainty in
adversarial behavior (Agmon et al. 2009). PRO-
TECT differs from these approaches in its use of a
QR model of a human adversary in a game-theo-
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retic setting, and in being a deployed application.
Building on this initial success of PROTECT, we
hope to deploy it at more and much larger-sized
ports. In so doing, in the future, we will consider
significantly more complex attacker strategies,
including potential real-time surveillance and
coordinated attacks.
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Note
1. Creating optimal Stackelberg defender strategies that
increase the attacker’s difficulty of surveillance is an open
research issue in the literature; here we choose to maxi-
mize unpredictability as the first step.
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Visit AAAI on 
Facebook and LinkedIn

AAAI is on Facebook and LinkedIn! We invite all inter-
ested individuals to check out the Facebook site by
searching for AAAI. If you are a current member of
AAAI, you can also join us on LinkedIn. We welcome
your feedback at info13@aaai.org.


