
Automated planning is the process of finding an ordered
sequence of actions that, starting from a given initial
state, allows the transition to a state where a series of

objectives are achieved. Actions are usually expressed in terms
of preconditions and effects; that is, the requirements a state
must meet for the action to be applied, and the changes subse-
quently made. Domain-independent planning relies on general
problem-solving techniques to find an (approximately) optimal
sequence of actions and has been the focus of numerous Inter-
national Planning Competitions (IPCs) over the years. 

The first IPC was organized by Drew McDermott in 1998. For
the following 10 years it was a biennial event and remains a key-
stone in the worldwide planning research community: the most
recent, seventh, IPC took place in 2011. The major important
contribution of the first competition was to establish a common
standard language for defining planning problems — the plan-
ning domain definition language (PDDL) (McDermott 1998) —
which has been developed and extended throughout the com-
petition series. Today, the extended PDDL is still widely used
and is key in allowing fair benchmarking of planners. Participa-
tion has increased dramatically over the years and a growing
number of tracks have formed, representing the broadening
community — see figure 1 for details. The three main tracks now
operating are the deterministic, learning, and uncertainty
tracks. 

The IPC has two main goals: to produce new benchmarks,
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� In this article we review the 2011 Interna-
tional Planning Competition. We give an
overview of the history of the competition, dis-
cussing how it has developed since its first edi-
tion in 1998. The 2011 competition was run in
three main separate tracks: the deterministic
(classical) track; the learning track; and the
uncertainty track. Each track proposed its own
distinct set of new challenges and the partici-
pants rose to these admirably, the results of
each track showing promising progress in each
area. The competition attracted a record num-
ber of participants this year, showing its con-
tinued and strong position as a major central
pillar of the international planning research
community. 
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Figure 1. The History of the International Planning Competition. 



and to gather and disseminate data about the cur-
rent state of the art. Entering a planner represents
significant work, and the contribution of all par-
ticipants in pushing planner development, along
with the data gathered, is the major, prized value
of the competition. The impact of the IPC on the
planning and scheduling community is broader
than just determining a winner: benchmarking
test sets are used for evaluating new ideas, and the
defined state of the art, the most recent winner, is
a useful benchmark. Typically, entrants in the
competition come from academe, though some
industrial colleagues have been involved, and
industrial sponsorship secured. The independent
assessment of available systems is useful to poten-
tial users of planners outside the research commu-
nity. 

The competition is run by the organizers over a
period of several months, with participants sub-
mitting their planning systems electronically. The
results of each edition of the competition are pre-
sented in a special session of the International
Conference on Automated Planning and Schedul-
ing, ICAPS.1 The IPC council, chaired by Lee
McCluskey, oversees the competition series (and
the knowledge engineering competition series
ICKEPS) and is seeking chairs for the next compe-
tition, expected to take place in 2013. More infor-
mation about the competition can be found on the
IPC2 website. 

Deterministic Track 
The deterministic part of the competition is the
longest-running track. Its focus is on the ability of
planners to solve problems across a wide range of
unseen domains: a challenging test of the ability
of planners to succeed as domain-independent sys-
tems. Several subtracks of the competition have
developed over the years, with all tracks at the cen-
ter of figure 1 being considered subtracks of the
deterministic competition. The 2011 competition
saw the introduction of a new track for multicore
planners. Furthermore, another key contribution
was to release all the software used to run the com-
petition,3 thus reducing workload for future poten-
tial organizers. 

The 2011 competition followed the successful
2008 competition and was run in a very similar
way. For 2011 we decided to keep the language the
same, without introducing extensions, as planners
still need to catch up with the currently available
features. We also made use of the plan validator
VAL (Howey, Long, and Fox 2004). We maintained
the evaluation metrics introduced in IPC-2008,
favoring quality and coverage over problem-solv-
ing speed. Briefly, each planner is allowed 30 min-
utes on each planning task and receives a score
between 0 and 1. The score is the ratio between the

quality of the solution found, if any (if not, it is
given zero), and the quality of the best solution
found by any entrant. The score is summed across
all problems for a given planner, the winner and
runner-up for each track being those with the
highest scores. Scores are not aggregated among
tracks. We included in the results a comparison to
the winner of the last competition to ensure
progress is being made. 

The 2011 competition was extremely popular: a
record number of 55 entrants took part in the
deterministic track alone, almost eight and three
times more than the first and sixth competitions,
respectively, showing significant growth in com-
munity involvement. A summary of each of the
subtracks follows. 

Satisficing Track 
The LAMA planner won the satisficing track for the
second year running, in its new incarnation
LAMA-2011 (team members Silvia Richter,
Matthias Westphal, Malte Helmert, and Gabriele
Röger). LAMA follows in a long history of success-
ful planners using forward-chaining search —
including previous winners HSP (team members
Blai Bonet and Hector Geffner) in 1998, FF (Jörg
Hoffmann) in 2000, and Fast Downward (team
members Malte Helmert and Silvia Richter) in 2004
— with further guidance obtained from landmarks
(facts that must be true in any solution plan).
Interestingly the only nonforward search planner
to win this track was LPG (team members Alfonso
Gerevini and Ivan Serina) in 2002, using stochastic
local search. A number of other interesting tech-
niques have been seen throughout the years,
including the use of pattern databases, and plan-
ning as satisfiability. Nine out of 27 of the planners
in 2011 outperformed the 2008 winner LAMA-
2008 (team members Silvia Richter and Matthias
Westphal), showing good progress in the state of
the art. 

Multicore Track 
With the advent of parallel computers at affordable
prices we wanted to ask the question: can planners
using multiple cores at the same time perform bet-
ter than those using the single core allowed in the
classical track? The winner of the multicore track
was ArvandHerd (team members Hootan Nakhost,
Martin Mueller, Jonathan Schaeffer, Nathan Sturte-
vant, and Richard Valenzano); but it did not out-
perform the classical-track winner, LAMA-2011.
This is not so concerning, however — the history
of the IPC shows that classical planners are highly
engineered in terms of data structures and are dif-
ficult to beat in the first editions of new tracks. 

Temporal Track 
Since the introduction of PDDL 2.1 in 2003, only
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a subset of the temporal planners available have
been able to reason with the full temporal seman-
tics of the language. As such, for the 2011 tempo-
ral track, we included a special class of temporal
problems that include required concurrency
(Cushing et al. 2007). That is, no solution to the
problem exists if the planner is not able to run two
actions in parallel at the same time. The most suc-
cessful planners in this track were the winner
Daeyahsp (team members Johan Dréo, Marc
Schoenauer, Pierre Savéant, and Vincent Vidal) and
runner-up ex-aequo Yahsp2-MT (Vincent Vidal),
which performed best on the standard temporal
problems, and runner up ex-aequo POPF2 (team
members Amanda Coles, Andrew Coles, Maria Fox,
and Derek Long), which was the only planner to
solve problems in all domains with required con-
currency. 

Optimal Track 
As planning technology develops, writing planners
that find optimal, as opposed to simply satisfying,
solutions to problems becomes more feasible. Fast
Downward Stone Soup 1 (team members Malte
Helmert, Jörg Hoffmann, Erez Karpas, Emil Keyder,
Raz Nissim, Silvia Richter, Gabriele Röger, Jendrik
Seipp, and Matthias Westphal) won this year’s
competition outperforming the new version of the
2008 winner, Gamer (Stefan Edelkamp and Peter
Kissmann). Fast Downward Stone Soup is portfolio
based, in contrast to the symbolic search using
binary decision diagrams (BDDs) of Gamer. The
major shift toward forward search and away from
planning as satisfiability in the two most recent
competitions can be attributed to a change in the
definition of optimality: the last two competitions
have required a lowest-cost plan, whereas previous
editions required a solution with the minimum
number of actions. The former is much less
amenable to a planning as satisfiability approach. 

Learning Track 
Efficient domain-independent search is a major
challenge for AI. Using a single solver for many dif-
ferent problems significantly reduces human
effort; the trade-off is that domain-specific sys-
tems, while time-consuming to write, are general-
ly much more efficient. Creating a system that can
automatically learn to solve problems more effi-
ciently is a promising approach for combining the
advantages of both types of systems. This is the
inspiration for research in learning for planning, a
topic widely explored since the 1970s. The first IPC
learning track in 2008 (Fern, Khardon, and Tade-
palli 2011), was an important milestone for
research in learning in planning, providing a plat-
form for fair comparison. The track comprises two
phases: a learning phase where the planners, given

training problems, learn domain-specific knowl-
edge; and an evaluation phase, where the planners
exploit this knowledge in solving a set of unseen
problems. 

We took much inspiration from the 2008 learn-
ing track in organizing its 2011 successor. Howev-
er, in light of lessons learned we made several
changes to the running of the competition. A
somewhat controversial outcome of the first learn-
ing track was that best-performing planners on the
evaluation phase were not those that improved the
most upon learning; indeed the winner showed lit-
tle improvement, and several planners performed
worse after learning. Obtuse Wedge (team mem-
bers Sungwook Yoon, Alan Fern, and Robert
Givan), awarded best learner in 2008, was one of
the few planners to improve. A major innovation
in 2011 was to use Pareto dominance as the metric
for determining competition winners: a planner
must both perform better than other planners and
must also have improved more by learning in
order to be considered “better” than its competi-
tor. We further extended the scope for learning by
allowing a longer learning period and providing
problem generators, to allow an unrestricted num-
ber of available training problems. 

A total of eight systems participated, broadly
falling into two categories: parameter tuners, learn-
ing to adjust the parameters of planners (or port-
folios) for best performance; and knowledge learn-
ers, planners learning heuristics or policies for the
given domain. The competition made use of many
previous planning benchmarks, generating larger
challenging instances, and introduced two new
domains challenging for commonly used delete-
relaxation heuristics. These were the Spanner
domain, in which delete-relaxation planners tend
to head toward dead ends, challenging planners to
learn to avoid them; and the Barman domain, in
which delete relaxation misses relevant knowledge
about the state of limited resources. 

The results of the 2011 competition painted a
much more positive picture of learning in plan-
ning than those of its predecessor. Out of eight par-
ticipants, six improved performance with learning
in seven of the nine domains. Further, four of the
competitors outperformed the deterministic track
winner, LAMA-2011 (team members Silvia Richter,
Matthias Westphal, Malte Helmert, and Gabriele
Röger), demonstrating that learning can improve
upon the state of the art. The winner PBP2 (team
members Alfonso Gerevini, Alessandro Saetti, and
Mauro Vallati), uses statistical learning to define
the time slots dedicated to each planner in its port-
folio. The runner-up, FD-Autotune (team members
Chris Fawcett, Malte Helmert, Holger Hoos, Erez
Karpas, Gabriele Röger, and Jendrik Seipp), learns
the best set of parameters for the popular planner
Fast Downward (Malte Helmert). The most suc-
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cessful group of planners were parameter-tuning
systems; the results reveal a major open challenge
to the learning in planning community: making
planners that learn knowledge from the domain
(for example, macro-action, heuristic, or policy
learners) competitive with the state of the art. 

Uncertainty Track 
The uncertainty part of the IPC was initiated in
2004 by Michael Littman and Haakan Younes with
the introduction of PPDDL, the probabilistic
extension of PDDL (Younes et al. 2005). PPDDL
extends PDDL with stochastic action effects, allow-
ing a variety of Markov decision processes (MDPs)
to be encoded in a relational PDDL-like manner.
The 2006 competition (chaired by Robert Givan
and Blai Bonet) added a track for conformant plan-
ning (that is, nonobservable nondeterministic
domains) and the 2008 competition (chaired by
Daniel Bryce and Olivier Buffet) added a track for
fully observable nondeterministic (FOND)
domains. In the 2011 competition, we dropped the
conformant and FOND tracks due to lack of inter-
est, but added a partially observed MDP (POMDP)
track. We also made a major change of language
from PPDDL to RDDL (Sanner 2010) (while pro-
viding automated translations from RDDL to
ground PPDDL and factored MDPs and POMDPs),
which allowed modeling a variety of new problems
with stochasticity, concurrency, and complex
reward and transition structure not jointly repre-
sentable in lifted PPDDL. The 2011 competition
saw five MDP and six POMDP planner entrants. 

Previous competitions saw the emergence of FF-
Replan (Yoon, Fern, and Givan 2007) — which
replanned on unexpected outcomes in a deter-
minized translation of PPDDL — as an influential
and top-performing planner. With our language
change from PPDDL to RDDL in 2011 and our vari-
ety of new problem domains, planners based large-
ly on the UCT Monte Carlo tree search algorithm
(Kocsis and Szepesvári 2006) placed first in both
the MDP and POMDP tracks in the 2011 competi-
tion. For the MDP track, the winner was PROST
(team members Thomas Keller and Patrick Eye-
rich), which used UCT in combination with deter-
minization techniques to initialize heuristics; the
runner up was Glutton (team members Andrey
Kolobov, Peng Dai, Mausam, and Daniel Weld),
which used an iterative deepening version of RTDP
(Barto, Bradtke, and Singh 1995) with sampled
Bellman backups. For the POMDP track, the win-
ner was POMDPX NUS (team members Kegui Wu,
Wee Sun Lee, and David Hsu), which used a point-
based value iteration (PBVI) technique (Kurni-
awati, Hsu, and Lee 2008) for smaller problems,
but a POMDP-variant of UCT (Silver and Veness
2010) for larger problems; the runner up was KAIST

AI Lab (team members Dongho Kim, Kanghoon
Lee, and Kee-Eung Kim), which used a symbolic
variant of PBVI (Sim et al. 2008) with a number of
enhancements. 

Evaluation for the 2004, 2006, and 2008 compe-
titions relied on analysis of one or more of the fol-
lowing metrics: (1) average action cost to reach the
goal, (2) average number of time steps to reach the
goal, (3) percent of runs ending in a goal state, and
(4) average wall-clock planning time per problem
instance. Because lack of planner attempts on
some harder domains made it difficult to aggregate
average performance results on these metrics, we
introduced an alternate purely reward-based eval-
uation approach in 2011 — for every problem
instance of every domain, a planner was assigned
a normalized [0,1] score with the lower bound
determined by the maximum average performance
of a no-op and random policy and the upper
bound determined by the best competitor; any
planner not competing or underperforming the
lower bound was assigned a score of 0 and all nor-
malized [0,1] instance scores were averaged to
arrive at a single final score for each planner. 

A recurring debate at each competition is
whether problem domains have reflected the full
spectrum of probabilistic planning (Little and
Thiébaux 2007). This issue partially motivated our
change from PPDDL to RDDL in 2011 in order to
model stochastic domains like multiintersection
traffic control and multielevator control that could
not be modeled in lifted PPDDL. How the language
and domain choice for the 2013 IPC shapes up
remains to be seen; however, given the profound
influence the uncertainty track of the IPC has had
on the direction of planning under uncertainty
research in the past seven years, we believe it is
imperative that the competition domains in 2013
be chosen to ensure the greatest relevance to end
applications of interest to the planning under
uncertainty community. 
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Notes
1. Videos of the 2011 presentations can be found at
videolectures.net/icaps2011_freiburg/
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2. See icaps-conference.org/index.php/Main/Competi-
tions

3. Available at www.plg.inf.uc3m.es/ipc2011-determinis-
tic/FrontPage/Software
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